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An ideal extension of one semigroup by another is determined by a partial homomorphism
into the translational hull of the first semigroup [3, §2, Theorem 5]. In most instances, the
development of the theory of ideal extensions has been hindered by inadequate knowledge of
the translational hull; it is our purpose here to characterize certain basic structures in the
translational hull of an arbitrary inverse semigroup.

For an inverse semigroup 5, the translational hull of 5, £2(5), is again an inverse
semigroup, and thus the idempotents of £2(5) form a semilattice. How the structure of this
semilattice, Ea(S), is influenced by the structure of the semilattice of idempotents of 5, Es, is
seen in one of our main results: Ea(S) cs &(ES).

Since £2(5) always possesses an identity, the group of units of £2(5) is another structure
which is of interest. We give here a characterization of this group in terms of automorphisms
of the semilattice of 5.

There are two sections dealing with applications of the characterizations given for En(S)

and the group of units of £2(5).

1. Notation and preliminary results. For a semigroup 5, Es denotes the set of idempotents
of 5. Except when otherwise stated, the notation and definitions used can be found in [1].

For a semigroup 5, define

= {X:S-+S\X(xy) = (Xx)y, for all x,yeS},
P(S)={p:S->S\(xy)p = x(yp), for all x,yeS}.

These sets are semigroups under composition of mappings. Further, let

Q(S) = {(X,p)eA(S)xP(S)\x(Xy) = (xp)y, for all x,yeS}.

With multiplication defined by (A, p)(A', p') = (XX', pp'), £2(5) is also a semigroup. Let

= {AeA(5)|(A,p)e£2(5) for some p}\

= {peP(S)\(X,p)eQ(S) for some X);

'n(S)-{(Xa,pa)\aeS,Xax = ax,xpa = xa, for all xeS};

1(S) = {(X, p) e£2(5) | (X, p)(jt, T) = (n, T)(A, p) = / for some (ji, T)},

where / = (is, is) and is is the identity map on S. The semigroup fi(5) is called the translational
hull of S, and 1(5) is the group of units of Q(5); if (A, p) is in fi(5), we say that A and p are
linked. In case 5 is a weakly reductive semigroup (which is certainly true if 5 is an inverse
semigroup), then 5 is isomorphic to 11(5) under the mapping x -> (Xx, px); since IT(5) is an
ideal of £2(5), we may consider 5 contained in £2(5). A full treatment of the above semigroups
is given in [3]. In particular, the following proposition appears there (see §2 of [3]).
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PROPOSITION 1.1. Let S be a semigroup.

(i) IfS is reductive, then Q.(S) m X(S) ss P(S).
(ii) IfS is commutative and reductive, then fi(S) m A(S).

A semigroup S = 5° is the orthogonal sum (called 0-direct union in [1]) of semigroups
Sa = S°a(aeA), if S = \J Sa and SxSfi = SanSfi ={0} whenever a / p\ The usual direct

aeA

product of semigroups Tt (iel), is denoted by X Tt.
I E /

PROPOSITION 1.2. Let S be a semigroup which is the orthogonal sum of subsemigroups
S«, with Si = Sx(aeA). Then fi(S) s X

Proo/. This result follows easily on using the fact that, if (A, p) e fi(S), then (A|Sa, p|sJ is
infi(Sjforallain/l .

The next proposition, which is due to Ponizovski [5], will be used repeatedly without
special reference.

PROPOSITION 1.3. For an inverse semigroup S, fi(S) is again an inverse semigroup. In
particular, if (A, p) is in fl(S), then its inverse, (A"1, p"1), is defined by

A"';t = (jc-V)~\ xp-1 =(Xx-1)-1, forallxinS.

Since every element of an inverse semigroup 5 has a left and right identity, many of the
properties of A(5), P(S), and Q.(S) can be simplified. For X a mapping, it is understood that
\kx) means A(x).

LEMMA 1.4. Let S be an inverse semigroup. The following statements hold.

(i) For A, A' in A(S), X = X' if and only if X\£s = X'\Es.
(ii) Let Xbe a mapping of S into itself. Then X is in A(S) if and only if(Xe)f= Xffor e,f

in Es withf£ e, and Xx = (Xxx~ l)xfor all x in S.
(Hi) Let p be a mapping of S into itself. Then p is in P(S) if and only iff(ep) = fp, for e, f

in Es withf^ e, and xp = x(x~1xp)for all x in S.
(iv) For XeA(S), peP(S), (A, p) is in fi(5) if and only ife{Xf) = (ep)ffor all ejin Es.

