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ABSTRACT. Using individual travel diary data collected before and after a rail transit
expansion in urban Beijing, the impact of urban rail accessibility improvement on the
usage of rail transit, automobiles, buses, walking and bicycling, as well as the cross-area
externality induced by congestion alleviation, is estimated. The results show that rail
transit usage significantly increased for commuters residing in the affected areas and
that the additional rail passengers were previously auto users, rather than bus passen-
gers. The cross-area externality is estimated as small, which implies that the congestion
alleviation was not large enough (yet) to change the travel mode choices of commuters
residing in areas that did not experience the improvement. Furthermore, the results show
that neither the number of commute work trips nor their length increased, indicating that
the quantity of travel was not increased by the rail transit expansion.

1. Introduction
It is well known that automobiles emit harmful pollutants and that expo-
sure to air pollution substantially harms public health. A World Health
Organization (WHO) study estimated that urban air pollution accounts for
6.4 million years of life lost annually worldwide (Cohen et al., 2004). Besides
air pollution, traffic congestion caused by the wide use of automobiles also
has negative effects on public welfare. To reduce the congestion and air pol-
lution caused by automobiles, metropolitan areas worldwide are investing
heavily in building or extending urban rail transit systems. Whether con-
gestion and pollution can be reduced through such projects depends on
which travel modes commuters reduce when they use more rail transit.
This remains an open question in practice.
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This study investigates the change in transportation mode usage in
Beijing, a megacity unique in the speed of its subway development. With a
US$30bn (200bn Chinese Yuan) investment in building new subway lines,
Beijing’s subway system grew from a small system with 39 stations in 2002
to more than 300 stations by 2014. The rollout of new subway lines creates
a series of contrasts between commuters who experienced rail accessibility
improvements and those that did not. In this paper, this rollout is utilized
to estimate, ex post, how the completion of new rail transit lines affected the
kilometers traveled by rail transit, autos, buses, and walking and bicycling,
respectively.

Investment in commuter rail transit is a worldwide phenomenon, driven
by a belief in its benefits, including less congestion, less air pollution and
improved labor market access for the poor (Kain, 1968; Vickrey, 1969; Chen
and Whalley, 2012). Transit authorities believe that the benefit is large;
hence, the investment in rail transit is large (Cervero, 1998). For the same
reason, passenger fares for public transportation are usually heavily subsi-
dized (Kenworthy and Laube, 2001; Parry and Small, 2009). However, some
researchers argue that the cost of building and maintaining new transit is
higher than the measured benefit, and point out that the optimistic view
of the rail transit benefit was based partially on an overestimation of rid-
ership (Gordon and Willson, 1984; Allport and Thomson, 1990; Kain, 1990,
1992, 1997; Pickrell, 1992).

Besides the unsettled question concerning rail ridership, another equally
important question is from which alternative travel modes rail transit rid-
ers are diverted. The rail benefit will be higher if rail transit ridership
comes at the expense of more polluting modes of transportation such as
automobiles, rather than less polluting modes such as bicycles. Besides traf-
fic diversion effects, investments in rail transit may also create traffic by
inducing demand for travel (Vickrey, 1969). This study addresses the three
questions simultaneously by looking into the changes in distance traveled
by various modes and changes in travel quantity.

This paper is the first study to use a (pseudo) panel of individual trips
to estimate the ex post effect of rail transit provision on mode usage in the
context of a city in the developing world. An estimation of the ex post effect
is preferred in terms of causal inference, given the difficulty in predicting
the market share of a new rail system by an ex ante study (McFadden et al.,
1977; Train, 1978). Discrete choice models, widely used in the travel mode
choice literature,1 require accurately constructing the attributes of alterna-
tives, especially the alternative specific constants. Inaccurate construction
of the alternatives tends to result in inaccurate prediction. In this study,
households are observed before and after the coverage changes, taking
advantage of three rounds of detailed individual travel diaries in Beijing,
with new subway lines completed between the rounds. Households that

1 A partial list of ex ante studies on travel mode by discrete choice models includes
Ben-Akiva and Lerman (1974), McFadden (1974), Train (1978, 1980), Ben-Akiva
and Morikawa (1990), Hensher and Bradley (1993), Asensio (2002), Alpizar and
Carlsson (2003), Hensher and Rose (2007), Liu (2007), and examples discussed in
Train (2009).
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are affected and those that are not affected are also observed. This is possi-
ble because the rail expansion improved accessibility for the households
residing along the new lines, but not for the rest. The main estimation
strategy is the differences-in-differences (DID) method. The double differ-
encing removes two types of biases (Imbens and Wooldridge, 2009). One
bias comes from the comparison between the treatment group and the con-
trol group, which could be the result of permanent differences between
these groups. People who prefer rail transit tend to choose to live in areas
near rail stations. Cross-sectional studies (Gordon and Willson, 1984; Kain
and Liu, 1994; Wardman, 1997; Winston and Shirley, 1998; Petitte, 2001)
comparing commuters in nearby areas to those in farther areas usually suf-
fer from this self-selection bias. The other bias comes from the comparison
over time, which could be the result of time trends unrelated to the treat-
ment. Macro-economic shocks and transport policies can be the sources
of such bias, from which time-series studies (Gaudry, 1975; Greene, 1992;
Gomez-Ibanez, 1996) tend to suffer.

To address the cross-area externality, which may dampen the validity of
the DID method, the indirect effects of rail expansion are estimated as well.
The cross-area externality comes from the fact that the areas without sub-
way expansion can benefit from congestion alleviation when commuters
in the affected area travel more by subway and less by automobile. Using
rich information on individual trips, a measure of the intensity of spillover
from affected areas is constructed. By including the spillover intensity in
the regressions, the cross-area externality is estimated and the bias caused
by the externality is removed.

This paper also differs from previous literature in the following two
ways. First, this paper defines a continuous dependent variable, which is
unusual in previous individual data studies.2 This continuous definition,
the percentage distance traveled by each mode in an individual trip, avoids
the arbitrary definition of the main mode when a trip involves more than
one mode, which is almost always the case in practice. Secondly, this study
takes advantage of the higher frequency of the data – an annual survey as
opposed to studies based on decadal census data – to alleviate the self-
selection bias caused by migration. Baum-Snow and Kahn (2000) used
aggregate data at the census tract level with data points 10 years apart,
thus accounting for migration with a predetermined migration rate. While
built upon their research design, this paper uses very different data, and
the short time frame limits the bias caused by migration. This potential
source of endogeneity is tested in a later section.

