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Abstract

The widespread species Parmotrema crinitum (Ach.) M. Choisy and Parmotrema perlatum (Huds.) M. Choisy are mainly distinguished by
their reproductive strategies. While P. crinitum propagates by isidia, P. perlatum produces soredia. In this study, we aim to evaluate the
phylogenetic relationship between both species and to critically examine their species boundaries. To this purpose, 46 samples belonging
to P. crinitum and P. perlatum were used in our analysis, including 22 for which we studied the morphology and chemistry, before extracting
their DNA. We used 35 sequences of the internal transcribed spacer region of nuclear ribosomal DNA (ITS) of Parmotrema perlatum from
Europe and Africa (20 of which were newly generated), and 11 of Parmotrema crinitum from Europe, North America and North Africa (two
newly generated). Additionally, 28 sequences of several species from Parmotrema were included in the ITS dataset. The ITS data matrix was
analyzed using different approaches, such as traditional phylogeny (maximum likelihood and Bayesian analyses), genetic distances, auto-
matic barcode gap discovery (ABGD) and the coalescent-based method poisson tree processes (PTP), in order to test congruence among
results. Our results indicate that all samples referred to P. crinitum and P. perlatum nested in a well-supported monophyletic clade, but
phylogenetic relationships among them remain unresolved. Delimitations inferred from PTP, ABGD and genetic distance analyses were
comparable and suggested that P. crinitum and P. perlatum belong to the same lineage. Interestingly, two samples of P. perlatum separate
in a different monophyletic clade, which is supported as a different lineage by all the analyses.
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Introduction

Lichenized fungi form mutualistic relationships with photo-
autotrophic organisms (photobionts), mainly green algae
(Trebouxiophyceae and Ulvophyceae) and/or cyanobacteria. The
lichen symbiosis has been highly successful within fungi, espe-
cially Ascomycota, with c. 19 400 currently accepted species
(Lücking et al. 2017) and an estimated diversity of more than
28 000 species (Lücking et al. 2009; Leavitt et al. 2013).
Additionally, lichens are commonly used to assess environmental
disturbance, serving as bioindicators of air pollution, forest age
and health, and climate change (Nimis et al. 2002; Crespo et al.
2004; Giordani & Brunialti 2015; Sujetovienė 2015; Sancho
et al. 2019; Abas 2021).

Recognizing phylogenetic relationships and delimiting species
in lichens are crucial for ecological and conservation studies, asses-
sing biotic diversity, and identifying factors driving diversification.

They are also important for future investigations because phylogen-
etic differences may not be fully reflected in the phenotype.

Traditionally, to infer taxonomic boundaries in lichen-forming
fungi, thin-layer chromatography (Culberson 1972), morphology
and the expression of signature secondary metabolites, and isola-
tion and identification of lichen substances have been used
(Huneck & Yoshimura 1996; Huneck 1999). However, these char-
acters are highly variable and their homology has proved difficult
to assess. For example, it has been shown that apothecial form
and spore wall thickness have changed in parallel within
Pertusaria. The Pertusaria-type ascus is plesiomorphic within
the Pertusariaceae and thus cannot be used to circumscribe
Pertusaria (Lumbsch & Schmitt 2001). However, with the use
of molecular tools, it has been shown that phenotype-based tax-
onomy may not reflect natural groups, including cases in which
morphologically distinct forms formerly recognized as distinct
species are shown to represent a polymorphic species (see e.g.
Boluda et al. 2019), and other cases where several morphologically
cryptic species are masked within a single nominal taxon
(Del-Prado et al. 2016).

