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1. Introduction

Let K(y) be a known distribution function on (— oo, oo) and let
{Fn(y), n = 0, 1, • • •} be a sequence of unknown distribution functions
related by

(1) Fn+x(y) = /'„„ Fn(y-v)dK(v), y^O,

= 0, y < 0,

subject to the initial condition

F0(y) = i. y ^ o,
= 0, y < 0.

If the sequence {Fn(y)} converges to a distribution function F(y) then
F(y) satisfies the Wiener-Hopf equation

F(y) = T F(y-v)dK(v), y^0,
(2) J-°°
K = 0 , y < 0.

The problem considered here is the rate of convergence of Fn(y)
to its limit F(y) in the case when Fn(y) can be interpreted as the distribution
function of the waiting time wn of the nth arrival to a single server queue.
This interpretation implies that K(y) is the distribution function of the
difference between two nonnegative random variables and also provides
motivation for the simple probabilistic arguments used. In the terminology
of queueing theory we have a sequence {tn} of independent and identically
distributed interarrival times, with common distribution function A(y),
and a second sequence {sn} of independent and identically distributed
service times whose distribution function is B{y). The two sequences are
independent so that the differences

constitute a sequence of independent variables identically distributed as u.
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The common distribution function is

(3) P(u g y ) = P(un ^y) = j'^B(y+v)dA(v).

The waiting time wn satisfies the recurrence relation ([7], [9])

(4) wn+1 = K + w J + n = 0,1,2,-•-,

subject to an initial condition which we will take as w0 = 0. Here z+ =
max (0, a;). Thus the distribution functions P(wn s£ y) = Fn{y) satisfy
the system (1) with P(u ^y) = K(y) and it is well known that {wn}
converges in distribution to w only when Eu = b^—^ < 0 ([7]).

h = j™ydB(y) and ax = f™ydA(y)

are respectively the expected service and inter-arrival times. When this is
the case P(w sS y) = F{y) satisfies the Wiener-Hopf equation (2).

The present remarks are confined to the case when P(wn ^ y) does
converge to P(w 5S y) and the condition for this convergence to be exponen-
tially fast (Theorems 1, 2, 3) relates only to the distribution function B(z),
or rather to its Laplace-Stieltjes transform,

B*(s)=j~e-**dB(y).

This is equivalent to imposing exponentially fast convergence to zero of
the upper tail 1— K(y) of the distribution function K (y) = P(u ^ y)
appearing in (1), but the queueing problem is special in the sense that the
form of K(y) given by (3) makes it possible to give simple proofs. In the
case when bx—ax > 0, P(wa ^ y) ->- 0 for all finite y, and associated rate of
convergence problems have been studied by Heathcote [4] by methods
similar to those used here. In the third case, when 6, = ax, P(wn ^ y) also
approaches zero, but not exponentially fast. The study of this null-recurrent
case is still incomplete (c.f. [6], [9]).

Busy periods will be referred to frequently and they are discussed in
the next section. If Un = 2"=oM« 3tXl^i

cn = P(Un < 0) = J " {l-An(y)]dBn(y).

where A „ (y) and Bn (y) are the n fold iterated convolutions of A (y) and B (y)
respectively, it is known ([3], see also [5]) that the probability yn that a
busy period consists of n services is given by

(5) G(x) = | x»yn = 1-exp ( - | w 1 *•<:,
I \ i

This expression can also be obtained via the fundamental identity of Spitzer
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((3.2) of [9]) and equation (7) below. Thus the Spitzer formula reduces to

W(x) = f xnP{wn = 0) = exp (f w-^-cJ ,
o \i )

and, using (7),

which yields (5).
It is convenient to rewrite (5) as

(6) G(x) = l - ( l - « ) exp

the equality sign implying that both sides are finite or infinite together.
It is shown in [3] and [5] that when bt < ax we have G(l) = ^j°yn = 1 and

/h = 2 nv« = exP (2

2. Preliminary results

A feature of the study of many queueing systems is the use made of
imbedded recurrent event processes. The only natural sequence of regenera-
tion points of the queue we are concerned with is that formed by the epochs
at which busy periods commence. This remains the case whether time is
measured continuously or discretely in terms of numbers of customers. In
the latter case a busy period is said to be of duration N = 1, 2, • • • if
customers Ct and Cj+N do not have to wait and each of Cj+1, CJ+2, • • •,
Ci+JV_j, do have to wait. N is therefore the recurrence time for the event s
of "no waiting", and the probability that e occurs at the nth trial is
P(wn = 0). The recurrence time distribution is {yr}, r — 1, 2, • • •, where yr.
is the probability that a busy period consists of r customers served. Thus,
with y0 = 0,

(7) P ( » . = 0) = yB+ 2 P(wr = 0)yn_r, n = 1, 2, • • •..
r - l

The initial condition assumed throughout is

P(w0 = 0) = 1.

