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Abstract 

Thermal overstability of non-radial eigenmodes of stars is discussed as 

one of possible causes for generating non-thermal motions in the stellar 

atmosphere. The nature of oscillatory motions in stars is first consid

ered both in the local and the global stand points. Then, the excitation 

of eigen-oscillations is discussed and results of numerical studies so 

far made are reviewed for the vibrational stability of various stellar 

models against non-radial oscillations. It is found that many of non-

radial p-modes of high tesseral harmonics are likely excited in various 

stars of the HR diagram and that they possibly manifest themselves as 

non-thermal velocity fields in the stellar atmosphere. 

1. Introduction 

Two kinds of phenomena are known to indicate the existence of non-thermal 

motions in stellar atmospheres. One of them is the spectral line broaden

ing, asymmetry, and shift indicating the existence of velocity fields, 

and the other is the mechanical source of energy that is required to heat 

the stellar chromosphere and corona. One of the most important questions 

to be addressed in this colloquium will be, what kinds of motions are 

involved in these phenomena? What mechanisms (or instabilities) can 

generate them? It is generally thought that thermal convection is one 

of the most likely sources for generating these motions in stellar atmos

pheres. However, it will be evident that all of non-thermal motions are 

not necessarily generated by thermal convection because various activities 

such as evidenced by micro- and macro-turbulences and by X-ray emissions 

due to the hot corona are observed also in early-type stars where any 

appreciable surface convection zones are not expected. Thus, some other 

instabilities that can generate motions in the stellar atmosphere have 

to be investigated as well. In this paper, I will discuss the thermal 

overstability of trapped waves in stars as one of possible mechanisms. 

This mechanism can generate wave motions of some finite amplitude from 

perturbations of infinitesimally small thermal fluctuation. 

The thermal overstability is the basic mechanism for generating pulsation 
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motions in variable stars such as Cepheid and RR Lyrae. However, modes 

of oscillations with which we are concerned here are different from ordi

nary radial pulsation, but they are those of non-radial type. The exist

ence of non-radial oscillations as stellar eigenmodes have been known 

theoretically for a long while, but their importance in relation with 

observational phenomena in stars seems to have been recognized only re

cently. The five minute oscillation in the solar atmopshere is now under

stood as global non-radial p-modes of the sun (Deubner 1975, 1977). Al

though velocity fields due to thermal convection, which is manifested 

as the granulation in the solar atmosphere, are dominant at the photo-

spheric level, the five minute oscillation as the velocity fields becomes 

increasingly important with height, and the latter dominates in the upper 

photosphere and the chromosphere. Non-radial oscillations have been in

ferred as the possible modes of observed motions in stars such as line-

profile variable stars (Smith 1977) and early type supergiants (Lucy 

1976a, b). Lucy (1976) has shown that the seniregular variability in 

radial velocity observed in the A-type supergiant star a Cygni may be 

due to the simultaneous excitation of many discrete pulsation modes of 

non-radial type and the "macroturbulence" required for large line-broaden

ing in this star may be explained by the superposition of these oscilla

tion modes. 

One might think that two pictures of "turbulence" and "eigenmodes" are 

seemingly contradicting since turbulence is essentially a stochastic 

phenomenon with energy cascading from larger eddies to small eddies while 

eigenmodes are discrete in frequency and wavenumber and are coherent in 

time and space. However, they do not necessarily contradict each other 

since "turbulence" used in stellar spectroscopy is not turbulence as 

understood in aerodynamics and it simply means non-thermal motions re

sponsible for spectral line broadening. On the other hand, non-radial 

eigenmodes are rich in physical properties and have a very dense spectrum 

although they are still discrete. Thus, if extremely large numbers of 

eigenmodes are excited in a star and are superposed, they show up spectro-

scopically as unresolved velocity fields. One may visualize the relation 

between turbulent convection and eigenmodes of the star in the power spec

trum of velocity fields against the wavenumber k . The turbulent convec

tion occupies a high wavenumber domain with k>l/H , while the non-radial 

eigenmode oscillation occupies a low wavenumber domain with 1/H^k^l/R , 

where H and R denote the scale height of the atmosphere and the star's 

radius, respectively. Thus, observationally, turbulent convection is 

more related to "microturbulence" due to its small scale and eigenmode 

oscillations are to "macroturbulence". 
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In this paper, I will argue that the non-radial p-mode oscillations of 