Within lichen-forming Ascomycetes, Parmeliaceae (Lecanorales)
constitutes one of the largest and best-studied families (Crespo
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et al. 2007, 2011; Thell et al. 2012; Divakar et al. 2015). This family
is usually characterized morphologically by a certain type of ascoma
ontogeny and the presence of an ascomatal structure known as a
cupulate exciple (Henssen & Jahns 1974). Parmeliaceae also com-
prises species which are frequently used in biomonitoring studies
of atmospheric pollution, such as Parmelia sulcata, Flavoparmelia
caperata, Parmotrema perlatum and Punctelia subrudecta
(Hawksworth & Rose 1970; Crespo et al. 2004; De La Cruz et al.
2018). The application of phylogenetic analysis based on molecular
(DNA) characters to delimit species allows us to determine a poster-
iori which types of phenotypic characters are good predictors of
phylogenetic species and demonstrate how these characters evolve
in this family and in lichenized fungi in general. These molecular
data have led to the recognition of morphologically cryptic species,
such as Parmelia serrana (Molina et al. 2004), P. barrenoae
(Divakar et al. 2005a), P. encryptata (Molina et al. 2011a) and
Melanelixia californica (Divakar et al. 2010), and conversely also
to the union of species traditionally regarded as morphologically
distinct (see e.g. Boluda et al. 2019). Recently, coalescent-based spe-
cies delimitation approaches have shown to be well suited to critic-
ally evaluate species boundaries in Parmeliaceae, as well as lichens
in general (Leavitt et al. 2015). Furthermore, these methods can
accurately display relationships when incomplete lineage sorting
and gene tree heterogeneity hide phylogenetic relationships
among species (Knowles & Carstens 2007; Camargo et al. 2012).
Commonly used methods to critically evaluate species boundaries
include the poisson tree processes (PTP) model (Zhang et al.
2013), the automatic barcode gap discovery (ABGD) (Puillandre
et al. 2012), the general mixed Yule coalescent model (GMYC)
(Pons et al. 2006; Monaghan et al. 2009), and SpedeSTEM (Ence
& Carstens 2011).

Parmotrema (Massalongo 1860) is one of the largest genera in
the parmelioid group of the family Parmeliaceae. It includes c. 300
described species with an apparent centre of speciation in the
Pacific Islands, tropical and subtropical regions of South
America (Spielmann & Marcelli 2020). The species of the genus
are characterized by a pored epicortex, large thalli with broad
lobes, a broad, naked marginal zone on the lower surface, and
large, thick-walled, ellipsoid ascospores, sublageniform or filiform
conidia (Elix 1993), and (commonly) marginal cilia (Hale 1974).
Reproductive strategies vary among Parmotrema taxa. Sexual repro-
duction is restricted to characteristic fungal fruiting bodies (ascomata)
producing ascospores. Ascospores are dispersed independently of the
photosynthesizing partner (photobiont) and require reacquisition of
the appropriate photobiont partner to re-establish the lichenized
condition. Species within Parmotrema also commonly propagate
asexually by means of vegetative diaspores, either isidia or soredia.
These specialized vegetative reproductive propagules contain both
fungal and algal symbionts, eliminating the need for independent
acquisition of the appropriate photobiont.

In a molecular phylogeny of parmotremoid lichens (Blanco
et al. 2005), a single sample of both Parmotrema perlatum
(Huds.) M. Choisy and Parmotrema crinitum (Ach.) M. Choisy,
originally from Portugal, were included and these formed a well-
supported monophyletic group, indicating that these specimens
could be conspecific. Therefore, a critical evaluation of species
boundaries is necessary.

Parmotrema crinitum is characterized by the presence of cor-
alloid branched, apically ciliate isidia or often eciliate isidia
(Divakar & Upreti 2005), and the stictic acid complex in the
medulla. According to Elix (1994), P. crinitum is a cosmopolitan
species that is widespread in temperate, tropical regions and even

in high humidity, sub-boreal forests (Elix 1994; Kurokawa & Lai
2001). Many European countries have reported the presence of
P. crinitum (Jablońska et al. 2009) as have some Asian countries
such as Japan (Yoshimura 1974), China (Wei 1991) and Taiwan
(Wang-Yang & Lai 1976).

Parmotrema perlatum is a greenish grey foliose lichen, saxico-
lous or corticolous, loosely adnate, with rounded lobes. It can be
recognized by its broad lobes, irregularly branched (7.0 cm), lat-
erally overlapping, with frequent black cilia (0.20–)0.50–1.00 ×
0.02(–0.10) mm, evenly distributed but less common in the lobe
apices. Its soralia are marginal and linear, sometimes widely dis-
tributed or subcontinuous, concolorous with the thallus, and the
medulla is white. The thallus contains atranorin, stictic acid,
hypostictic acid, menegazziaic acid and norstictic acid
(Spielmann & Marcelli 2009). Parmotrema perlatum is a wide-
spread species in temperate regions of the Northern and
Southern Hemispheres: Asia (Hale 1965; Kurokawa 1991;
Kurokawa & Lai 2001), Europe (Hale 1965), Africa (Hale 1965;
Swinscow & Krog 1988), North America (Hale 1965; Brodo
et al. 2001; Nash & Elix 2002), Central America (Hale 1965),
South America (Hale 1965), Australia (Kantvilas 2019) and
New Zealand (Blanchon 2013).