By the renewal theorem, (Chapter 13 of [2])

(8) lim P(wn = 0) = I K
tt-*OO

the limit being interpreted as zero if /^ = oo or if 2i°7* < 1-
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A similar renewal type argument can be used to derive a representation
for P(wn < y) when y 2: 0. If customer Cn joins a non-empty queue his
waiting time wn is independent of the process prior to the initiation of the
current busy period. Conditional on this busy period commencing at time
n—k it follows from the recurrence relation (4) that wn = 2i-oMn-*+.->
so that wn, conditionally, has the same distribution as U*. Removing the
conditioning we have

P(wn ^y ) = 2 P(U% ^y)P{wn_h = 0,wp>0 for all n-k <v<n).

The second probability on the right is simply the probability that the 'age'
at time n of the recurrent event process defined in (7) is at least k. In terms
of the tail probability q]c_1 = 2S*y*>

P(wn_t = 0, w, > 0 for all n—k < v < n) = qk^P{wn_k = 0).

These results can be summed up as follows:

LEMMA 1. For y 2g 0

(9) P(wn ^ y) = 2 P(Ut ^ y)qk^P(wn_k = 0).
fc=i

/ / b1 < alt so that the process is ergodic,

(10) P[w ^y)= lim P{wn < y) = - | ? M P ( ^ ^ y).

Before proceeding to the main results one other Lemma is required,
which is also of some independent interest.

LEMMA 2. Suppose F(t) is a distribution function on [0, oo) with finite
mean m1. LetK(z, t) — ^=1z

nFn(t), where Fn(t) is the nth iterated convolution
of F(t). If F(0) < 1, then there exists an xQ> 1 such that, as t -*• oo,

where e is the unique positive root in s of the equation x0F*(s) — 1.

PROOF. Note firstly that by Theorem 1 of Belyaev and Maksimov [1],
K(z, t) is analytic inside a circle of radius [-F(0)]-1 for all finite t. For a
fixed x0 in (1, [^(O)]"1) the convexity of F*(s) and the condition F*(0) = 1
establishes that the equation x0 F* (s) = 1 has a unique root in s, say s = s.
From the definition of K(z, t) it is easily verified that

e~etK(xOl t) = zoe-"F(t)+ J Ve('-»>i<:(z0, t-y)xoe-E>dF{y).

The function G(t) = §*oxoe~evdF(y) is positive, non-decreasing, with total
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variation unity, and so is an honest distribution function. Further, G(t)
has a finite mean since

oo.

Thus for fixed z0 (and hence fixed s) the function H(x0, t) = ^Qe~eyK(x0, y)dy
satisfies the renewal type equation

H(x0> t) = j^zoe-»F(y)dy+ JJtf (s0, t-y)dG{y).

By the elementary renewal theorem (page 246 of [8])

It follows that e ctK(x0, t) = 0(1) and the proof is complete.

3. The main results

It is assumed throughout this section that bx < at < oo.

THEOREM 1. G(x) = ^^xnyn has a radius of convergence greater than
unity if and only if there exists an s > 0 such that B*(—e) < oo.

PROOF. If B*(—s) converges for an e > 0 then

m) = f °° ee*dP(u g y ) = A*(8)B*(-6)
J — oo

is defined and continuous in the interval [0,«]. Since ^'(0) = b1—a1 < 0
it follows that there exists a d in [0, «] such that <j>(d) < 1. Further,

B*(-d) ^ e'*[l—
and

for y Sg 0 and a d in [0,«]. Thus
OO OO /"CO

1 1 Jo
oo /•

0

= - log [l—xB*(-d)A*{d)].

The series on the left has a radius of convergence greater than unity since
B*{—d)A*(d) < 1 for an appropriate 6 in [0, e]. From (6) it follows that
the series G(x) also converges for an x > 1.
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Conversely, if G{x), and hence 2J°«~1a;B(l—cn), has a radius of conver-
gence r > 1, then the series of derivatives 2ra ;"(l~cn) a l s o converges for
\x\ < r. Thus there exists an x0 > 1 such that

00 > 2 •Co(l—Cn) = 2 '
1 1

Jo I
>0MM(y)rf£(y).

By the theorem of Belyaev and Maksimov [1], there exists a y0 > 1 such
that 2i°yo-^n(0 < °° f°r a ^ finite <. Taking 20 = min (xg, y0) we have

oo >
Jo I

and the result of Lemma 2 implies that the integrals §'£'2%'z^A
and ^eEydB{y) converge or diverge together, for an e > 0. In fact, s is the
root in s of the equation z0A*(s) = 1.