2 For aggregate data, the mode usage is measured as the ridership of a transit line
or the market share of a mode, which is naturally continuous. For individual data,
the natural choice is also continuous, as nearly every transit trip is a mixture of
modes. However, standard survey data do not have this detailed information,
because in questionnaires it is natural to ask about the modes or the mode combi-
nations a commuter uses, instead of the distance for each mode involved in a trip.
Therefore, it is common in the literature to choose discrete models, at the cost of
losing information.
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The central result shows that rail transit usage doubled, on average, for
commuters who experienced the improvement in rail transit accessibility,
compared to the commuters who did not experience such improvement.
Auto usage significantly decreased, by 16 per cent, while the impact on bus
usage was small and not statistically significant, indicating that the new
subway lines in this study diverted auto users instead of bus passengers.
The results also show that the spillover effects of subway expansion are not
large enough (yet) to affect the travel behavior of commuters residing in
the areas without the rail transit accessibility improvement. Furthermore,
this paper finds that changes in auto usage and rail transit usage vary
with distance to the nearest rail station, traffic infrastructure conditions,
and commuters’ auto ownership and income. Finally, this paper examines
the effect of transit expansion on travel quantity, and finds that neither the
number of commute work trips nor their length increased, indicating that
little additional travel is induced by the subway expansion.

The remainder of the paper is organized as follows. Section 2 describes
the data. Section 3 describes the empirical estimation strategy, presents the
results on the effects on distance traveled by various modes, and inves-
tigates heterogeneities in the treatment and treatment effects. Section 4
studies the effects on travel quantity. Section 5 concludes.

2. Data
This study uses travel diary data from 2007, 2008 and 2009, covering
periods before and after the opening of line 5, line 8 and line 10, as shown
in figure 1. Line 5, opened in October 2007, goes north and south. It runs for
28 km and has 23 stations. Lines 8 and 10, opened in July 2008, go from west
to east and then turn south. They run for 29 km and have 26 stations. There
are two reasons why the three lines are of particular interest. One reason
is that these three lines go in different directions and cover wide areas

Oct. 1969 – Sept. 2002 Sept. 2002 – Dec. 2003 Dec. 2003 – Oct. 2007 Oct. 2007 – Jul. 2008

Jul. 2008 – Sept. 2009

May-Jun. 2008
Jun. 2009

Sept. 2009 – Dec. 2010

May-Jun. 2007

Dec. 2010 – Current

Line 5

2015 Plan

Line 8 & 10

Figure 1. Beijing subway system expansion history and 2015 plan
Note: The vertical lines show survey dates relative to the subway expansion. Between
the three rounds of surveys, line 5, line 8 and line 10 started operation.
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which are geographically representative. Beijing’s development is based
on the expansion of ring roads, all centered at Tiananmen Square. Residen-
tial areas within the inner rings tend to be wealthier. As shown in figure 2,
lines 5, 8 and 10 cut vertically and horizontally across several rings. There-
fore, the areas covered by these three lines are representative of different
income levels. The other reason is that these three lines operate mainly
within urban Beijing, an area that is highly populated and developed.
Restricted by the land available for new housing projects, the migration
rate in this area is relatively low. Renters can migrate without new housing
projects, but this is limited by the supply in rental markets. Therefore, the
self-selective bias is limited. This hypothesis is tested indirectly in a later
section.

The travel diary data are from the Beijing Household Travel Survey
(BHTS) done by the Beijing Transportation Center (BTC) every year since
the 1980s. In each of the eight urban districts, households are randomly
selected, stratified by traffic analysis zone (TAZ). TAZs are geocoded areas,
divided by the BTC for the purpose of traffic analysis. Each administrative
district has 16–238 TAZs, based on the size of the area and the population
of a district. In each TAZ, about 25 households are randomly selected for
interviews in person to collect data on trips taken during a designated
24-hour period. In this paper, the sample is restricted to the 71 TAZs that
are surveyed in all three years, which is referred to as the TAZ panel. This
restriction is to ensure the comparability of the commuters across years,
because the data are repeatedly cross-sectional at the commuter level,
although they are panel data at the TAZ level.

The survey gathers: (1) information about each segment of a trip taken
during the household’s travel day, including travel purpose (e.g., going
to work, shopping, transferring3), travel mode (e.g., auto, bus, subway),
travel distance, time when the travel began and ended and the TAZ code
of the origin and the destination; (2) household information, including the
TAZ code of the residence, vehicle ownership and monthly household
income (levels 1–8); and (3) household member information, including
gender, age, occupation, possession of a driver’s license, and the TAZ
code of the school (if a student) or the place of work (if an employee).
Fourteen modes in the surveys are aggregated into four broader cate-
gories: (1) subway; (2) bus (including regular bus, minibus and shuttle);
(3) auto (including driving/riding in a private/company auto, and taxi);
and (4) walking and bicycling.

To measure the improvement in rail transit accessibility, each TAZ’s
proximity to rail transit is calculated in 2007, 2008 and 2009, using the
digital map of TAZs from the BTC and the map of subway stations from
the OpenStreetMap database. The proximity is measured as the distance
between a TAZ’s centroid and its nearest rail station. All households from

3 Transferring means switching modes. It can be the purpose of a trip segment, but
cannot be the purpose of a trip. In this paper, a trip is defined as traveling between
two places with a specific purpose, excluding going to subway/bus stations, tak-
ing a taxi, transferring and parking. Only one mode is involved in one segment of
a trip, although a trip can have more than one mode.
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Figure 2. Map of Beijing and subway lines 5, 8, and 10
Note: The area studied in this paper is urban Beijing, including the eight administrative
districts at the center of Beijing. Line 5, line 8 and line 10 cut the ring roads vertically
and horizontally. 71 TAZs are surveyed in all three years from 2007 to 2009. A TAZ
is defined as treated if its distance to the nearest subway station decreased in 2008 or
2009. In the sample, 31 TAZs are treated and 40 TAZs are not treated.
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the same TAZ are treated as residing at the same point.4 This approxima-
tion is acceptable, because TAZs in urban Beijing are small. The average
area of a TAZ is less than 1.5 km2.

A TAZ is defined as ‘treated’ if its distance to the nearest subway station
decreased in 2008 (after the opening of line 5) or 2009 (after the opening of
lines 8 and 10). All treated TAZs are referred to as the treatment group, and
all untreated TAZs as the control group. There are 31 and 40 TAZs in the
two groups, respectively. In the treatment group, 19 TAZs are treated after
the first round of surveys, while the other 12 TAZs are not treated until after
the first two rounds of surveys. They are referred to as the early treatment
group and the late treatment group, respectively.