high tesseral harmonics are very likely to be excited in various stars 

in the HR diagram and they might possibly be responsible for the non

thermal motions in some of these stars. As far as I am aware, Christy 

(1962) was the first to propose in 1962 that non-spherical pulsation-

type motions are present in late-type stars and they are important for 

the hydrodynamics in the atmospheres of these stars. However, this sug

gestion seems not to have been taken seriously for a long while, and it 

is only in recent years that numerical stability analyses for non-radial 

oscillations have been carried out in a number of stars. We shall dis

cuss the nature of oscillations in stars from the local and the global 

points of view in sections 2 and 3. Excitation mechanisms of oscillations 

and results of numerical calculations will be reviewed in section 4. 

2. Waves in the Stellar Atmosphere 

In this section, we discuss wave motions in the stellar atmosphere from 

the local point of view. Wave motions in gravitationally stratified 

fluids have extensively been studied in geophysics (see, e.g., Eckart 

1960). It is well known that two kinds of forces act on fluid elements: 

pressure force due to compressibility and buoyancy force due to gravita

tional stratification. If the medium is stably stratified (i.e., con-

vectively stable), both of them are restoring forces and they give rise 

to oscillation of a fluid element if it is displaced from static state. 

Corresponding to this, two kinds of waves, i.e., acoustic waves and 

gravity waves, occur in the stellar atmosphere. 

We now consider the wave propagation in a plane-parallel isothermal at

mosphere under a constant gravitational field, in which the pressure p0 

and density po of static state are known to vary with height z as 

Po» Po a exp (-z/H) (1) 

where H=p0/ (pog) =RTo/ (yg) =const is the scale height, and g the gravi

tational acceleration, T0 the temperature, y the mean molecular weight, 

JR. the gas constant. In this case, the linearized system of equations 

in hydrodynamics for adiabatic perturbation allows a simple solution of 

plane waves for velocity v , the pressure variation p' , and the density 

variation p' of the form 

v, E-, ^- = exp(^r) exp[i(-oot+k x+k y+k z) ] . (2) 

Here the exponentially growing factor with height z in equation (2) 
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arises so as to conserve wave energy Pov2 in the vertical direction 

since the density p0 in the atmosphere decreases exponentially with 

height. 

Substitution of these expressions into equations of hydrodynamics yields 

a dispersion relation between frequency 10 and wavenumber k , which is 

written as 

k 2 

z (u, kh) 

^T <«2 + k 2 + Kh 1) (3) 

where k, =/k 2+k 2 is the horizontal wave number. Here quantities u 
h x y ^ ac 

and N , having a dimension of frequency, are called the acoustic cut-off 

frequency and the Brunt-Vaisala frequency, respectively, and they are 

given by 

= JL = X£ 
2H 2c (4) 

and 

N = 2 /v - 1 
c ' 

(5) 

where c is the sound velocity, and 

of gas. 

Y is the ratio of the specific heats 

If k >0 , waves If co and k, are given, equation (3) determine k 

can propagate vertically. On the other hand, if k 2<0 , no waves can 

propagate, and the energy density of perturbations decreases exponentially 

with height (evanescent waves), if perturbations are coming from below. 

This situation is most conveniently shown in the diagnostic (k, , to)-dia

gram, which is illustrated schematically in Figure 1. 

The diagnostic diagram is divided 

into three regions: (1) region 

A with k 2>0 where modified z 
acoustic waves can propagate, 

which is given approximately by 

the conditions w>co and co>k, c . ac h 

(2) region G with k 2>0 where 

the modified gravity waves can 

propagate, which is approximately 

given by <o<N and to<k,c . (3) 
c : z 1/2H kh 

Figure 1. Diagnostic diagram 

region E with k 2<0 where waves 

are evanescent. 
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Oscillations of our interest are trapped waves, but the isothermal atmos

phere has not such resonance property. Thus, in order to have a proper 

waveguide character of the stellar atmosphere and envelope, we have to 

take into account the variation in temperature with height, and this will 

be considered in the next section. For global eigenmodes of the star, 

the atmosphere act as an outer reflecting boundary. Waves are evanescent 

in the atmosphere for such oscillations. It is important to note here 

that the velocity amplitude of evanescent waves does not necessarily de

crease with height, but rather it usually increases slightly within the 

atmosphere. This is because the energy density of perturbations decreases 

with height less rapidly than the density po itself and thus the factor 

of exp(z/2H) in equation (2) plays an essential role. 