Theorem 1 in conjunction with Lemma 1 is useful in studying the rate
of convergence of P(wn ^ y) to its limit. It is convenient to proceed in two
stages.

THEOREM 2. There exists an a < 1 such that

awi only if there exists ans > 0 SMCA <Aa< J5*(—e) < oo.

PROOF. From (7) —(10), for n = 1, 2, • • •,

PK = O)-P(w = 0) = i [i>(w, = O)-P(w = 0^ - f t " 1 f yr.
r=n+l

Let Q(x) = Xt,ox"tp(wn = O)—P(w = 0)]. A simple calculation, using
P{w0 = 0) = 1 and y0 = 0, shows that

0(x) =

Suppose now that B*{—e) < oo for an e > 0. By the previous theorem this
implies that the radius of convergence r of "^^n~1xn(\—cn) is greater than
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unity and, since Q(l) = / i f12f (1 —cn) < oo, Q(x) has a radius of conver-
gence r > 1. Choosing a so that r~x < a. < 1 we have also the convergence
of the series (?(l/a), implying that

a.-"[P(wn = O)-P(ie> = 0)] -> 0 as » -» oo.

Conversely, P(wn = 0)— P(w = 0) = o(a") implies that (?(«), and
hence '^'n~1xn(l—cn), converges for an x > 1, and an appeal to Theorem 1
completes the proof.

THEOREM 3. There exists an a < 1 such that

Inn piwn^y)P{w^y) = Q

n-oo «"

*/ and only if there exists an E > 0 such that B*(—e) < oo. When the asserted
result holds, it is true uniformly for y S: 0.

PROOF. Let R(x, y) = '^.1x"qn_1P(Ut ^y}- From Lemma 1,

P{wn ^ y)-P(w ^ y) = i ? M P ( ^ ^ y ) { i > _ * = 0)-P(w = 0)}

- ^ I i*-iP(ut ^ y).
k=n+l

and hence

(12)

Further, using (6),

R(x, y)^f xnqn_x = x exp
If we now suppose that B* (—B) is convergent for an e > 0 then, by Theorem
1 and (6), R (x, y) has a radius of convergence greater than unity for all
y Si 0, and by Theorem 2, so has Q(x). Thus the radius of convergence R
of the series on the left side of (12) is greater than unity. Selecting an a in
the interval (R-1, 1) we have that '^'or1{P(wn ^ y)—P(w ^ y)} converges
uniformly in y 5: 0 and hence a~1{P(te'n gS y)—P{w 2S y)} -*• 0 as asserted.

The converse follows immediately since if the right hand side of (12),
and hence Q(x), converges for an x > 1 then by Theorem 2, B*(—e) con-
verges for an e > 0.

When the distribution B(x) has only a finite number of moments
these theorems fail and the rate of convergence of P(wn 5S y) is of the order
of some power of «, the power depending on the number of moments that
are finite. This situation can be investigated by methods similar to those
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used above and we state here (without proof) only the following.

THEOREM 4. If bT = f™xrdB(x) < oo (and, as before, bt < at) then
as n -*• oo

P(wn ^ y)—P(w ^ y) = o(n~r+2).

4. Concluding remarks

When the input process is Poisson and the service times are exponen-
tially distributed, the busy period is given by

G{x)- 2P I1 r 1 ( i+) . )

where p = bj^ is the traffic intensity [10].
The radius of convergence r is (l-\-p)i(4p)-1 > 1 for p ^ 1. G(r) =

l+/)/2p and when p < 1, G(l) = 1. In the interval [0, r], G(x) is strictly
increasing and attains its maximum value at x = r. By (11),

Q(r) = 1 \^X{P(wn = O)-P(w = 0)} = ^
a [ ip ) 1—p

which is convergent for all p < 1. Thus, the best possible value of a in
theorem 2 (and, by a similar argument, in Theorem 3) is

a = — =
r

This simple example leads one" to the following result.

THEOREM 5. If bY<. ax, r > \ and G(r) is convergent, then there does
not exist a number /8 in [1/r, 1) such that

P(w =0) — P(w = 0)
PROOF. Suppose —̂—2 —— --+l> 0 for some p in [r~l, 1).

) —
PROOF. Suppose —

Then by (11), ™

which implies that G(l//S) = 1. But this is impossible since G(l) = 1 and
G(l//S) > 1 whenever 1 < ^ ^ r.

In fact, under the hypotheses of the theorem, the result,
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P(w = 0) — P(w = 0)

is the best possible.
It can be similarly proved that whenever G(r) is convergent, Theorem 3

cannot be improved upon.
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