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A NOTE'ON THE LAG-PHASE IN THE GROWTH
OF MICRO-ORGANISMS.

BY ARTHUR SLATOR.

(With one Chart.)

THE mechanics of the growth of micro-organisms in nutrient
solutions has of late years received considerable attention. The
logarithmic law governing the phase of unrestricted growth is now well
established (Lane-Claypon (1909), Penfold and Norris (1913), Slator
(1913), (1916) and others). Considerable information regarding another
period of growth is also available. When a suitable nutrient medium
is seeded with bacteria, there is usually a period during which the
bacteria grow at a slower rate than is the case later when the logarithmic
law holds good. This period is called the lag-phase of growth. The
laws governing such growths have been carefully and successfully
worked out by Penfold (1914) and Ledingham and Penfold (1914).
Bacillus coli was the organism employed in their experiments. In
the paper by Ledingham and Penfold on "The mathematical analysis
of the lag-phase in bacterial growth" the authors have shown that
the relationship between the number of bacteria and the time can be
represented by an equation involving two constants both of which
vary in different experiments, but remain of the same value throughout
each single experiment. It has apparently escaped notice that there
is a relationship between the two constants of such a nature that one
of them can be replaced by a third which remains of the same value
throughout the whole series of experiments. If use is made of this
new constant further information regarding the lag-phase in growth
can be obtained.

The notation employed in this paper is essentially the same as
that used by Ledingham and Penfold. Log = logarithm to base 10,
In = natural logarithm to base e, G.T. = generation time.
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Ledingham and Penfold show that the growth of bacteria during
the lag-phase is accurately represented by the equation

X«=klogY (1),

where Y is the number of bacteria after a time X, the initial seeding
being one. n and k are constants. They find the following values for
n and k in eight separate experiments.

Experiment
1
2
3
4
5
6
7
8

n
1-88
1-77
1-56
1-56
1-97
1-74
2-01
2-7

TABLE I.

k •

10988
6322
2329
2465

16732
5483

23020
1045000

k
n

5840
3570
1490
1580
8490
3150

11450
387000

k
7/

3-766
3-553
3-173
3-199
3-929
3-498
4-059
5-588

Average

log k/n
n

200
2-01
2-03
206
1-99
201
2-02
2-07

= 2-024 = A

It is clear from this table that there is a relationship between n

d k of such a

of experiments.

and k of such a kind that -^—'— = A, a constant for the whole series
n

Now let \0A= ~, then k = nlOnA= ?- (2).
K1 Kx

n

Equation (1) then becomes

Z»= ^ l o g Y or X*K1*=\og Y" (3).

For this series of experiments A averages 2-024. Therefore

Kx = 10-2-024 = 0-00945.

The equation of the lag-phase of growth reads therefore

Xn (0-00945)" = log Yn.

Differentiating equation (3) we have

nXn-i KHX = j log edY,

dX K^X"-1

Y ~ 0-4343 •
7—3
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102 The Lag-Phase, etc.

This value j= IY is the "constant" of growth at any time X and

can be called Z.
Therefore 0-4343Z = K? X"-1 (4).

The equations of unrestricted growth corresponding to (3) and (4) are

= log Y (5),

= JfiT2 (6),

i

The minimum generation-time found by Ledingham and Penfold
is usually 18—20 mins., though in some cases values 16-6 and 17-1 mins.
have been observed (Experiments 5 and 8, pp. 253 et seq.). The lowest
vaW 16-6 mins. corresponds to a value of K2 = 0-0182. K2 is therefore
approximately equal .to 2KV The constant Kx = 0-00945 corresponds
to a G.T. of 32 mins.

The peculiarities of the lag-phase can be conveniently discussed by
the aid of a Z — X diagram. Four of the family of curves given by
the general equation 0-4343Z = ^X"-1 are shown in the chart. They

X = time

are the particular cases when n = 1, n — 1-5, n = 2 and n — 2-5 and
they illustrate the general ŝhape of the curves with varying n. The
following relationships are evident. All curves pass through a point a.
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When n — 2 the curve is a straight line joining the origin to the point a.
When n = 1 the curve is a straight line passing through a parallel to
the time axis. When n = 2-5 the curve rises slowly at first and then
rapidly. When n = 1-5 the curve rises rapidly and then slowly.