Focus is placed on work trips, defined to include going to work and
going to school, for two reasons. First, most road congestion happens dur-
ing rush hours. Secondly, decisions about the destination and the travel
mode are usually made jointly, especially for trips for which the destina-
tions are easy to change, such as shopping trips. It takes much longer to
change the place of work or school. Therefore, the mode choice is isolated
from the destination choice by restricting the sample to work trips.

The mode usage of a trip is measured as the percentage distance trav-
eled using that mode.5 Therefore, the mode usage of a trip is characterized
by four continuous variables (percentage distance by subway, auto, bus,
and walking and bicycling). As shown in table 1, the average percentage
distance in work trips traveled by auto is around 30 per cent, which is
the second largest share, next to the distance by walking and bicycling.
Although subway usage is a small share of work trips, the share increased
from year to year in the treatment group.

In addition to the mode usage of a work trip, the number of work trips
and the trip distance are also of interest. One way to measure trip distance
is to add up the reported distances of the trip segments. The reported dis-
tance is affected by the choices of routes and travel modes and might be
subject to reporting bias. To avoid these confounding factors, the point-to-
point distance between the centroids of the origin and destination TAZs
is also measured. For all trips traveling within a TAZ, the measured trip
distance is zero.

A TAZ which is not treated directly may also be affected by the subway
expansion through congestion alleviation. The intensity of the spillover
from TAZ i to TAZ j is measured by the number of trips from TAZ i to

4 This is the only way to locate a household in the survey. Due to the confidentiality
requirements for human subjects, all information that can identify a household or
a person, such as names and home addresses, is removed from the data set.

5 The travel distances by each mode are reported values from the surveyed individ-
uals, and they might be subject to reporting bias. For example, individuals may
misreport the distances traveled in a new mode chosen or a mode with which they
are not satisfied. To limit the effect of reporting bias, I experiment, in section 3.1,
with defining mode usage as a dummy variable indicating whether the mode
under discussion is the main mode of a trip. The regression results are robust to
the alternative definition of the dependent variable.
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Table 1. Summary statistics

31 TAZs in the treatment group per year
40 TAZs in the control group per year

2007 2008 2009

Group Variable Mean S.D. Mean S.D. Mean S.D.

Treatment Subway usage (0–1) 0.0254 0.1353 0.0298 0.1557 0.0451 0.1858
Auto usage (0–1) 0.3031 0.4522 0.2991 0.4450 0.2829 0.4395
Bus usage (0–1) 0.2622 0.4020 0.2063 0.3747 0.2316 0.3768
Walking and bicycling (0–1) 0.4093 0.4516 0.4649 0.4639 0.4403 0.4469
Reported trip distance (km) 7.9260 9.0572 8.4156 11.0727 6.8325 8.7739
Measured trip distance (km) 6.0555 5.8674 5.4826 6.2933 5.4519 6.1698
Number of trips per day 1.0699 0.2781 1.0430 0.2134 1.0631 0.2432
Number of trips into a TAZ 1.0858 0.9244 1.9470 1.5596 2.0959 2.3348
Number of trips into a TAZ from the treated 0.0000 0.0000 1.0991 1.4106 1.7023 2.0465
Distance between residence and the nearest

subway station (km)
2.8215 1.9030 1.9638 1.2359 1.3823 1.1936

Road coverage in a TAZ (km) 14.6292 8.007 14.6292 8.007 14.6292 8.007
Number of bus stops in a TAZ 13.3226 5.049 13.3226 5.049 13.3226 5.049
Auto ownership (1 = with, 0 = without) 0.5044 0.5003 0.5172 0.4999 0.5718 0.4950
Driver’s license (1 = with, 0 = without) 0.4945 0.5002 0.4044 0.4910 0.4310 0.4954
Income (level 1–8) 3.6921 1.1980 4.0237 1.1425 4.2746 0.9234
Gender (1 = male, 0 = female) 0.5382 0.4988 0.5752 0.4945 0.5551 0.4972
Age 35.1921 14.4804 35.3448 14.3515 35.8378 13.6872
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Control Subway usage (0–1) 0.0474 0.1888 0.0450 0.1917 0.0465 0.1897
Auto usage (0–1) 0.2663 0.4350 0.3088 0.4452 0.3140 0.4487
Bus usage (0–1) 0.2258 0.3801 0.2057 0.3721 0.2422 0.3884
Walking and bicycling (0–1) 0.4605 0.4600 0.4405 0.4556 0.3974 0.4377
Reported trip distance (km) 7.6615 9.8145 9.3814 12.0682 7.6423 8.8726
Measured trip distance (km) 5.9000 6.7522 5.9230 6.7945 6.3420 6.8895
Number of trips 1.0567 0.2444 1.0362 0.1869 1.0664 0.2799
Number of trips into a TAZ 1.4855 1.7907 2.1849 4.0547 1.9977 2.8700
Number of trips from the treated 0.0000 0.0000 0.1087 0.1320 0.2593 0.3604
Distance between residence and the nearest

subway station (km)
1.6420 1.7323 1.6914 1.8709 1.8576 1.9750

Road coverage in a TAZ 14.3628 9.7058 14.3628 9.7058 14.3628 9.7058
Number of bus stops in a TAZ 12.7000 8.5070 12.7000 8.5070 12.7000 8.5070
Auto ownership (1 = with, 0 = without) 0.4644 0.4989 0.5264 0.4995 0.5580 0.4968
Driver’s license (1 = with, 0 = without) 0.4063 0.4913 0.4374 0.4962 0.4504 0.4977
Income (level 1–8) 3.6209 1.1746 4.2543 1.0461 4.3817 0.9174
Gender (1 = male, 0 = female) 0.5151 0.5000 0.5544 0.4972 0.5705 0.4952
Age 36.0118 15.0115 34.9828 14.1462 35.9651 13.4792

Notes: The summary statistics of the work trips from the balanced sample of TAZs (71 TAZs that are surveyed in all three years) are
reported. Mode usage variables are calculated by dividing the reported distances of a mode by the total trip distance, which is the
summation of reported distances of all trip segments (variable: reported trip distance). The reported distances could be subject to reporting
bias. Therefore, the point-to-point distance between the centroids of the origin and destination TAZs (variable: measured trip distance)
is also measured. We see that the two trip distance variables evolve differently. Therefore, to limit the effect of reporting bias on the
results, I experiment with an alternative definition of mode usage (the main mode of a trip) in section 3.1. The results remain stable to
this alternative definition.
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TAZ j .6 Therefore, the complete indirect effect on TAZ j is measured as the
summation of the number of trips from all TAZs, and the indirect effect on
TAZ j from the treatment is measured as the summation of the number of
trips from treated TAZs.