3. Eigenmodes of Stars 

So far we have considered wave motions in the stellar atmosphere from 

the local stand point. We now turn to discuss stellar oscillations from 

the global point of view. Any persistent oscillations of a star may be 

considered as a superposition of normal modes of the star. There are 

two kinds of normal modes in stars: the radial oscillations and the non-

radial oscillations. However, radial oscillations may be regarded as 

one of special cases of non-radial oscillations with the spherical har

monic index £=0 . If we assume that the unperturbed state of the star 

is in spherically-symmetric time-independent equilibrium, the eigenfunc-

tion of a non-radial mode for perturbations of physical variables (e.g., 

density pergurbation p') can be expressed in the spherical polar co

ordinates (r, 6, <f>) by 

p' = p ' k ^ (r) Y™ (9, <f>) e~la)t , (6) 

where Y. (9, <j>) is the spherical harmonics. The quantity w is the 

eigenfrequency of the nonradial oscillation which is specified by three 

integrals (k, i., m). For a given I, the quantum number m takes integer 

values from -A to SL, and eigenfrequencies of these (2£+1)-modes are de

generate in a spherically symmetric (non-rotating, non-magnetic) star. 

The existence of two extra indices (I, m ) , describing the horizontal de

pendence of eigenfunctions, makes non-radial oscillations a complicating 

appearance and it also gives them an extra richness in the eigenvalue 

spectrum. Besides that, as noted in the previous section, two different 

kinds of restoring forces (i.e., the pressure force and the buoyancy 

force) operate in non-radial oscillations, and there exist therefore two 

different kinds of modes: pressure (acoustic) modes and gravity modes. 
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The pressure modes (p-modes) form a sequence of increasing eigenfrequency 

with the order of modes specified by the number of nodes, i.e., 

(D < CO < CO < • • • - > • co 

Pi P2 P3 

while the gravity modes (g-modes) form a sequence of decreasing frequency, 

i.e. , 

co > co > co >•••-»• 0 
gi g2 53 

A system of equations, which describes the linear adiabatic non-radial 

oscillations, forms a boundary-value problem of fourth-order ordinary 

differential equations in the radial coordinates r , and for a given 

stellar equilibrium model eigenvalues and eigenfunctions are to be cal

culated numerically. Although these equations look complicated, they 

can be reduced under a certain assumption to a form analogous to the 

Schrodinger equation of quantum mechanics. We can then make some quali

tative discussion with the help of the so-called propagation diagram 

(see, Unno et al. 1979). Under a given stellar model and for a fixed 

spherical harmonic index I, we exhibit in the propagation diagram the 

spatial variations of the Brunt-Vaisala frequency, N , and the Lamb 

frequency, L. , as functions of the radial coordinates r in the stellar 

interior. Here two frequencies N and L. are defined by 

N2 = „ (_L d l n P _ d l n P) g lrx dr dr ; 

and 

T 2 _ &U+l)c
2 

and they represent the local buoyancy frequency and the frequency (the 

reciprocal time) of horizontal acoustic propagation with a given horizon

tal wavenumber I. 

0 0.5 r/R 

Figure 2. Propagation diagram 

Figure 2 illustrates a schemat-

ical propagation diagram for a 

star near the main-sequence with 

a low order i . In this diagram, 

the acoustic waves can propagate 

locally in the region with co2>N2 

and a)2>L.2 (P-zone) and the 

gravity waves can propagate in 

the region with io2<N2 and 
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u2<L.2 (G-zone) and waves cannot propagate (i.e., evanescent) in other 

regions with L 2<w2<N2 or N2<w2<L 2 (E-zone). This diagram shows there

fore in what part of the stellar interior a wave with a given frequency 

has locally a propagating or non-propagating character. The propagation 

diagram may be comparable to the potential energy function of the one-

dimensional Schrodinger equation of quantum mechanics in such a way that 

a propagation zone corresponds to a potential well and an evanescent zone 

to a potential wall. Since eigenmodes are standing waves, they occur 

in a region of a potential well that is enclosed by potential walls at 

both ends. The most important difference between the problem of non-

radial oscillations and that of quantum mechanics lies in the fact that 

in the case of non-radial oscillations there are two different kinds of-

potential wells: one is that opened upward (p-wave zone) and the other 

is that opened downward (g-wave zone). The main characteristics of a 

star as an oscillator can be essentially represented by the propagation 

diagram. The complicated behavior of non-radial oscillations in evolved 

stars are mainly caused by complicated spatial variations in the Brunt-

Vaisala frequency as a function of the position in the stellar interior. 