Morphologically, P. crinitum and P. perlatum can easily be
separated based on the characteristics associated with their differ-
ent dispersal strategies. Parmotrema crinitum has apically ciliate
isidia or often eciliate isidia, and P. perlatum has marginal soralia.
Parmotrema perlatum is one of the most common and widely uti-
lized lichens in the Ayurvedic system of medicine and has been
overexploited for uses in traditional medicine in India (Kumar
& Upreti 2001). In India, this species is currently considered
threatened (Divakar & Upreti 2005).

The aim of this study was to evaluate the phylogenetic
relationships between P. crinitum and P. perlatum, and elucidate
the possible monophyly between both species. Additionally,
PTP, ABGD and genetic distance analyses were included to crit-
ically assess species boundaries. The ITS data matrix consisted
of a total of 74 sequences of Parmotrema species, including
11 of P. crinitum and 35 of P. perlatum, plus two outgroup
sequences of Crespoa carneopruinata. Morphological and chem-
ical features of all samples were critically examined.

Material and Methods

Taxon sampling

Sequence data of the ITS locus were analyzed from 76 specimens,
of which 11 sequences were of Parmotrema crinitum (two indivi-
duals were newly sequenced and nine sequences downloaded
from GenBank) and 35 of Parmotrema perlatum (20 individuals
were sequenced in this study and 15 sequences downloaded
from GenBank). The new specimens were collected from distant
geographical regions throughout the species distributions
(Table 1). Additionally, 30 ITS sequences from 30 specimens,
belonging to 14 different species (6 were newly sequenced and
24 sequences downloaded from GenBank), are included in this
study to test the monophyly of both species within the genus.
This total included Crespoa carneopruinata which was selected
as outgroup since it has previously been shown to be the sister
group of Parmotrema (Divakar et al. 2015). Details of the material
studied, including GenBank Accession numbers, are shown in
Table 1. Species recognition was based mainly on morphological
and chemical characters.
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Table 1. Parmotrema species used in this study with GenBank Accession numbers of the ITS sequences and voucher information for the specimens. Crespoa carneopruinata was included in the phylogenetic analyses as
outgroup. * = newly generated sequences from specimens for which morphological and chemical characters are given in Table S1 (available online).

Species Locality Voucher specimen Collector GenBank Accession number

Crespoa carneopruinata 1
C. carneopruinata 2
Parmotrema clavuliferum
P. crinitum 1
P. crinitum 2
P. crinitum 3
P. crinitum 4
P. crinitum 5
P. crinitum 6*
P. crinitum 7
P. crinitum 8*
P. crinitum 9
P. crinitum 10
P. crinitum 11
P. dilatatum 1*
P. dilatatum 2*
P. flavotinctum*
P. grayanum
P. haitiense
P. hypoleucinum 1
P. hypoleucinum 2
P. hypoleucinum 3
P. hypoleucinum 4
P. mellissii*
P. paulense*
P. perforatum
P. perlatum 1
P. perlatum 2*
P. perlatum 3*
P. perlatum 4*
P. perlatum 5*
P. perlatum 6
P. perlatum 7*
P. perlatum 8
P. perlatum 9
P. perlatum 10*
P. perlatum 11*
P. perlatum 12
P. perlatum 13
P. perlatum 14
P. perlatum 15
P. perlatum 16*
P. perlatum 17*
P. perlatum 18*
P. perlatum 19
P. perlatum 20
P. perlatum 21*
P. perlatum 22*
P. perlatum 23
P. perlatum 24
P. perlatum 25*
P. perlatum 26*