In addition to accessibility of rail transit, mode usage is also influenced
by traffic infrastructure characteristics, such as road coverage and number
of bus stops. The spatial distribution of roads and bus stops in Beijing is
taken from the OpenStreetMap database. Using this information, together
with the digital map of TAZs, the road coverage and the number of bus
stops for each TAZ are calculated.

Table 1 provides summary statistics of dependent variables (i.e., mode
usage for work trips, number of trips and trip distance), variables to
measure indirect effects, variables characterizing traffic infrastructure con-
ditions, and demographic variables by group in 2007, 2008 and 2009.

3. Estimation strategies and results
In this section, the effect of the subway expansion on percentage dis-
tance traveled by various modes is estimated. The plausibility of some key
assumptions is then tested.

3.1. Estimation of the subway expansion effect
Interest is centered primarily on estimating the sample average treatment
effect on the treated (SATT) for each mode m, using the DID estimator:

αm
T T = (Ȳ m

11 − Ȳ m
10) − (Ȳ m

01 − Ȳ m
00) (1)

where Ȳ m
st = 1

Nst

∑
i Y m

ist ; s equals 1 for the treatment group, and 0 for the
control group; t equals 0 when the observation is before the treatment, and
1 after the treatment. Y m

ist is the percentage distance traveled in mode m by
commuter i in group s at time t .

In order to reduce the bias potentially introduced by observable differ-
ences between residents in the treatment and control groups, a regression-
based conditioning strategy is employed. With multiple time periods
(three years, including 30 survey dates) and multiple groups (71 TAZs),
a natural extension of the two-group-two-time-period model (Imbens and
Wooldridge, 2009) is used.

This regression-based DID estimator will be biased if travel behaviors
of the control group are affected by the subway expansion. One potential

6 This measurement ignores the spillover effect of cross-zone traffic, because a trip
that crosses TAZ j and ends at TAZ k contributes to the congestion at TAZ j , but
will not be counted by our measurement. Given that information on travel routes
is lacking, an alternative way to control for the spillover effect of cross-zone traffic
is to control for the road net characteristics of TAZs, because TAZs with ring roads
or primary roads are more likely to be trespassed, compared to TAZs without
such large capacity roads. Because road net characteristics are time invariant and
therefore are captured in TAZ dummies, the spillover effect of cross-zone traffic is
accounted for in all the regressions which have TAZ dummies.
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channel through which an indirect effect could work is traffic congestion
alleviation. This could occur if subway expansion diverts autos from the
treated area. If so, congestion would be alleviated not only in the treated
area, but also in the control area; commuters in the control area would
then respond to the improved traffic conditions by driving more. Such
cross-area externality is addressed by taking advantage of variation in the
intensity of the spillover from the treated areas. The spillover intensity from
treated area i to area j is measured, ex ante, as the number of trips from area
i to area j .

The average treatment effects of subway expansion on the treated, as
well as cross-area treatment externality, is estimated as:

Y m
izdt = α + β ′X it + τ Dzt + γ

⎛
⎝∑

j

trips j z

⎞
⎠ + θ

⎛
⎝∑

j∈T

trips j z

⎞
⎠

+ Cz + ηt + ϕdt + vi zdt (2)

where Y m
izdt is the percentage distance traveled in mode m by commuter

i residing in TAZ z at district d and observed at time t ; Xit is a vector of
observable covariates for commuter i observed at time t ; Dzt is the treat-
ment indicator, which equals 1 if TAZ z is treated at time t , 0 otherwise;∑

j trips j z is the total number of trips, scaled by the length of roads in
TAZ z, from all TAZs to TAZ z, and

∑
j∈T trips j z is the number of trips

from all treated TAZs to TAZ z; cz are TAZ dummies; ηt are time dummies;
ϕdt are district-by-year dummies; and vi zdt is the residual.

Given the total number of trips from all TAZs to TAZ z, the number of
trips from the treated TAZs to TAZ z is exogenous, since the treatment
is exogenous to the characteristics of TAZ z.7 The parameter τ captures
the average effect of the subway expansion on changes in individual-
level travel mode usage over time, conditional on variables in X. The
parameter θ captures the cross-area treatment externality on the untreated
TAZs.

Results are reported in table 2. In column (1), the basic specification,
the mode usage is regressed on the treatment indicator, the group indi-
cator and year dummies. The group indicator equals 1 if the commuter is
residing in a treated TAZ, 0 otherwise. In column (2), TAZ dummies and
survey date dummies are used, which are finer dummies than the group
indicator and the year dummies. In the following columns, demographic
variables are added in, which are related to mode usage. Extra caution is
exercised when including auto ownership in X, because it is influenced
by the treatment. When subway accessibility is improved, auto ownership

7 According to the Beijing Transportation Commission and the civil planning
department, the rollout of the new subway lines mainly depends on the under-
ground geological framework, instead of the characteristics of an individual TAZ.
Besides, according to the 2015 plan, the whole area will be covered by subway
lines in only a few years. Getting a subway line several years earlier does not
really make a difference to a TAZ.
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Table 2. Effect of subway expansion on mode usage

Dep. variable: percentage distance traveled by a mode
(= distance by a mode/trip distance)

(1) (2) (3) (4) (5)

Panel A. subway
Treatment 0.0241∗∗∗ 0.0176∗∗ 0.0248∗∗∗ 0.0250∗∗∗ 0.0273∗∗∗

(0.0089) (0.0083) (0.009) (0.009) (0.0092)
Number of trips

from the treated
−0.00099
(0.0027)

Panel B. Auto
Treatment −0.0446∗∗ −0.0504∗∗ −0.0651∗∗ −0.0601∗∗∗ −0.0489∗∗

(0.0204) (0.0234) (0.0250) (0.0221) (0.0223)
Number of trips

from the treated
−0.0086
(0.0102)

Panel C. Bus
Treatment −0.0249 −0.0201 −0.0116 −0.0132 −0.0189

(0.0230) (0.0228) (0.0244) (0.0229) (0.0261)
Number of trips

from the treated
0.0065

(0.0077)