Proof, (i) Let A, X' e A(S) with X\Es = X'\Es. For x in S,

Xx = Xxx~*x = (Xxx-*)x = (X'xx-^x = X'xx~xx = X'x;

that is, A = X'.
(ii) Let A be a mapping of S into S satisfying Xx = (Xxx~ l)x for all x in 5 and (Xe)f= Xf

fo r /g e. Then, for all x, y in S,

X{xy) =

= [Kxx~l)txyXxy)-Kxy) = [Kxx~l)\xy = (Xx)y.

Therefore A is in A(S).
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The proof of (iii) is symmetric to that of (ii); statement (iv) follows from the fact that
every element has a left and right identity.

For the remainder of the paper, we shall be concerned exclusively with inverse semi-
groups. Consequently, we shall not necessarily include in the hypothesis of every proposition
the fact that S is an inverse semigroup; this will be assumed without express mention. We
note that Proposition l.l(i) holds since every inverse semigroup is reductive.

2. The idempotents of Q(S). In this section we give characterizations of the semilattice
of idempotents of £2(S) in terms of £i(£s) and in terms of a certain subsemigroup of A(S).
The next lemma is crucial for both of these characterizations.

LEMMA 2.1. For (A, p)e£l(S), (A, p) is idempotent if and only if A{ES) £ Es, (£s)p s £ s .

Proof. Let (A, p) be an idempotent in £i(S). Then A'1 = A, p'1 = p, and, by Proposition
1.3, ep = ep~1 = (Ae)~1 for all e in Es. Therefore

Xe = (XeXep)(Xe) = {Xe)eX{Xe) = {Xe)(Xe),

since A2 = A. Thus Ae is in £ s . It can be shown similarly that ep e Es for all e in Es.
Conversely, let A(£s) s £ s , (Es)p s Es. Then, for e in Es, Ae = (Ae)e = e{Ae), and thus

A2e = A(Ae) = A(e(Ae)) = (Ae)(Ae) = Ae.

Hence, by Lemma 1.4(i), A2 = A. By a symmetric argument we have p2 = p, and (A, p) is
idempotent.

THEOREM 2.2. For an inverse semigroup S,

Proof. Define n : £n(S) -> A(5) by (A, p)n = A. Then, by Lemma 2.1, n maps £n ( S )

into {Ae A(S) | A(£s) s £ s } . Further, if Ae A(S) with A(£s) £ £s> then define p on S by

xp = xA(x~ 1x), for all x in S.

For e in £s , ep = e(Ae) = (Ae)e = Ae, since Ae is in £ s . Therefore, if e,feEs, then

(ef)p = A(e/) = (A/> = e(A/) = e(/p);

also, for x in S,

x(x~ lxp) — x(x~ 'x(Ax~ :x)) = x(Ax~ *x) = xp.

Consequently, by Lemma 1.4(iii), p is in P(S). In addition, for e , / in Es,

e(¥) = «C/W = (e/)p = (/fe)p =f(ep) =
so that, by Lemma 1.4(iv), (A, p) is in Q(S). The element (A, p) is idempotent by Lemma 2.1,
and thus n maps £n ( S ) onto the subsemigroup {Ae A(5) | A(£s) S £ s } . Finally, it is one-to-one
due to the fact that 5 is reductive; n is a homomorphism since it is just the projection into A(5).
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PROPOSITION 2.3. Let Ae A(5), peP(S), with A2 = A, p2 = p. rAe/i (A, p)efi(S) //
on/y //Ae = ep/or all e in Es.

Proof. Let (A, p) be in £l(S) with A2 = A and p2 = p, and let ee£ s . Then, by Lemma 2.1,
ep and Ae are idempotents. Thus

ep = ep"1 = (Ae)"1 = Ae.

Conversely, suppose that AeA(S), peP(S) with A2 = X, p2 = p, and let ep = Ae for all
e in Es. Then, for all e,feEs,

(ep)2 = (ke){ep) = (,{.ke)e)p = (ke)p = (ep)p = ep2 = ep,

and so

(ep)f=f(ep) = (/e)p = (e/)p = e(/p) = e(A/).

Therefore, by Lemma 1.4(iv), (A, p) is in £J(S).

THEOREM 2.4. For S an inverse semigroup, the semilattices Q(ES) and £n(S) are isomorphic.
Proof. It is an immediate consequence of Lemma 2.1 that Q(ES) is indeed a semilattice.