Costa Rica
Costa Rica
Gomera, Islas Canarias, Spain
North Carolina, USA
La Palma, Islas Canarias, Spain
North Carolina, USA
North Carolina, USA
La Palma, Islas Canarias, Spain
Madeira, Portugal
Lisboa, Igreja Nova, Portugal
Madeira, Portugal
Tenerife, Islas Canarias, Spain
Tenerife, Islas Canarias, Spain
Tenerife, Islas Canarias, Spain
Gomera, Islas Canarias, Spain
China
Pichincha, Ecuador
La Palma, Islas Canarias, Spain
Australia
Spain
Morocco
Morocco
Morocco
Pichincha, Ecuador
Medellin, Antioqia, Colombia
USA
Medium Atlas, Fes, Morocco
Akchour, Chaouen, Morocco
Akchour, Chaouen, Morocco
Akchour, Chaouen, Morocco
Akchour, Chaouen, Morocco
Chaouen, Morocco
Gomera, Islas Canarias, Spain
Eregli Vakif, Zonguldak, Turkey
Tenerife, Islas Canarias, Spain
Chaouen, Morocco
Chaouen, Morocco
Lisboa, Igreja Nova, Portugal
La Palma, Islas Canarias, Spain
La Palma, Islas Canarias, Spain
Chaouen, Morocco
Gomera, Islas Canarias, Spain
Gomera, Islas Canarias, Spain
Gomera, Islas Canarias, Spain
La Palma, Islas Canarias, Spain
Tenerife, Islas Canarias, Spain
Gomera, Islas Canarias, Spain
Gomera, Islas Canarias, Spain
Tenerife, Islas Canarias, Spain
Tenerife, Islas Canarias, Spain
Gomera, Islas Canarias, Spain
Gomera, Islas Canarias, Spain

15171a
15171a
MAF-Lich 20689
44262
MAF-Lich 16189
43711
43863
MAF-Lich 16188
MAF-Lich 20704
MAF-Lich 6061
MAF-Lich 20703
MAF-Lich 16174
MAF-Lich 16170
MAF-Lich 16169
MAF-Lich 20698
MAF-Lich 10164
54174
MAF-Lich 16190
MAF-Lich 7657
MAF-Lich 7637
MAF-Lich 16142
MAF-Lich 16141
MAF-Lich 16147
54312
MAF-Lich 20060
7983
MAF-Lich 16145
MAF-Lich 20712
MAF-Lich 20707
MAF-Lich 20711
MAF-Lich 20708
MAF-Lich 16146
MAF-Lich 20700
MAF-Lich 16192
MAF-Lich 16173
MAF-Lich 20709
MAF-Lich 20710
MAF-Lich 6965
MAF-Lich 16179
MAF-Lich 16187
MAF-Lich 16203
MAF-Lich 20699
MAF-Lich 20693
MAF-Lich 20691
MAF-Lich 16186
MAF-Lich 16162
MAF-Lich 20702
MAF-Lich 20696
MAF-Lich 16172
MAF-Lich 16166
MAF-Lich 20690
MAF-Lich 20695

R. Lücking
R. Lücking
A. Crespo, A. Santos
J. C. Lendemer
A. Crespo, A. Santos
J. C. Lendemer
J. C. Lendemer
A. Crespo, A. Santos
P. K. Divakar, M. Talavera
P. K. Divakar, M. Talavera
A. Crespo, A. Santos
A. Crespo, A. Santos
A. Crespo, A. Santos
A. Crespo, R. Del-Prado, A. Santos
A. R. Burgaz, M. A. Carrasco
D. L. Hawksworth
P. v. d. Boom
A. Crespo, R. Del-Prado, P. K. Divakar
S. H. Louwhoff
A. Crespo, P. K. Divakar
A. Crespo, P. K. Divakar, H. Tahiri,
A. Crespo, P. K. Divakar, H. Tahiri
A. Crespo, P. K. Divakar, H. Tahiri
P. v. d. Boom
P. K. Divakar
M. Cole
A. Crespo, P. K. Divakar, H. Tahiri
A. Stelate, H. Tahiri
A. Stelate, H. Tahiri
A. Stelate, H. Tahiri
A. Stelate, H. Tahiri
A. Crespo, P. K. Divakar, H. Tahiri
A. Crespo, A. Santos
P. K. Divakar, R. Del-Prado
A. Crespo, R. Del-Prado
A. Stelate, H. Tahiri
A. Stelate, H. Tahiri
P. K. Divakar, M. Talavera
A. Crespo, R. Del-Prado
A. Crespo, R. Del-Prado
A. Crespo, R. Del-Prado
A. Crespo, A. Santos
A. Crespo, A. Santos
A. Crespo, A. Santos
A. Crespo, R. Del-Prado
A. Crespo, R. Del-Prado
A. Crespo, A. Santos
A. Crespo, A. Santos
A. Crespo, R. Del-Prado
A. Crespo, R. Del-Prado
A. Crespo, A. Santos
A. Crespo, A. Santos