Panel D. Walking and bicycling
Treatment 0.0454 0.0528 0.0519∗∗ 0.0483∗∗ 0.0406∗

(0.0345) (0.0339) (0.0224) (0.0224) (0.0217)
Number of trips

from the treated
0.0031

(0.0105)
Group indicator x
Year dummies x
TAZ dummies x x x x
Survey date

dummies
x x x x

District by year
dummies

x x x

Income, gender, age,
occupation

x x x

Auto ownership,
driver’s license

x x

Cross-area treatment
externality

x

Number of
observations

7,585 7,585 7,547 7,547 7,547

Notes: Observations are at individual trip level. Only work trips are studied
in this paper. The specification in each column is indicated in the lower part
of the table. The full results are available in appendix A. Standard errors are
clustered at the TAZ level. ∗, ∗∗, ∗∗∗ indicate 10%, 5% and 1% significance level,
respectively.
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may become less attractive. Therefore, subway expansion affects the mode
usage not only directly by diverting commuters, but also indirectly by
decreasing the demand for auto ownership. The coefficient of the treatment
indicator catches both of the effects when not controlling for auto owner-
ship, while it catches only the direct effect if controlling for auto ownership.
In columns (3) and (4), the regression is run without and with auto own-
ership, respectively. In column (5), the measure of spillover intensities is
added in.

Table 2 shows evidence of a positive and statistically significant effect
of the subway expansion on subway usage and a negative and statistically
significant effect on auto usage in all five specifications. The effect on bus
usage is not statistically significant. The effect on walking and bicycling
is statistically significant when controlling for demographic variables. A
comparison of columns (3) and (4) shows that the effects remain stable to
the control for auto ownership. This indicates that the indirect effect of the
subway expansion on mode usage through changing the demand for auto
ownership is small. This finding is confirmed by comparing the auto own-
ership trajectories between the treatment group and the control group. The
graphic analysis and the regression results on auto ownership are available
upon request.

Column (5) is the full specification and shows the main result. Panel A
indicates that a decrease in the distance to the station increased the percent-
age distance traveled by subway by 0.0273 (from 0.0254 to 0.0527), which
is a 107 per cent change. Panel B shows that the percentage distance trav-
eled by auto decreased by 0.0489 (from 0.3031 to 0.2542), which is a 16 per
cent change. Panel C shows that the effect on the percentage distance trav-
eled by bus is 0.0189 (from 0.2622 to 0.2433), which is a 7 per cent decrease
and not statistically significant. Panel D shows that the percentage dis-
tance traveled by walking and bicycling increased by 0.0406 (from 0.409
to 0.4496), which is a 10 per cent increase. These results indicate that the
subway expansion diverted commuters from auto towards subway, while
having no significant effect on bus passengers. The increase in the walking
and bicycling distance indicates that walking and bicycling are comple-
ments to subway travel, rather than substitutes. The estimated coefficients
of number of trips from the treated are small and not statistically significant.
This suggests that the cross-area externality is not large enough within the
studied areas and the time span studied to affect the travel behaviors of
commuters in the control areas. This finding is consistent with Yang et al.
(2015). They investigated the impact of subway expansion in Beijing from
2009 to 2013 on traffic congestion and found that congestion was not sig-
nificantly alleviated. The full results of the main regression are available in
appendix A.

I also experiment with the definition of mode usage. Now, mode usage
is defined as a binary variable which equals 1 if subway, bus, auto, or
walking and bicycling is the main mode of the trip, and equals 0 oth-
erwise. The main mode is defined as the mode covering the greatest
distance of a trip. The regression results, which are available upon request,
show that the estimates remain stable to the alternative definition of mode
usage.
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3.2. Evaluating the underlying assumptions
In order to interpret these estimates as an unbiased measure of the subway
expansion impacts, some important assumptions must hold – in particular,
conditional unconfoundedness and stable unit treatment values.

3.2.1. Assessing unconfoundedness
The above analysis assumes that the mode usage has similar trajectories
for the two groups over time, absent any treatment effect, conditional on
observable individual characteristics. This assumption is not observable
and therefore not testable in principle. One possible way to assess the
plausibility of this assumption is to test whether the two groups had sim-
ilar usage trajectories before the treatment. Due to data availability, the
full sample is observed only once before the treatments. Therefore, the
pre-treatment trajectories of the late treatment group, instead of the full
treatment group, are compared to those of the control group. If the
pre-treatment usage trajectories indeed are similar, the double difference
(Ȳ m

g2,2008
− Ȳ m

g2,2007
) − (Ȳ m

g1,2008
− Ȳ m

g1,2007
) should be 0, where g1 is the control

group, and g2 is the late treatment group. A fake treatment indicator is
defined, which equals 1 for the late treatment group in 2008, 0 otherwise.
The sample is restricted to the two groups in 2007 and 2008, and the mode
usage is regressed on the fake treatment indicator, year dummies, TAZ
dummies, district by year dummies and demographic variables. The coef-
ficient of the fake treatment indicator is expected to be 0. As shown in
panel A of table 3, the estimates for all four modes are indeed small and
not statistically significant.

3.2.2. Assessing the stability of unit treatment values
The estimation strategy also requires that the potential mode usage of
one individual is independent of the treatment status of other individ-
uals. There are two potential ways in which this assumption might be
violated. One way is through traffic congestion alleviation, which we
have addressed by including the cross-area externality in the regressions.
The second potential violation of the assumption is through self-selective
migration. If untreated commuters who prefer the subway are attracted to
the treated TAZs, this would decrease the average subway usage of the con-
trol group, and exaggerate the estimates of the subway expansion impacts.
Lacking migration data or panel data at the household level, the violation
of the assumption is not empirically tractable, unless we generate a specific
hypothesis regarding how the violation would manifest itself. The hypoth-
esis is as follows: some commuters prefer the subway, but live farther away
for reasons such as the high housing prices and limited housing supply in
the nearby areas. The new lines put more areas within walking distance,
and therefore may induce the migration of these commuters. If this kind of
migration exists, we would expect to find smaller treatment effects when
the control group is restricted to nearby TAZs. Panel B of table 3 reports
SATT estimates obtained using only data from TAZs within a 2-km dis-
tance of a subway station as controls. They are similar to the results from
the main regressions. This suggests that self-selective migration, if any,
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Table 3. Indirect test of unconfoundedness

Dep. variable: percentage distance traveled by a mode
(= distance by a mode/trip distance)

(1) (2) (3) (4)

Walking and
Subway Auto Bus bicycling

Panel A. Fake treatment
−0.0039 0.0244 −0.0243 0.0038
(0.0152) (0.0250) (0.0293) (0.0299)