Consider the mapping 9 : EniS) -* Cl(Es) denned by (A, p)Q = (A|£s, p|Es). By Lemma 2.1,
A|Es is in Q(ES) and p\Es is in P(ES), and certainly A|Es is linked to p\Es. Hence 9 maps into
Cl(Es). That 0 is one-to-one follows from Lemma 1,4(i) and its dual; 9 is a homomorphism
since AA'|Es = A|£sA'|Es and pp'|Es = p|Esp'|Es- To see that 9 maps onto Sl(Es), let (Ao, p0) be
in n(£s). Define A and p on S by

Ax = (Ao xx~ *)x, xp = x(x~ lxp0).

By Lemma 1 4(ii), A is in A(S), and by Lemma 1.4(iii), p is in P(S); (A, p) is in Q(S) by
Lemma 1.4(iv). Finally, A|Es = Ao, p|Es = p0; so 0 is a mapping onto Sl(Es). Therefore
£"n(S) is isomorphic to Cl(Es).

3. Applications. Using Theorem 2.4, we now give several examples of when conditions
on S dictate properties of fi(5). To do this we need a characterization of Q.(ES) given by
Petrich in [3]. For a semilattice E and x in E, the principal ideal of E generated by x is the
s*ix={y\y^x}.

PROPOSITION 3.1. Let E be a semilattice. Then Q(E) is isomorphic to the semilattice 5?,
where SP = {l\l an ideal of E, Inlx principal for all xeE\I}, with multiplication defined as
intersection.

We shall now assume that Q(E) = 3P, with E embedded in 0> under the mapping e -> Ie.

PROPOSITION 3.2. Let S be an inverse semigroup with zero element 0. Then 0 is a prime
ideal ofS if and only ifO is prime in

Proof. Since S is embedded as an ideal in fi(S), if 0 is prime in Q(5), it is certainly prime
in 5.

Conversely, let 0 be prime in 5. Since Q(5) is an inverse semigroup, it suffices to show
that 0 is prime in En(S). Since Q.(ES) m En(S), we need only prove that 0 is prime in
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Let / and J be in fl(£s) with / / = 0. Since product in fi(£s) is defined as intersection, we have
InJ =0 . If eel, fe J, then efsInJ - 0. But 0 is prime in Es; so e = 0 or / = 0. That is,
/=0or7 = 0.

PROPOSITION 3.3. The semilattice Es is finite if and only if£n(S) is a finite lattice.

Proof. Assume that Es is finite. Then the power set of E is finite and, by Proposition 3.1,
it contains Gl(Es). Further, using [3, §2, Proposition 8] we see that Q(ES) is a lattice. Since
£n(S) <a fi(£s) by Theorem 2.4, £n(S) is a finite lattice.

A semilattice £ is a tree if, for e,f, g in E, e < g,f< g implies that e ^ / o r / ^ e.

PROPOSITION 3.4. If Es is a tree, then En(S) is a lattice.

Proof. Since £fl(S) is isomorphic to Cl(Es), we need only show that, if / and / are in
£i(£s), then I\jJ is again in Q(ES). That is, for every JC in £\(/u/), (IuJ)nIx must be principal.
This follows since

(7uJ)n7x = (/n/Ju(/n/J = J,u/,
for some y < x, z < x. But Es is a tree; so y and z are comparable and 7u7 is in fl(£s).

For T a weakly reductive semigroup, T1 can be embedded in ft(T) under the mapping
x -> (Ax, p j (xe T1), where pt = X1 = iT. We shall call this mapping the extended embedding.

THEOREM 3.5. For an inverse semigroup S, Q(S) = Il(5)uZ(S) if and only ifQ.(Es) is
isomorphic to El

s under the extended embedding.

Proof. Let Q(S) = Il(5)uI(S). If Cl(S) = I1(S), then S has an identity and Q(£s) ~
Es = El If Q(S) * U(S), then II(S)nI(S) = 0, and Q(£s) a £n(S) =

In either case, using the isomorphism defined in Theorem 2.4 and the natural
embedding of S onto II(S), we can see that Q.(ES) is isomorphic to Es under the extended
embedding.

Conversely, let f2(£s) ^ Es under the extended embedding. We shall first show that
Ea(S) = Emsy For, if (A, p)eEn(S), then (A|£s, p|£s) is in n(£s) (see Theorem 2.4). But fi(£s)
is isomorphic to E$ under the extended embedding, so that there exists e in £5 satisfying
AES = ^ . P|ES = Pe, where (^, p;)eri(£s) or (X'e, p'e) = (i£s, /£s). Hence, by Lemma 1.4(i),
k = Xe, p = pe, and (A, p)e£A(S). Thus £n(S) = £A(S).