KP888204
EF042904
AY586577
KP943761
HM017032
KP943759
KP943760
HM017033
ON312512
AY586565
ON312511
HM017030
HM017028
HM017029
ON312500
ON312501
ON312516
HM017026
AY581055
AY586567
HM017035
HM017037
HM017036
ON312515
ON312513
AY586568
HM017044
ON312519
ON312518
ON312521
ON312523
HM017046
ON312505
HM017041
HM017042
ON312520
ON312522
AY586566
HM017040
HM017043
HM017044
ON312506
ON312510
ON312508
HM017048
HM017052
ON312503
ON312496
HM017049
HM017051
ON312507
ON312497
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Chemistry and morphology

Thallus morphology of all new specimens of Parmotrema
crinitum and P. perlatum included in the molecular analyses
was studied using a Nikon SMZ-1000 stereomicroscope to iden-
tify morphological characteristics of the thallus: lobe shape, isi-
dia, soralia, cilia and rhizines. This is because P. crinitum and
P. perlatum are traditionally differentiated based on these fea-
tures. Photographs were taken with a Nikon 105 mm f/2.8D
AF Micro-Nikkor lens coupled to a Nikon D90 camera.

Spot tests were carried out on the medulla with usual chem-
ical reagents such as aqueous potassium hydroxide (K),
Steiner’s stable paraphenylenediamine (PD) and aqueous cal-
cium hypochlorite (C).

Thin-layer chromatography (TLC) was carried out following
Orange et al. (2010). We used TLC solvent system C (200 ml
toluene/30 ml acetic acid) (Elix & Ernst-Russell 1993), with
concentrated acetone extracts at 50 °C spotted onto silica gel
60 F254 aluminum sheets (Merck, Darmstadt). The aluminum
sheets were dried for 10 min in an acetic acid atmosphere to
maximize resolution.

DNA extraction, PCR and sequencing

Total DNA was extracted from a single, clean (under a dissect-
ing microscope) lichen lobe using the DNeasy Plant Mini Kit
(Qiagen, Barcelona) with a slight modification to the manufac-
turer’s instruction (Crespo et al. 2001). Genomic DNA (5–25 ng,
quantified using a quantitative PCR machine) was used for PCR
amplifications of the ITS region. Standard PCR amplifications
were conducted in 25 μl reaction volumes containing 12.5 μl
of Master Mix (50 units/ml of Taq DNA polymerase supplied
in a proprietary reaction buffer (pH 8.5), 400 μM dATP, 400
μM dGTP, 400 μM dCTP, 400 μM dTTP, 3 mM MgCl2), and
1.5 μl of each primer at 10 μM, 4.5 μl of water (H2O) and 5 μl
of DNA template. Fungal nuclear internal transcribed spacer
(ITS) rDNA was amplified using the primer pair ITS1F (5ʹ
[CTT GGT CAT TTA GAG GAA GTA A] 3ʹ) (Gardes &
Bruns 1993)/ LR1 (5ʹ [GGT TGG TTT CTT TTC CT] 3ʹ)
(Vilgalys & Hester 1990). We also tried primer pair ITS1-LM
(5ʹ [GAA CCT GCG GAA GGA TCA TT] 3ʹ) (Myllys et al.
2001) and ITS2-KL (5ʹ [ATG CTT AAG TTC AGC GGG
TA] 3ʹ) (Lohtander et al. 1998), but we had better results
with primer pair ITS1F/LR1. For any failed samples, we tried
a nested PCR using the primer pair ITS1F/LR1 for the first
PCR, and 5 μl of this PCR product as DNA template for the
second PCR using ITS1-LM/ITS2-KL. With this nested PCR,
we aimed to amplify a smaller region than with the previous
primers. However, it did not yield any additional products.

Amplification was run in an automatic thermocycler
(Techne Progene, Jepson Bolton & Co., Watford, Herts, UK)
using the following parameters: initial denaturation at 94 °C
for 5 min followed by 35 cycles at 94 °C for 1 min, 54 °C
(ITS1F/LR1) for 1 min, and 72 °C for 1 min 30 s, with a final
extension at 72 °C for 10 min. Amplification products were
visualized on 1% agarose gel stained with SYBR green DNA
(Life Technologies Corporation, Grand Island, New York,
USA), and subsequently purified using ExoSAP-IT (GE
Healthcare, Chalfont St Giles, UK) according to the manufac-
turer’s instructions. Sequencing was performed using BigDye
Terminator reaction kit (ABI PRISM, Applied Biosystems,
Waltham, Massachusetts, USA). Cycle sequencing reactionsTa
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were performed with the same sets of primers used in the ampli-
fication step. Sequencing reactions were electrophoresed on a
3730 DNA Analyzer (Applied Biosystems) at the Unidad de
Genómica (Parque Científico de Madrid).