Generally speaking, non-radial p-modes are oscillations trapped near the 

surface and g-modes are those trapped in the deep interior. Since we 

are interested in those oscillations that may produce observable motions 

in the stellar atmosphere, the most important modes are those of non-

radial p-mode oscillations. Furthermore, oscillations of non-radial p-

modes are more strongly concentrated near the surface as the spherical 

harmonic index & is increased. This can be seen in the propagation 

diagram as the Lamb frequency L. moves upward with the increase of %.. 
The horizontal wavenumber of oscillations in the stellar surface becomes 

almost continuous for high value of I and it is given by k, =/£(£+1)/R 

'vfl./R . In the diagnostic (k,, 10) -diagram, non-radial p-modes then appear 

as several discrete ridges corresponding to each radial-order mode (i.e., 

p.-mode), which has been observed beautifully in the case of the solar 

five minute oscillations (Deubner 1977, Deubner et al. 1979). 

4. Overstability of Eigenmodes 

Since the ordinary dissipation gives damping of oscillations, some special 

mechanisms of excitation must operate inside the star in order for an 

eigenmode to be excited and to be observed. To study this, we must ex

plicitly consider non-adiabatic effects of oscillations, i.e., the energy 

exchange of fluid elements with the surroundings during a cycle of oscil

lation. The thermodynamic excitation of oscillations have extensively 

been studied in connection with the driving of pulsation in Cepheid and 
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RR Lyrae stars. Two kinds of excitation mechanisms are known which may-

operate in the outer layers of stars. The first one is the K-mechanism 

(opacity-mechanism) of the hydrogen and helium ionization zones in the 

stellar envelope, and this is the mechanism that drives pulsations in 

Cepheids. The second one is the so-called Cowling-Spiegel mechanism 

which operates in the zone with the super-adiabatic temperature strat

ification. The latter mechanism operates only for non-radial oscilla

tions and not for radial oscillations. 

To get some idea how these mechanisms work, we describe briefly the oper

ation of the K-mechanism below. The opacity K of partial ionization 

zones of the hydrogen and the helium increases at the phase of compres

sion in a cycle of oscillation and the radiative flux flowing from the 

center to the surface is blocked there at that phase. The heat thus ac

cumulated will give stronger repulsion at the next phase of expansion, 

and the amplitude of oscillation will tend to grow with time if the ef

fect of excitation of this K-mechanism is stronger than that of damping 

in other regions. As for the Cowling-Spiegel mechanism in a super-adia

batic temperature stratification, if some other restoring forces such as 

the stabilizing chemical composition gradient, magnetic fields and rota

tion, exist, this mechanism is known to be effective to give overstability 

of some non-radial modes (Moore and Spiegel 1966). However, if there 

exists no other restoring force, it is then not clear whether this mech

anism acting as a sole agent of excitation can destabilize oscillatory 

modes. In this respect, Unno (1977) has pointed out that the Cowling-

Spiegel mechanism associated with the variation of convective flux is 

more important than that of radiative flux. Then the variation of con

vective flux has to be taken into account in order for the problem to 

be settled. 

Stars have been thought in the past to be less susceptible to non-radial 

oscillations than to radial oscillations because of the increased dis

sipation of the oscillations by the lateral radiative heat exchange. 

However, recent investigations show that much variety in the geometrical 

and physical properties of non-radial oscillations should give some of 

non-radial modes a better chance to get excited. In fact, those stars 

which are unstable against radial pulsations are likely to be unstable 

against some of non-radial modes as well. Furthermore, stars which are 

unstable against some of non-radial modes will probably occupy a wider 

range in the HR diagram than radially pulsating stars. The most important 

reason why some of non-radial modes are easy to get excited is that they 

can be "trapped" locally in the place where some excitation mechanism 

works effectively so that the dissipation of oscillation in other regions 
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of the star is kept minimal. If one of non-radial modes is unstable in 

a star, several of other modes are very likely to be excited because 

their physical characters are very similar. Thus, if non-radial oscilla

tions are ever excited in a star, it is most probable that many of non-

radial modes are excited simultaneously. 