All these curves theoretically can be continued indefinitely but in
practice they end abruptly when they cut the horizontal line corre-
sponding to the minimum G.T., that is 0-4343Z = K2. When n = 1 the
lag is infinitely great. The equation of unrestricted growth is evidently
a limiting case where n — 1, but the value of K is about twice as great
as in the lag-phase (K2 = 2A'j). If there exist growths of bacteria
which exhibit values of n approaching 1 the minimum G.T. will be
reached only after a long time, and growths will be obtained which
give apparently constant values of G.T. higher than the true mini-
mum value. An average value Kt = 0-00945 corresponds to a point
1/0-00945 mins. (106 mins.) from the beginning of the experiment. All
growths therefore (no matter what n is) should give a G.T. 32 mins. at
a time 106 mins. Ledingham and Penfold's figures, given on pp. 252
and 253, show this to be approximately the case. Closer agreement
would be obtained if the figures were adjusted to an extrapolated time
origin when Z = 0 (G.T. = oo). Ledingham and Penfold's results show
another peculiarity which can be pointed out in the following way.
When yeast cells are placed in suitable sugar solution, the rate of
fermentation is proportional to the number of yeast cells present.
This result can be expressed by means of the equation qt = constapt,
where q is the quantity of yeast and t the time to bring about a given
amount of fermentation. Arrhenius, in his book, Quantitative Laws in
Biological Chemistry, shows that this qt-vule holds good for a large
number of reactions brought about by cells and enzymes. In the case of
a reaction which takes place in the cell itself it is a result which would be
anticipated and deviations from the qt-rule are usually more interesting
than agreement with it. We have such a deviation in Ledingham
and Penfold's results. If the qt-rale held good n would be constant
when the medium and condition of the seeding were the same, indepen-
dently of the amount of seeding. Thus the equation XnKn = log Y*
takes no note of the seeding only of ratios between the seeding and
number of cells at time X. Ledingham and Penfold find however
that n varies with the seeding. The probable explanation is that n
is influenced by a substance present in small concentration in the
medium and that the amount is not great compared with the seeding
used.
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104 The Lag-Phase, etc.

A knowledge of the factors which influence n would no doubt help
to determine the cause of lag and the physical meaning of n.

Possibly growth depends on a substance present in the cell and is
at all times proportional to its concentration z. For the convenience
of having a name for this substance it has been called the " enzyme of
growth." If 2 were initially zero and increase with the time during
the lag-phase according to the equation z = at* where a and b are
constants (b = n — 1) an explanation of the lag-phase would be obtained.

No doubt both the medium in which development takes place and
the condition of the cell play their/part in determining n.

It is possible that cultures of micro-organisms can be obtained which
grow in one medium but not in another, although they grow readily in
the latter medium if care is taken to get rid of lag. Irregularities in the
growth of yeast in certain nutrient solutions have given rise to the idea
that a certain mysterious "Bios" is necessary for yeast growth. The
experiments on which the idea of "Bios" is founded can be readily
explained by peculiaiities in the lag-phase of growth. Text books by
Bayliss (1915) and by Sykes and Ling (1907) give accounts of these-
experiments.

It is difficult to understand why the relationship shown in Table I
holds good only for logarithms to the base 10. If natural logarithms
are used another constant has to be introduced which cannot be
eliminated by giving K another value.

Using natural logarithms equations (3) and (4) read

XnaKn = lnYn (7),

Z = aKnXn-1 (8).

There are certain advantages to be gained by using equation (8) as
the fundamental equation of growth.

Let us consider the case when n is less than 1. By keeping K and
a constant and by varying n we get a family of hyperbola-like curves
all passing through a given point. The possibility that such curves
represent rates of retarded growth of micro-organisms is worth invesr
tigating. When a culture of bacteria or yeast develop in a suitable
medium after the logarithmic phase there occurs a period of retarded
growth brought about by changes in the medium or by scarcity of food.
The retarding influences finally become so great that growth ceases.
The laws governing growth under such conditions are not easy to
determine for the retarding factors do not remain constant and usually
more than one is at work. It should however be possible to devise
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experiments in which the retarding influence remains constant and
to determine the Z — X curve under these circumstances.

In the special case where n = 0 and a — I, ZX = 1 or the Z — X
curve is a hyperbola.

Further Z = -j==/ Y. Therefore -=- = -==- or Y — cX, where c is a
' (LA./ X I

constant. The curve of growth is therefore a straight line.
The interest in this calculation lies in the fact that rectilinear curves

of yeast growth have been observed by H. T. Brown (1914). Brown
explains these curves on the assumption that yeast growth requires
oxygen and that the lack of oxygen under the conditions of the experi-
ments has a retarding efEect on the growth just sufficient to change
the logarithmic curve to a rectilinear one. There is no doubt that if
oxygen acts in the manner he describes the X — Y curve becomes a
straight line. On the other hand if the influences retarding growth are
such that no increase in the amount of "enzyme of growth" takes
place then rectilinear curves of growth would be obtained, and there
is no difficulty in explaining Brown's results on such lines.

