ALMOST COMMUTATIVE BANDS

by T. E. HALL†

(Received 15 January, 1971)

1. Introduction. To find a "description of the structure of bands which is complete modulo semilattices" (from page 25 of [1]) seems to be a very difficult problem. As far as the author is aware, the only class of bands (except for rectangular bands) for which this problem has been solved (see [4] and [3]) is the class of all bands satisfying a generalization of commutativity, namely the condition that efgh = egfh for all elements e, f, g and h.

The purpose of this paper is to give a solution to this problem for a further class of bands, which we call the class of almost commutative bands: a band is called *almost commutative* if any pair of elements are either \mathscr{J} -related or commute. It is easily seen from [1, Theorem 4.6] that a band B is almost commutative if and only if, for all $e, f \in B$, either ef = fe or both efe = e and fef = f.

Three examples of almost commutative bands played a major role in $[2, \S4]$ in the solution of two problems posed in [6]. The author was helped in the writing of this paper by an expository thesis of J. Pippey [5], which included the results given here.

2. Preliminaries. We use wherever possible, and usually without comment, the notations of Clifford and Preston [1].

Let B be any band. Then from [1, Theorem 4.6] B is a semilattice of rectangular bands; that is to say, for some semilattice Y and rectangular subbands $\{E_{\alpha} : \alpha \in Y\}$ of B, $B = \bigcup E_{\alpha}$,

and for all α , $\beta \in Y$, $E_{\alpha} \cap E_{\beta} = \Box$ if $\alpha \neq \beta$, and $E_{\alpha}E_{\beta} \subseteq E_{\alpha\beta}$; further, each E_{α} is a \mathscr{J} -class of B. If $e \in E_{\alpha}$, then we shall sometimes denote E_{α} by E(e). It is clear that for any $e, f \in B$

$$eE(ef)e = \{g \in E(ef) : g \leq e\},\$$

where as usual $g \leq e$ means eg = g = ge.

3. Almost commutative bands.

LEMMA 1. For any elements e, f in the band B,

$$|[eE(ef)e] \cap [fE(ef)f]| \leq 1.$$

Proof. Suppose that the set $[eE(ef)e] \cap [fE(ef)f] \neq \square$ and take any element g of this set. Then $g \leq e$ and $g \leq f$, from which we easily see that $g \leq ef$. But $ef, g \in E(ef)$, a rectangular band; so g = ef. Therefore the set above contains at most one element, namely ef (further, we may easily see that it contains ef if and only if ef = fe).

LEMMA 2. The band B is almost commutative if and only if, for any $\alpha, \beta \in Y$ and any $e \in E_{\alpha}, f \in E_{\beta}, \beta < \alpha$ implies f < e.

† This research was supported by a Nuffield Travelling Fellowship.

Proof. Suppose that B is almost commutative and take any α , $\beta \in Y$ such that $\beta < \alpha$. Then, for any $e \in E_{\alpha}$, $f \in E_{\beta}$, we have $ef = fe \in E_{\alpha\beta} = E_{\beta}$. But, since ef = fe, we see that $ef \leq f$, whence ef = f, since E_{β} is a rectangular band. Thus f < e.

Conversely suppose, for all α , $\beta \in Y$ and for all $e \in E_{\alpha}$, $f \in E_{\beta}$, that $\beta < \alpha$ implies f < e. Take any elements $g, h \in B$ such that $J_g \neq J_h$, i.e. $E(g) \neq E(h)$. Then $g \in E_{\gamma}$ and $h \in E_{\delta}$ for some $\gamma, \delta \in Y$ with $\gamma \neq \delta$. If $\gamma < \delta$, then g < h, whence gh = g = hg and, similarly, if $\delta < \gamma$, then gh = h = hg. Let us consider then the remaining case, namely when γ and δ are not comparable; then $\gamma \delta < \gamma$ and $\gamma \delta < \delta$. Since $gh, hg \in E_{\gamma\delta}$, we have that both gh and hg are less than both g and h; so, from Lemma 1, gh = hg. Thus B is almost commutative.

REMARK 1. Lemma 2 contrasts with the case when B satisfies efgh = egfh for all e, f, g, $h \in B$, for this is true of B if and only if $|eE_{\beta}e| = 1$ for all $\beta \in Y$, $e \in B$ [5, Theorem 6].

From Lemmas 1 and 2 we see that, if B is almost commutative, then, for any α , $\beta \in Y$, $\alpha \neq \alpha\beta \neq \beta$ implies $|E_{\alpha\beta}| = 1$. We have thus proved already the final statement of the following theorem.