Now every (X, p) in fi(5) has an inverse (A"1, p"1) in Q(5) and

since 11(5) is an ideal of Cl(S). Assume that (A, p) is not in 11(5). Then (XX'1, pp'1) is in
En(S)\En(S)- But £n(S) = £n(S). Therefore (XX~\ pp~*) = (is, is)- Similarly, (A~ 1X, p" V) =
(«s, /s) and thus (A, p)el(5). Consequently fi(5) = n(5)ul(5) .

To see which semilattices have the property mentioned in Theorem 3.5, we state a special
case of Proposition 3.1.

PROPOSITION 3.6. Let E be a semilattice. If, for every proper ideal I of E, I is principal
whenever Inlx is principal for all xeE\I, then Q(£) ~ E1.
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COROLLARY 3.7. Let E be a chain. Then Q(E) tzE1.

Proof. This follows easily from Proposition 3.6 since, if / is a proper ideal such that
Ir\Ix is principal for all x$I, then Inlx = I and thus / is principal.

PROPOSITION 3.8. Let S = S° be an inverse semigroup with Es the orthogonal sum of
chains C a (ae A). ThenEn(S)^ \ C\.

aeA

Proof. By Proposition 1.2, we have Cl(Es) a; X ^(Q)- B v t n e preceding corollary,
aeA

it follows that

( ) X X
aeA aeA

4. The group of units of fi(S). We are motivated by Theorem 3.5 to characterize the
group of units, £(S), of fi(S).

THEOREM 4.1. Let S be an inverse semigroup. Let A e A(S) satisfy the following conditions:

(i) 0 : Es-* Es defined by ed = (AeXAe)"1 is an automorphism;
(ii) i//: Es -* Es defined by ei]/ = (ke)~ i(Ae) is the identity map.

Then there exists a unique peP(S) such that {X, p)eS(S).
Conversely, for every (A, p)eE(S), X satisfies (i) and (ii).

Proof. Let A 6 A(5) satisfy (i) and (ii). Define p : S -> 5 by

xp — x(Xe), where eO = x~lx.

By Lemma 1.4(iii), to see that p is in P(S), it is sufficient to show that xp = x(x~Jacp) for all
x in S and e(fp) = ep for e,feEs with c ̂ / . First, if x~ *x = eQ, then

x(x~ 1xp) = x(^~ ^(Ae)) =

Let e,/be idempotents with e ^ / . By definition of p, e(fp) = e(J(kg)\ where g0 =/ . That
is, (Afif)(A )̂"x = / . Since 8 maps onto £ s , e = (AA)(AA)"1 for some A in £ s . From the fact
that 6 is an automorphism, we have h g g. Thus

= hg = h,

and consequently

= e(Xh) = ep.

Therefore p is in P(S).

If e , / a re in Es, then e = g9 for some 3 in i?s and

(ep)f= e(Xg)f= e(Xgf) = e((gf)eP) = e(ig6)({f9)p)) = e((f9)p) =

By Lemma 1.4(iv), (A, p) is in fl(S).
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Now (A, p)(A~S p"1) = {XX~X, pp'1). If e is in £5, then there exists a n / i n £ s such that
e = (A/XA/)"1. Recalling the definitions of A"1 and p " 1 , we have

XX-'e = X(epyl = ACA/)"1 = ACfp"1) = AC/Cfp"1)) = (A/)(/p-') = (A/yA/)"1 = e.

Hence AA"1 = /s. Since 5 is reductive, is is linked to just one element of P(S) and therefore
pp~l — is. Using (ii) and the definition of p, a similar argument yields X~*X = is, p~1p = is.
Hence (A, p) is in S(5). By the reductivity of S, p is unique.

Conversely, let (A, p)eI,(S). Then XX'1 = X~lX = is, pp~v = p~1p = is. Define 6 as
in (i). Then, for e , / in £ s , we have

= (Xe)(X-lXf)(Xfyl = (Xe)f(Xfyl =

therefore 0 is a homomorphism. Since XX~l, X~lX, pp-1, p~1p are all equal to the identity
on S, X, A"1, p, p " 1 are all one-to-one mappings of S onto itself.

Since A maps onto 5, if e is in ifS) then there exists x in S such that Xx = e. Therefore

{xx-^B = X{xx-l)[X(xx-l)Yl = X(xx-l)[(Xx)x-ir1

and thus 0 maps Es onto £ s .
If Jd=g9, then ( A / W T 1 - ( W * ) " 1 - That is, Af/CA/)"1] = X\g{Xgy'] and thus

/ ( A / ) " 1 =5(Ag)~1. By definition of p " 1 , this equation can be written a s / ( / p - 1 ) = g{gp~1)-
Therefore fp~l =gp~l and, since p " 1 is one-to-one, / = g . Consequently 8 is one-to-one
and thus an automorphism.