The question of overstability of an eigenmode is a problem of delicate 

balance between excitation and damping and it can only be answered ade

quately by the numerical analysis of stability using a realistic stellar 

model. Thus, the full equations of linear non-adiabatic non-radial oscil

lations have to be solved numerically. The radiative heat exchange both 

in the sub-photospheric layers and in the atmosphere is important in the 

case of our interest, and, exactly speaking, the problem of time-dependent 

three dimensional radiative transfer has to be treated. It looks so much 

difficult that it is the usual practice at present to treat this by using 

the Eddington approximation developed by Unno and Spiegel (1966). The 

basic equations are then reduced to the fourth order linear differential 

equations with complex coefficients (under the Cowling approximation in 

which the Eulerian perturbation of the gravitational potential is neg

lected) , and they form together with adequate boundary conditions an 

eigenvalue problem with a complex eigenvalue and complex eigenfunctions. 

The real part to_, of the comolex eigenfrequency (to=coD+ia)T) gives the 
K K J. 

frequency of oscillation and its imaginary part u_ determines the growth 

(or damping) rate of oscillations. This system of equations for linear 

non-adiabatic oscillations have been solved in a few cases of our interest 

and they will briefly be reviewed below. 

(1) The solar non-radial p-modes. 

Ando and Osaki (1975) performed extensive calculations of eigenfrequencies 

of non-radial p-modes of the sun in relation to the solar five minute 

oscillation. They solved equations of linear non-adiabatic non-radial 

oscillations for a realistic solar envelope model and obtained complex 

eigenfrequencies of non-radial p-modes covering a wide range in the spher

ical harmonics I (ranging from £=10 to 1500) and in several overtones of 

the radial order. It was found that many of non-radial p-modes were 

overstable and that most unstable modes occupy a region in the diagnostic 

(k^, (a)-diagram centered with a period of 300 sec and with a wide range 

of horizontal wavenumber. 

It has been seen from eigenfunctions that the vertical velocity of oscil

lations has an increasing amplitude with height in the atmosphere, even 

though the kinetic energy of oscillations per unit volume p|vj2 is de

creasing within the atmosphere. Many of non-radial p-modes are found to 
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be unstable and they are excited by the K-mechanism of at the hydrogen 

ionization zone. The Cowling-Spiegel mechanism seems to work at the 

convective-radiative transition zone, but quantitatively the K-mechanism 

is found much more effective than the latter. The radiative dissipation 

in the atmosphere (T<1) contributes appreciably to the damping of oscil

lations and its importance increases with the increase in frequency of 

modes, and higher p-modes become stabilized ultimately. 

The biggest uncertainty in this analysis is the problem of the interaction 

between convection and oscillation, which has been neglected in the work 

of Ando and Osaki (1975) because of lack of the definitive theory. The 

damping due to turbulent viscosity of convection is thought to have a 

stabilizing tendency for otherwise unstable p-modes. Goldreich and Keeley 

(1977) have made a rough estimate of its effect and found that it is as 

important as the thermodynamic excitation of oscillations. However, they 

have failed to reach the definitive conclusion about the overstability 

of p-modes of the sun because of uncertainty in convection theory. 

(2) Cepheids. 

Cepheids are pulsationally unstable against radial modes due to the K-

mechanism in the hydrogen- and helium-ionization zones. Since this mecha

nism works also for non-radial p-modes, it will be natural to ask whether 

or not Cepheids are vibrationally unstable against non-radial modes. 

There is, however, an important difference between radial pulsations and 

non-radial p-mode oscillations. Dziembowski (1971) first noticed that, 

in the case of non-radial oscillations of giant stars, even high-frequency 

envelope p-modes behave as internal gravity waves of extremely short 

wavelength in the deep interior, and he once concluded that the excita

tion of non-radial oscillations would be prevented by strong radiative 

dissipation in the core of these evolved stars. However, there exists 

another important character of non-radial oscillations, that is the wave-

trapping phenomenon, and- this effect was not taken into account in 

Dziembowski's (1971) discussion. Shibahashi and Osaki (1976) have shown 

that non-radial modes with high-order spherical harmonics can be very 

clearly divided into two types in evolved stars, one type being a gravity 

mode trapped in the core and the other a mode trapped in the envelope. 

There exist, therefore, envelope p-modes with high £ that are almost 

completely free from the influence of the core. 