Whatever the true explanation is, rectilinear curves of growth can be
expected if equation (8) represents the growth when retarding influences
come into play.

Another phase in the existence of growths of micro-organisms is
the final one when they gradually die. The curve of disappearance
of living cells has been shown to be logarithmic in character1 and may

1 Though the logarithmic curve of the dying of cells and organisms seems to be followed
in a surprisingly large number of cases it is not difficult to find conditions under which
such a law would not hold. Thus for instance the natural death rate of a number of men
all of the same age is not of a logarithmic character. This is shown in Table II, where

Y = the number of men surviving at various ages. The figures are taken from a table
on the "Expectation of Life" based on the mortality for the 10 years 1891—1900. (See
Whitaker's Almanack, 1917, 452).

Z = "constant" of decrease and is calculated over a short period of time (1 year)
at various ages. Z is assumed to be constant over this short period and is measured by
the difference between the logarithms of Y at the beginning and end of the year.

Z increases rapidly with the age of the man. By subtracting a constant from Z we
get a series of figures (Z — 00011) which are approximately in geometrical progression.
This is shown in the last column where A is calculated from the equation

where Zo = Z •- 0-0011 at age 20 and Zx= Z - 0-0011 at age x.
The constancy of A shows that the decrease in the number can be calculated by means

of an equation of the type Z = a + cte.
The death rate is apparently determined mainly by two factors, the one a constant
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therefore be considered a special case of the curve given by the general
equation.

The equation
Z = aKnX»-\

covers therefore the main phases of growth of micro-organisms devel-
oping in a nutrient medium. By giving n values greater than 1 and
keeping a and K constant curves representing the lag-phase of growth
are obtained. When n = 1 and a is suitably adjusted the logarithmic
period of growth is obtained. When n = 0, a ~ \, special rectilinear
curves of retarded growth are obtained. When n = 1 and a is given a
suitable negative value the curve of disappearance of living cells is
obtained.

It is evidently possible that if the constants are adjusted for each
phase of growth the equation will hold good throughout the whole life
period of a growth of micro-organisms. The period of retarded growth

independent of age (if this were the only factor the logarithmic law would apply), the
other a factor increasing with the age, becoming twice as effective after each period of
about 9J years. Between 20—30 deaths are due about one half to the one factor and
one half to the other; in later periods of life the second factor far outweighs the first.

This equation does not hold good for the earlier periods of life, when doubtless other
factors are of importance.

TABLE II.

Age
20
21

30
31
40
41

50
51

60
61
70
71

80
81

90
91

100
101

7117141
708463/

673200 |
668682)
615964)
608632J
530888 \
520608J
409518\
394793J
246630)
228844/

82298)
69789/

7724)
5470/

68)
36/

z
000199

000292

000520

000849

00159

00325

00716

0-150

0-276

Z- 0-00110

(Zo) 0-00089

0-00182

0-00410

0-00739

0-0148

00314

0-0705

0149

0-275

Average

A

0-311

0-332

0-306

0-305

0-309

0-317

0-318

0-311

0-314
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especially in cases when the X — Y curve is not a straight line requires
investigation, and overlapping periods when for example growth and
dying off take place simultaneously also deserve attention.

SUMMARY.

Ledingham and Penfold have shown that during the lag-phase of
growth of B. coli in a nutrient medium the time and bacilli are connected
by an equation of the form Xn = k log Y where n and k are constants
(the initial seeding = 1). It has been pointed out in this communication
that there is a relationship between n and k, and that the above equation
can be put in the form

X»Kn = log F".

The advantage of this new equation is that K remains of the same
value throughout the whole series of experiments.

In the case investigated by Ledingham and Penfold the constant of
unrestricted growth is approximately equal to 2K.

The equation can also be put in the form

Z = aK'X"-1,

where Z is the "constant" of growth [j^Y) a* a n v time %•• By

suitably adjusting n and a this equation can be made to represent not
only the lag-phase of growth but also the logarithmic phase, and the
special phase of retarded growth when the X — Y curve is rectilinear.
When cell-death occurs the bacteria usually perish at such a rate that
the X — Y curve is logarithmic; the general equation therefore also
covers this case.
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