THEOREM 1. Let now Y be any semilattice and let $\{E_{\alpha} : \alpha \in Y\}$ be any set of pairwise disjoint rectangular bands such that $|E_{\alpha}| = 1$ if $\alpha = \beta\gamma$ for some $\beta, \gamma \in Y$ and $\beta \neq \alpha \neq \gamma$; if this is the case, then let e_{α} denote the only element of E_{α} . Let the multiplication in each E_{α} be denoted by juxtaposition. Put $B = \bigcup_{\alpha \in Y} E_{\alpha}$ and define a multiplication \circ for B as follows: for any $\alpha, \beta \in Y$ and for any $e \in E_{\alpha}, f \in E_{\beta}$, define

$$e \circ f = \begin{cases} e \quad \text{if} \quad \alpha < \beta, \\ ef \quad \text{as in} \quad E_{\alpha} \quad \text{if} \quad \alpha = \beta, \\ f \quad \text{if} \quad \alpha > \beta, \\ e_{\alpha\beta} \quad \text{if} \quad \alpha \neq \alpha\beta \neq \beta. \end{cases}$$

Then B is an almost commutative band. Conversely any almost commutative band is obtained in this way.

Proof. To show that \circ is associative we shall only assume that the E_{α} ($\alpha \in Y$) are semigroups and not necessarily rectangular bands.

Take any $e, f, g \in B$. Then $e \in E_{\alpha}$, $f \in E_{\beta}$ and $g \in E_{\gamma}$ for some α , β , $\gamma \in Y$. It is clear from the definition of \circ that $e \circ f \in E_{\alpha\beta\gamma}$, $(e \circ f) \circ g \in E_{\alpha\beta\gamma}$ and $e \circ (f \circ g) \in E_{\alpha\beta\gamma}$. Hence, if $|E_{\alpha\beta\gamma}| = 1$, then $(e \circ f) \circ g = e \circ (f \circ g)$.

Suppose then that $|E_{\alpha\beta\gamma}| > 1$. Then $\alpha\beta$ and γ are comparable.

Case 1: $\gamma < \alpha\beta$. Then $(e \circ f) \circ g = g$ and, since $\gamma < \beta$ and $\gamma < \alpha$, $e \circ (f \circ g) = e \circ g = g$, giving $(e \circ f) \circ g = e \circ (f \circ g)$.

Case 2: $\gamma = \alpha \beta$. Then $|E_{\alpha\beta}| = |E_{\alpha\beta\gamma}| > 1$, whence α and β are comparable.

Case 2(a): $\alpha < \beta$. Then $\gamma = \alpha\beta = \alpha < \beta$, whence

$$(e \circ f) \circ g = e \circ g = e \circ (f \circ g).$$

T. E. HALL

Case 2(b): $\alpha = \beta$. Then $\alpha = \beta = \gamma$ and clearly $(e \circ f) \circ g = e \circ (f \circ g)$.

Case 2(c): $\alpha > \beta$. Then $\alpha > \beta = \alpha\beta = \gamma$, whence

 $(e \circ f) \circ g = f \circ g = fg = e \circ (fg) = e \circ (f \circ g).$

Case 3: $\gamma > \alpha\beta$. Once again $|E_{\alpha\beta}| = |E_{\alpha\beta\gamma}| > 1$, whence α and β are comparable.

Case 3(a): $\alpha < \beta$. Then $\alpha = \alpha\beta < \gamma$ and $(e \circ f) \circ g = e \circ g = e$. Also $\alpha \leq \beta\gamma$. If $\alpha = \beta\gamma$, then $\beta \neq \beta\gamma \neq \gamma$, giving $|E_{\alpha\beta\gamma}| = |E_{\beta\gamma}| = 1$, a contradiction. Hence $\alpha < \beta\gamma$, giving $e \circ (f \circ g) = e = (e \circ f) \circ g$.

Case 3(b): $\alpha = \beta$. Then $\beta = \alpha\beta < \gamma$, giving

$$(e \circ f) \circ g = e \circ f = e \circ (f \circ g).$$

Case 3(c): $\alpha > \beta$. Then $\beta = \alpha\beta < \gamma$ and

$$(e \circ f) \circ g = f \circ g = f = e \circ f = e \circ (f \circ g).$$

We now have that \bullet is associative, and clearly then B is an almost commutative band.

REFERENCES

1. A. H. Clifford and G. B. Preston, *The algebraic theory of semigroups*, Amer. Math. Soc. Mathematical Surveys, No 7, Vol. I (Providence, R.I., 1961).

2. T. E. Hall, Orthodox semigroups, Pacific J. Math. 39 (1971), 677-686.

3. J. M. Howie, Naturally ordered bands, Glasgow Math. J. 8 (1967), 55-58.

4. N. Kimura and M. Yamada, Note on idempotent semigroups II, Proc. Japan Acad. 34 (1958), 110-112.

5. J. Pippey, Some structure theorems for bands, Honours year thesis (1969), Monash University.

6. M. Yamada, On a regular semigroup in which the idempotents form a band, *Pacific J. Math.* 33 (1970), 261-272.

UNIVERSITY OF STIRLING

178