Number of observations 3,715 3,715 3,715 3,715

Panel B. Migration
0.0204∗ −0.0468∗∗ −0.0230 0.0494∗

(0.0119) (0.0229) (0.0292) (0.0250)
Number of observations 6,404 6,404 6,404 6,404

Notes: Panel A tests whether the pre-treatment mode usage trajectories are
similar between the late treatment group and the control group. The sample
is restricted to those in the control group and the late treatment group in 2007
and 2008. Panel B tests the plausibility of the SUTVA assumption. The control
group is restricted to the TAZs that are within a 2-km radius circle of a subway
station. The specifications in both panels are the same as the main regression.
Standard errors are clustered at the TAZ level. ∗, ∗∗, ∗∗∗ indicate 10%, 5% and
1% significance level, respectively.

is not large enough to bias the estimated expansion effects significantly.
This is as expected, as mentioned in the data section. In highly populated
urban Beijing, without excess housing supply, large migration is not likely
to happen within a one-year time span.

3.3. Treatment effect heterogeneity
In this subsection, four types of treatment effect heterogeneity are inves-
tigated. First, continuous treatment is considered. Next, variation of the
effects across areas with different traffic infrastructure conditions is inves-
tigated. Then, the question of whether the effects are correlated with
demographics is explored. Finally, the effects of the rail accessibility
improvement at the destination are studied.

3.3.1. Continuous treatment
Both the distance reduction and the resultant distance to the nearest sub-
way station are continuous. We expect to see different mode usage changes
across the groups that experienced different reductions in distance and dif-
ferent distances as a result. To allow for such differences, ϕDzt ∗ distzt +
μdistzt is added in equation (2), where distzt is the distance between TAZ z
and its nearest subway station at time t . Denoting the distance before and
after the subway expansion as d0 and d1, respectively, the effect of subway
expansion can then be expressed as τ + ϕd1 + μ(d1 + d0), where d1 + d0
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measures distance reduction. As shown in table 4, panel A, ϕ is estimated
as negative in the subway regression, and positive in the auto regression;
μ is estimated as small and not statistically significant in all regressions.
This suggests that the diversion effect of subway expansion depends on
whether the expansion brings a subway station to commuters’ residen-
tial places, rather than how large the distance reduction was; that is, the
resultant distance matters, while the magnitude of improvement does not.

3.3.2. Heterogeneous treatment effects across traffic infrastructure
conditions
To investigate the heterogeneous treatment effects across TAZs with dif-
ferent traffic infrastructure conditions, δ′ Zzt Dzt is added in equation (2),
where Zzt is a vector, including road coverage and the number of bus stops
in TAZ z at time t . As shown in table 4, panel B, the estimated coefficient of
treatment × road coverage is negative for subway, positive for auto and neg-
ative for bus. It suggests that, in the areas with an extensive road system, a
new subway line is less attractive, compared to areas with less road cover-
age. In an area with more road coverage, the additional subway passengers
are less likely to be commuters who previously drove to work and more
likely to be previous bus passengers. This is expected, because commuters
in areas with more road coverage are likely to have had good experiences
when driving, so they will not bother to switch from driving to subway
when there is a new subway line. The coefficient of treatment × number of
bus stops is positive for subway and auto, while it is negative for bus. This
suggests that a new line in areas with a large public transit system is more
attractive, compared to an isolated line. Its passengers are more likely to be
previous bus passengers, while they are less likely to be auto drivers. To
summarize, a new subway line in an area with a smaller road system but a
larger public transit system will have better ridership; however, if the goal
of this new line is to attract as many auto drivers as possible, it is better to
place the new line in areas with less road coverage and fewer bus stops.

3.3.3. Heterogeneous treatment effects across demographics
To investigate the effect of heterogeneity across auto ownership, δ′X it Dzt
is added in equation (2), where auto ownership, driver’s license, interac-
tion of auto ownership and driver’s license, and income are included in
X. An auto owner is defined as an individual who has a driver’s license
and is a member of a household that has one or more autos. As shown
in table 4, panel C, the estimated coefficient of treatment × auto owner-
ship × driver’s license and that of treatment × income are negative in the auto
regression, indicating that auto usage by auto owners and commuters with
higher income decreased more, compared to commuters without an auto
or a driver’s license and those with lower income. This is straightfor-
ward because auto owners and commuters with higher income have much
greater auto usage to begin with. This finding is consistent with the finding
of Yang et al. (2015) that new subway lines in outer Beijing, where the resi-
dents have a lower income than those of urban Beijing, have little effect on
traffic congestion. Therefore, the impacts are also measured as percentage
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Table 4. Heterogeneity in treatment and treatment effect

Dep. variable: percentage distance traveled
by a mode (= distance by a mode/trip distance)

Walking and
Subway Auto Bus bicycling

Panel A. Continuous treatment
Treatment 0.0401∗∗ −0.0874∗∗∗ −0.00098 0.0483

(0.0156) (0.0327) (0.0430) (0.0328)
Treatment × distance

of residence place to
subway

−0.0092∗ 0.0255∗∗ −0.0110 −0.0053
(0.0049) (0.0101) (0.0110) (0.0106)

Distance between res-
idence place and
subway

−0.0014 0.0016 0.0003 −0.0005
(0.00401) (0.0116) (0.0115) (0.0123)

Panel B. Treatment effect heterogeneity across TAZ traffic infrastructure
characteristics

Treatment 0.0618∗∗ −0.113∗ 0.0395 0.0113
(0.0259) (0.0576) (0.0563) (0.0506)

Treatment × road length −0.00284∗∗ 0.00303 −0.000299 0.000113
(0.00127) (0.00246) (0.00236) (0.00191)

Treatment × number of
bus stops

0.00111 0.000822 −0.00397 0.00204
(0.00131) (0.00383) (0.00328) (0.00363)

Panel C. Treatment effect heterogeneity across socio-economic characteristics
Treatment 0.0186 −0.0338 −0.0195 0.0347

(0.0213) (0.0461) (0.0478) (0.0529)
Treatment × auto

ownership × driver’s
license

0.0358 −0.119∗∗ 0.0190 0.0642
(0.0253) (0.0483) (0.0458) (0.0494)

Treatment × auto
ownership

0.0118 0.0604∗∗ −0.0177 −0.0544
(0.0152) (0.0262) (0.0322) (0.0330)

Treatment × driver’s
license

−0.0384∗ 0.0330 −0.0037 0.0092
(0.0198) (0.0304) (0.0409) (0.0344)