By taking into account both the effect of dissipation in the core and 

the non-adiabatic effect in the envelope, Osaki (1977) has examined vibra

tional stability against non-radial modes in a Cepheid model. It is found 

that non-radial modes with lower-order spherical harmonics (i.e., ££5) 
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are stable because of heavy leakage of wave energy from the envelope to 

the core, but that those of higher I (i.e., ££6) are trapped well within 

the envelope and some of them (i.e., f- and pi-modes) are unstable due 

to the negative dissipation in the hydrogen- and helium-ionization zones. 

The growth rates of unstable non-radial modes are found to be of the 

same order as those of radial modes. A similar result was obtained in

dependently by Dziembowski (1977) who found that the overstability of 

non-radial modes with very high-order spherical harmonics extends far 

beyond the boundary of the classical Cepheid instability strip. 

(3) Other stars. 

The vibrational stability of non-radial p-mode oscillations has been 

investigated for various stellar envelope models in the wide range of 

the HR diagram by Ando (1976) and by Dziembowski (1977). 

Ando (1976) examined the stability of stellar envelopes in late-type 

dwarfs, giants, and super-giants against non-radial p-modes with high-

order % which are well trapped near the surface. He found many of non-

radial p-modes are overstable due to the K-mechanism of the hydrogen 

ionization zone in stars that lie to the right of the Cepheid instability 

strip in the HR diagram. He then suggested that these overstable acoustic 

modes might be responsible for the formation of the chromosphere and the 

corona and for the Wilson-Bappu effect in late type stars. However, the 

biggest uncertainty of this result is again the problem of coupling be

tween convection and oscillation, whose effect has been ignored in this 

investigation. 

Dziembowski (1977) made a similar study for stars lying within and to 

the left of the Cepheid instability strip. He found that 6 Scuti stars 

are unstable both for radial and for low % non-radial modes, but that the 

maximum of instability occurs for non-radial modes with very high I (i.e., 
£=500). He also studied two models of an early type supergiant corre

sponding to a Cyg (A2Ib) and of a medium type supergiant (Te'v5000
oK). 

The overstability was found in the case of the early-type supergiant only 

for non-radial f-modes with very high ^-values (i.e., £=32^63). On the 

other hand, the overstability of low-order non-radial modes (£=3-5) was 

found in the case of the medium-type supergiant. 

5. Summary and Discussion 

We have considered the nature of oscillations in stars from the local 

and the global standpoints. Overstability of non-radial oscillations 

has then been discussed. Results of numerical analysis show that many 

of non-radial p-modes are very likely unstable in various stars of the 

HR diagram. Observationally, non-radial oscillations of high tesseral 

https://doi.org/10.1017/S0252921100075163 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100075163


49 

harmonics (i.e., excepting the low-S- modes) do not give rise to neither 

the stellar light variability nor the stellar radial velocity variability, 

but they show up as unresolved velocity fields responsible to spectral 

line broadening and the mechanical source of energy to heat the upper 

atmosphere (i.e., the non-thermal velocity fields in the stellar atmos

pheres) . 

We have so far discussed the linear stability of non-radial modes, but 

we have not mentioned non-linear effects which are thought to be respon

sible for limiting amplitudes of overstable oscillations. Non-linear 

effects that are important in limiting amplitudes in pulsating variables 

are; 

1. The saturation of the excitation mechanism. 

The saturation of the K-mechanism in the second helium ionization zone 

is thought to be the most important in determining the final amplitude 

of Cepheids and RR Lyrae stars. 

2. The enhancement of dissipation by shock waves. 

When the amplitude of oscillations becomes sufficiently large, shock 

waves are generated in the atmosphere, which greatly enhances the dissi

pation. Besides these, 

3. Non-linear mode coupling, will be important, in the case of non-radial 

oscillations. This will redistribute kinetic energy of oscillations be

tween various non-radial modes. 

Even in the linear stability analysis, there remain several unresolved 

problems. The problem of coupling between convection and oscillation 

was mentioned previously. We have not yet succeeded in finding the in

stability mechanism of pulsations in B Cephei stars (early-type pulsating 

variables). This means that our stability analysis is not still accurate 

enough. Possible insufficiencies in our knowledge are suspected to exist 

with respect to the opacity and the effect of radiation pressure. Much 

theoretical investigation is thus needed. 
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