Since (Ae)~1(Ae) = (ep""x)(Ae) = eX~1Xe = ee = e, ifr as defined in (ii) is the identity map.

COROLLARY 4.2. Let S be an inverse semigroup. Then

S(5) K {Ae A(5) | A jfl?/j/z« (i), (ii) of Theorem 4.1}.

Proo/. This follows directly from Theorem 4.1.

We shall henceforth take Z(5) equal to the subsemigroup of A(5) whose elements satisfy
(i) and (ii) of Theorem 4.1.

5. Example. Let S = 5° be an inverse semigroup with Es the orthogonal sum of chains
Ca each having an identity ea (<xeA). Define ~ on A by

a ~ /? if ea and ep are in the same ©-class of S.

Then ~ is an equivalence relation on A. Let {/4,}ie/ be the set of distinct equivalence classes
of ~ , and, for iel, fix a, in At. For any a in A, let Rx be the ^-class containing ea and Lx

be the if-class containing ex.
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The symmetric group on a set A will be denoted by £P(A). The wreath product of a
group G with Sf(A), denoted by Gwr^(/4), is defined on the set

{(6,y)\yeS?(A),0:A-+G}t

with multiplication (0, y)(9', y') = (0", y/)» where id" = (iO)(iy6') for all / in A. Under this
multiplication, G w r ^ ) is again a group.

THEOREM 5.1. For S as described above,

XCa, and X
« 6 A iel

where Gt - R<XinLai.

Proof. The first part follows directly from Proposition 3.8. To prove the second, we
shall use Corollary 4.2 to find all elements of Z(5) and set up the isomorphism.

Let f/(: At - » A , be a permutation for all iel, and let arj = a ^ if <xeAt.
Define A on S as follows. For oceA, pick Xea in RannLx. Then, for x in S, define Ax =

(Xea)x, where xx" 1 g ea: by Lemma 1.4(ii), it is clear that A is in A(S).
By Lemma 1.2 of [2] 6X: Ca-*Can, defined by eOx = (Xex)e{Xea)~

l is an isomorphism.
But (AeXAcJ"1 = (Xe)(Xe)~1, so that O:ES-+ES defined by e0 = (Xe^Xe)'1 is an auto-
morphism. In addition, for e ^ ea, XexeLx implies that

(Xe)-\Xe) = e(Xea)-\Xea)e = eeae = e.

Therefore, by Corollary 4.2, X is in I (S) .
Conversely, if AeZ(5), then e = (Xe)~\Xe) for all e in Es and 0 : e^iXe^Xe)'1 is an

automorphism of Es which maps every element into its own ^-class. Thus, for aeA, eaQ
is a maximal idempotent, and t]\ A-> A defined by at] — ft if ea 9 = ep, is a permutation which
maps A{ onto y4f for all / in /. Furthermore, by definition of 0 and i]/, Xex is in J?a,nLa.

We define

\ a \ L p for some a , ^ e ^ } u { 0 } ,

with multiplication defined by

\xy if xyeJt(S),
x-y = <

[0 otherwise.

It can easily be seen that J?(S) is a semigroup. In fact, Jt(S) is a primitive inverse semigroup
which is the orthogonal sum of Brandt semigroups Bt (iel), where eaeBt if and only if ae^,-.

Now, for Ael(S) , the permutation t\ maps At onto itself, with XeaeRannLa. Hence Xex

is in Bt whenever eaeSf and, since 9 is an automorphism, X maps B\0 onto itself for all iel.
On Bu define A, by
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Then Xx is in A(2?,) and, in particular, A, is in 1(2?,). Define x on X(S) by X% = (A,),6/. Then
it can easily be seen that x is a homomorphism into Y 1(5,). The mapping is one-to-one by

definition of A,; it is onto since, if A, is in X(2?,), for all / in /, we can define k on 5 by kx —
(ktea)x, where xx'1 :g ea, exeBi. Then A is in I(S) and A|BiA0 = A, for all iel.

Since 2?, is a Brandt semigroup, 2(2?,) is isomorphic to G,wri/%d,), where (7, = RainLai

[4, Theorem 1 ]. Consequently

^ X
i

X
COROLLARY 5.2. Le/ S be a O-bisimple semigroup with Es the orthogonal sum of chains

Cx each with identity ea (aeA). Then I (S) ^GwrSf(A), where G = Rar\La,for any cue A.
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