Treatment × income 0.0015 −0.0056 0.0014 0.0027
(0.0059) (0.0101) (0.0096) (0.0117)

Panel D. Effects of the treatment at destination
Treatment 0.0286∗∗∗ −0.0459∗ −0.0176 0.0348∗

(0.0101) (0.0245) (0.0271) (0.0209)
Treatment at destination −0.00439 −0.00953 −0.00417 0.0181

(0.00870) (0.0198) (0.0203) (0.0218)
Number of observations 7,547 7,547 7,547 7,547

Notes: Each panel has the same specification as the main regression, except
for additional interaction terms for panels A through C and the additional
treatment indicator (treatment at destination) for panel D. Standard errors are
clustered at the TAZ level. ∗, ∗∗, ∗∗∗ indicate 10%, 5% and 1% significance level,
respectively.
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changes, and it is found that auto owners and commuters with a higher
income are less likely to be diverted from autos towards the subway. The
calculation and comparison are available in appendix B.

3.3.4. Treatment at destination
Rail accessibility is also improved when the distance between the place
of work and a subway station is decreased. The effect of the treatment at
destination is estimated by adding τ d Dd

zt in equation (2). Dd
zt is the indica-

tor of treatment at destination, which equals 1 if the distance between the
work TAZ and the nearest subway station is decreased at time t , 0 other-
wise. As shown in table 4, panel D, the estimated coefficient of treatment at
destination is small and not statistically significant in all regressions, and the
estimated impacts of the treatment at origin are not changed significantly
by the additional treatment indicator. This indicates that, conditional on the
treatment at the origin, treatment at the destination has a minor impact on
mode usage. A possible reason is that the main business areas are covered
by the old subway lines. The main function of the new lines (lines 5, 8, and
10) is to collect and bring commuters to those major destinations. Therefore,
the effect of treatment at origin is large, while the effect of treatment at des-
tination is small. When all of urban Beijing is covered by subway lines, as
in the 2015 Plan, we expect to see the effect of treatment at the destination
for the additional lines.

4. Effect on trip quantity
As the expansion makes commuting faster and more convenient, com-
muters in the treatment group may respond to the convenience by making
more or longer trips.8 In this section, the question is asked as to whether
the subway expansion increased the number of trips and the trip length.
Table 5 summarizes the results of estimating equation (2) with different
dependent variables. In column (1), the dependent variable is the number
of work trips taken by a commuter on a weekday. The estimate is small and
not statistically significant. This indicates that commuters did not increase
the frequency of work trips in response to the accessibility improvement.
Columns (2) through (5) measure the effect of the expansion on trip dis-
tances. In columns (2) and (4), the trip distance is measured as the sum of
reported distances of trip segments and the point-to-point distance mea-
sured on digital maps, respectively. Columns (3) and (5) take the natural
logarithm of the reported distances and the measured distances, respec-
tively. The estimates are small and not statistically significant in columns

8 Besides inducing more or longer trips by commuters, subway expansion may also
generate new trips from previous non-commuters through improving labor mar-
ket access. This job trip generation effect could be an important source of trip
generation of subway expansion. However, given that the new subway lines stud-
ied in this paper are all in urban Beijing, where the labor market was already
fairly accessible by bus, the new job trip generation effect is left for future research
which will study the more recent subway openings in outer Beijing.
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Table 5. Effects of subway expansion on number of trips and trip distance

(1) (2) (3) (4) (5)

Number of Trip Log Distance Log (distance
Dep. variable trips distance (trip distance) measured measured)

−0.0034 −0.128 −0.0365 −0.169 −0.0082
(0.0165) (0.536) (0.0881) (0.243) (0.0543)

Number of
observations

7,152 7,547 7,547 7,547 6,255

Notes: All columns have the same specification as the main regression but
different dependent variables. Standard errors are clustered at the TAZ level.
∗, ∗∗, ∗∗∗ indicate 10%, 5% and 1% significance level, respectively.

(2) through (5). This indicates that commuters did not travel farther to work
when rail transit accessibility was improved.

5. Conclusion
In this paper, the rapid rollout of new subway lines in urban Beijing is used
to test whether the improvement of subway accessibility diverted com-
muters toward the subway, and from which modes travel was diverted.
The main methodology is a DID method which compares changes in the
travel behaviors of commuters who reside in the areas with rail accessi-
bility improvement to those who did not experience such improvement.
To solve the potential estimation bias posed by the fact that rail expansion
may affect commuters residing in areas without rail accessibility improve-
ment through congestion alleviation, due to less driving by the commuters
who experienced the subway improvement, the intensity of spillover
from the treated is measured and the cross-area externality is estimated
as well.

The results indicate that the new subway lines increased the percentage
distance traveled by subway by 107 per cent, and decreased the percent-
age distance traveled by autos on average by 16 per cent in the treated
areas relative to the untreated areas. The percentage distance traveled by
buses decreased by 7 per cent and is not statistically significant. Along with
the increase in subway usage, walking and bicycling distance increased
by 10 per cent. The results also show that commuters residing in areas
closer to subway stations, rather than those in areas which experienced
greater improvement in rail accessibility, were more likely to divert toward
the subway; new subway lines built in areas with less road coverage but
more bus stops diverted more commuters to the subway; and auto owners
and commuters with higher income were less likely to switch from auto
use toward subway use. Furthermore, it is found that neither trip length
nor number of trips increased with rail expansion. As for the cross-area
externality, the spillover effects are found to be small and not statisti-
cally significant. This implies that the congestion alleviation effects were
not large enough, within the areas and time span of the study, to affect
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the travel behaviors of the commuters residing in areas which did not
experience rail accessibility improvements.

Now let us find out what the 16 per cent decrease in auto usage (auto
usage decreased from 0.30 of the distance traveled in a trip to 0.25) means
in economic terms. Many studies have shown that automobile exhaust
substantially harms public health. Particulate matter, one of the main pol-
lutants from diesel automobiles, is linked to cardiopulmonary diseases,
respiratory infections, lung cancers and infant mortality; other automobile
emissions, such as carbon monoxide and nitrogen oxides, are also linked to
infant mortality and childhood asthma (Chay and Greenstone, 2003; EPA,
2004; Neidell, 2004; Currie and Neidell, 2005). The externalities caused by
auto use also include greenhouse gas emissions, congestion, traffic acci-
dents, noise, and so on. Parry and Small (2009) estimated the externality
cost of driving for several large cities over the world, and found that the
cost varies from US$0.46 per mile for Washington, DC to US$2.42 per mile
for London. Although the value of time and value of statistical life are pos-
sibly lower in urban Beijing than in Washington, DC because of the lower
average wage, the cost of air pollution is not necessarily lower, given the
higher population density in urban Beijing.9 So this cost range is adopted
for the following calculation.

