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ON POSITIVE INTEGER SOLUTIONS 
OF THE EQUATION xy + yz + xz = n 

AL-ZAID HASSAN, B. BRINDZA AND Â. PINTER 

ABSTRACT. AS it had been recognized by Liouville, Hermite, Mordell and others, 
the number of non-negative integer solutions of the equation in the title is strongly 
related to the class number of quadratic forms with discriminant —n. The purpose of 
this note is to point out a deeper relation which makes it possible to derive a reasonable 
upper bound for the number of solutions. 

For a positive integer n let G(ri) denote the class number of binary quadratic forms 
aX2 + 2bXY+ cY2 with determinant b2 — ac = —n. Generalizing some earlier results, 
Mordell ([Ml], [M2]) proved that the number of non-negative integer solutions of the 
equation 

(1) xy+yz + xz = n 

is 3G(n) if a weight is attached to a solution with xyz = 0. His argument is based upon a 
one-to-one correspondence between the reduced quadratic forms 

AX2 + 2BXY+CY2, 

and the non-negative solutions x, y, z of (1) given by A = x + y, \B\ = x, C = x + 
z. However, the counting of strictly positive integer solutions seems to be a different 
and harder problem. It was verified ([K]) that the equation (1) (in positive integers) has 
solution for all n < 107 except the numbers n = 1,2, 4, 6, 10, 18, 22, 30, 42, 58, 
70, 78, 102, 130, 190, 210, 330 and 462 which is the biggest one. Let h(D) and h(D) 
denote the ideal class number of the field Q(y/—D) and the class number of the forms 
aX2 + bXY+cY2 with discriminant b2 — 4ac = —D, respectively. In our equation n is not 
necessarily square-free and it does not satisfy certain prescribed congruences modulo 4, 
thus the relation between the class numbers h(D), h(D), and the number of solutions of ( 1 ) 
is not that straightforward, apart from the simple inequality max{h(D\ h(D)} < G(D). 

Let S(n) denote the number of integer solutions of (1) with 0 < z < y < x and e be a 
positive number. Then we have 
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THEOREM 1. There exists an effectively computable constant c such that 

S(n)<cnX2 \ogn- J\ ( l + / - _ 1 ) -
p\n 

p prime 
VP-I-

Furthermore, for every sufficiently large square-free n 

nï~( <S(n). 

REMARKS. The proof is a combination of some known results, the crucial point is 
that a positive integer solution of (1) and the coefficients of the minimal polynomial of 
an element in the modular domain of Q(v /=«) satisfy quite similar relations. The second 
part of Theorem 1 is also effective, apart from at most one exceptional n. 

Most likely n = 462 is the biggest number for which S(n) = 0, however it does not 
seem to be easy to prove. By taking a solution (JC, y, z) to (1) with x = y, say, we have 
x(x + 2z) — n. The known effective lower bounds for the ideal class number h(D) are 
not big enough comparing with the number of divisors of D. For instance, a deep result 
obtained by Oesterlè [02] gives the lower bound 

™>^n('-7£)-
p prime 

and the number of divisors of D can be around e x p j c ^ 0 ^ ^ }. 
However, an inequality of Tatuzawa [T] (see Lemma 2) leads to the following 

THEOREM 2. IfS(n) = 0 then the square-free part ofn belongs to a finite set which 
can be effectively determined up to at most one element. 

The proofs are based on some auxiliary results. 

LEMMA 1. (Oesterlè [Ol]) If d is congruent 0 or 3 modulo 4, then 

Kd)= £ £ <a,b\ 
0<b<y/7/3 a\((b2+d)/4) 

b=dmod 2 b<a<y/\b2+d)/4 

where n(a, b) = 1 ifab(b — a) — 0 or a — yj(b2 + d)/A and n(a, b) — 2 for otherwise. 
Moreover, 

kd) = j:h(dr2) 
f\Fd 

where Fj is the fundamental discriminant, that is F2
d is the biggest divisor ofd such that 

dF^2 congruent 0 or 3 modulo 4. 

LEMMA 2. (Tatuzawa [T]) Let 0 < e < \ and d be a square-free integer satisfying 
d>max(el/£, en2). Then 
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except for at most one exceptional d. 

PROOFS. For a positive integer k we put 

#(jt) = {d e Z : 2k < d < y/n + P, d | n + A2}. 

Let 0 < z < j < x b e a solution to the equation (1). Then z < ^/yz < | , 

« — jyz = «+z2mod(y+z) 

and 2z < j> + z < \/w+z2, therefore 

v ^ 
(2) $(*)<£ E 1. 

z = 1 rf|W+z2 

2z<</<Vw+? 

Applying Lemma 1 we get 

A(4*)= E E "(4*) = E E "(42z,) 

Z CVen z<d<J^f 2zi ^V"+*î 

hence 

S(n) < «(4/i) - E ^(4«T2) < E *(<*)• 
/ |F4„ d\4n 

The well-known inequality 

/*(</) < c\dS logd, 

where ci is an effective absolute constant (cf. [01], [S]), yields 

5(/i)<ci E ^ l o g ^ < c i l o 8 4 « E ^ <ci(4/i)hog4/i n ( l + - 7 = — A 
</|4/i </|4« p|4/i V V P ~ l J 

p prime 

As usual we denote by d(«) the number of positive divisors of n. For every sufficiently 
large square-free n, h(ri) > m~e and d(n) < ne. Therefore, the inequalities 

3\S(n)>3G(n)-3d(n), 

G(n) > h(n) 

complete the proof of Theorem 1. 
Theorem 2 is a simple consequence of these inequalities and Lemma 2. 

ACKNOWLEDGEMENT. After the inequality (2) one may try to find a reasonable upper 
bound for the cardinalities of the sets ^ (z ) , however, thanks to some up-to-date infor
mation about the distribution of divisors provided by Prof. G. Tenenbaum, our feeling is 
that this approach would not lead to a better bound. 
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