The average work trip distance in the sample is 8 km, and therefore about
0.4 km is diverted from autos per trip. When the 2015 Plan is completed, all
the residents in urban Beijing (11.7 million in 2010) will be within walk-
ing distance of at least one subway station. Supposing that two-thirds of
them make one round trip per day for work (based on the sample statis-
tics), the total distance saved in auto usage will be 6.27 million km per
day. Therefore, the cost saved by diverting commuters from autos will be
US$1.80m to US$9.49m per day. Assuming that there are 250 week days per
year, US$0.45bn–US$2.37bn will be saved in the first year of completion
of the 2015 Plan. Regardless of the precise numbers used to interpret the
magnitude of the air quality and congestion alleviation benefits, the calcu-
lation indicates that the effects of rail transit infrastructure are economically
substantial.

Notice that the 16 per cent decrease in auto usage is neither a guarantee
nor an upper bound of the effect of rail expansion, because, as shown in
this paper, the impacts of rail expansion on mode usage depend on the dis-
tance of a new subway station to commuters’ residences, the road coverage
and bus systems of the areas where the subway stations are built, and the
income and auto ownership of the commuters in those areas. A subway
line with stations close to residential places in areas with limited road cov-
erage and undeveloped bus services, or in areas where the residents have

9 The population density was 8,500 people per km2 in urban Beijing in 2010. The
area of urban Beijing (the eight administrative districts at the center of Beijing,
as shown in figure 2) is 1,381 km2 and the population in this area was 11.7 mil-
lion in 2010 (data source: Population Census of Beijing Municipality in 2010). To
compare, the population density is 3,400 people per km2 in Washington, DC, and
5,200 people per km2 in London.
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relatively lower income and less auto ownership, is likely to have a large
diversion effect on autos.
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Appendix A: Full list of the main results

Table A1. Effect of subway expansion on mode usage

Dep. variable: percentage distance traveled by a mode
(= distance by a mode/trip distance)

(1) (2) (3) (4)

Walking and
Subway Auto Bus bicycling

Treatment 0.0273∗∗∗ −0.0489∗∗ −0.0189 0.0406∗
(0.0094) (0.0223) (0.0261) (0.0217)

Number of trips
from the treated

−0.00099 −0.0086 0.0065 0.0031
(0.0027) (0.0102) (0.0077) (0.0105)

Number of trips into
a TAZ

−0.00399∗∗ −0.0057∗∗ −0.0046 0.0143∗∗∗
(0.0017) (0.0027) (0.0038) (0.0035)

Auto ownership −0.0141∗∗ 0.166∗∗∗ −0.0688∗∗∗ −0.0834∗∗∗
(0.006) (0.0128) (0.0161) (0.0171)

Driver’s license 0.0115 0.138∗∗∗ −0.0395∗∗ −0.110∗∗∗
(0.0103) (0.0145) (0.0183) (0.0170)

Auto ownership ×
driver’s license

−0.0356∗∗∗ 0.301∗∗∗ −0.127∗∗∗ −0.139∗∗∗
(0.0111) (0.0219) (0.0212) (0.0225)

Income 0.0041∗ 0.0088∗ 0.0057 −0.0186∗∗∗
(0.0023) (0.0046) (0.0047) (0.0046)

Male −0.0119∗∗ 0.0877∗∗∗ −0.0566∗∗∗ −0.0192
(0.0056) (0.0118) (0.0124) (0.0131)

Age −0.00160∗∗∗ −0.0003 −0.0027∗∗∗ 0.0046∗∗∗
(0.0003) (0.0005) (0.0005) (0.0006)

Constant 0.154∗∗ 0.0339 0.497∗∗ 0.314∗∗
(0.0759) (0.107) (0.201) (0.156)

Number of
observations

7,547 7,547 7,547 7,547

Notes: Full results of the main regressions. Standard errors are clustered at the
TAZ level. ∗, ∗∗, ∗∗∗ indicate 10%, 5% and 1% significance level, respectively.
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Appendix B: Measuring treatment effect heterogeneity in percentage
change

Table B1. Measuring treatment effect heterogeneity in percentage change

Panel A. auto ownership Percentage
and driver’s license Sample Effect distance % change

Subway
No auto 289 31.6% 0.0186 0.0208 89.3%∗∗∗
Auto owner 288 31.4% 0.0201 0.1506 13.4%∗∗

Auto
No auto 289 31.6% −0.0338 0.0251 −134.8%∗∗
Auto owner 288 31.4% −0.0394 0.6971 −5.7%∗∗

Bus
No auto 289 31.6% −0.0195 0.3900 −5.0%
Auto owner 288 31.4% −0.0181 0.0941 −19.3%

Walking and bicycling
No auto 289 31.6% 0.0347 0.564066 6.2%∗
Auto owner 288 31.4% 0.0374 0.193745 19.3%∗∗

Panel B. Percentage
income levels Sample Effect distance % change

Subway
Income level 2 142 15.5% 0.0216 0.0114 189.8%∗
Income level 3 203 22.2% 0.0231 0.0180 128.6%∗∗
Income level 4 324 35.4% 0.0246 0.0349 70.4%∗∗
Income level 5 181 19.8% 0.0261 0.0289 90.2%∗

Auto
Income level 2 142 15.5% −0.0450 0.1928 −23.4%
Income level 3 203 22.2% −0.0506 0.2518 −20.1%∗∗
Income level 4 324 35.4% −0.0562 0.3061 −18.4%∗∗
Income level 5 181 19.8% −0.0619 0.4065 −15.2%∗∗

Bus
Income level 2 142 15.5% −0.0167 0.2244 −7.5%
Income level 3 203 22.2% −0.0153 0.2861 −5.4%
Income level 4 324 35.4% −0.0139 0.2849 −4.9%
Income level 5 181 19.8% −0.0126 0.2266 −5.5%

Walking and bicycling
Income level 2 142 15.5% 0.0401 0.5714 7.0%
Income level 3 203 22.2% 0.0429 0.4440 9.7%
Income level 4 324 35.4% 0.0456 0.3740 12.2%∗
Income level 5 181 19.8% 0.0483 0.3380 14.3%
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