Sequence alignments and phylogenetic analyses

Sequence fragments generated for this study were assembled and
edited using the program SeqMan v. 7 (Lasergene R, DNASTAR,
Madison, Wisconsin, USA). Sequence identity was confirmed
using the megaBLAST search function in GenBank. For the align-
ment we prepared a matrix of 480 base pairs (bp). Then we used
the program MAFFT v. 7 (Katoh & Standley 2013) with the para-
meters set to default. If sequences had different lengths, only the
part shared by all the sequences was used, and after manually
removing ambiguously aligned nucleotide positions, we kept
451 unambiguously aligned base pairs for the final matrix that
we used as input for the phylogenetic reconstruction. The align-
ment was analyzed using maximum likelihood (ML) and a
Bayesian Markov chain Monte Carlo (B/MCMC) approach. The
ML analysis was performed using an online version of the
program RAxML-HPC BlackBox v. 8.2.8 (Stamatakis 2006;
Stamatakis et al. 2008), implemented on the Cipres science gate-
way (https://www.phylo.org/portal2/home.action; Miller et al.
2010). We used a GTRGAMMA model, which includes a param-
eter (Γ) for rate heterogeneity among sites but chose not to
include a parameter to estimate the proportion of invariable
sites (Stamatakis 2006; Stamatakis et al. 2008). Support values
were assessed using the ‘rapid bootstrapping’ option with 1000
replicates.

For the Bayesian reconstruction, we used MrBayes v. 3.2.1
(Ronquist & Huelsenbeck 2003). The analysis was performed
assuming a discrete gamma distribution with six rate categories
(GTR + G). The nucleotide-substitution model parameters were
selected using the Akaike Information Criterion as implemented
in jModelTest (Posada 2008), molecular clock not assumed. A
run with 10 million generations, starting with a random tree
and employing 12 simultaneous chains, was executed. Trees
were saved to a file every 200th generation. The first 2 million
generations (i.e. 20 000 trees) were deleted as the ‘burn-in’ of
the chains. We plotted the log-likelihood scores of sample points
against generations using Tracer v. 1.5 (Rambaut & Drummond
2007) and determined that stationarity had been achieved when
the log-likelihood values of the sample points reached an equilib-
rium value (Huelsenbeck & Ronquist 2001). The trees obtained
before stationarity were discarded. Posterior probabilities (PPs)
were obtained from the 50% majority-rule consensus of sampled
trees after excluding the initial 20% as burn-in. Only clades that
received bootstrap support ≥ 70% in the ML analyses and PP ≥
0.95 were considered strongly supported. The phylogenetic tree
was drawn using FigTree v. 1.2.3 (Rambaut 2009) and modified
with CorelDRAW v. 8.

Candidate species identification

In order to establish candidate species limits in the phylogenetic
tree, three computational approaches were used:

1) Poisson tree processes (PTP): this method does not require an
ultra-metric tree, as the transition point between intra- and
inter-specific branching rates is identified directly using the
number of nucleotide substitutions (Zhang et al. 2013). PTP

incorporates the number of substitutions in the model of spe-
ciation and assumes that the probability of a substitution giv-
ing rise to a speciation event follows a Poisson distribution.
The branch lengths of the input tree are supposed to be gen-
erated by two independent classes of Poisson events, one cor-
responding to speciation and the other to coalescence. The ML
phylogeny of the ITS dataset obtained with RAxML was used
as the input trees to run PTP species delimitation analysis on
the PTP web server (http://species.h-its.org/ptp/). We ran the
PTP analysis for 100 000 MCMC generations, with a thinning
value of 100 and a burn-in of 25%. Outgroup taxa were
removed for species delimitation.

2) Automatic barcode gap discovery (ABGD): this is an auto-
matic procedure that sorts the sequences into hypothetical
species based on the barcode gap. This method automatically
finds the distance where the barcode gap is located (Puillandre
et al. 2012). The ABGD method was carried out on the ITS
dataset using the web interface at http://wwwabi.snv.jussieu.
fr/public/abgd/abgdweb.html. Default parameters were chosen
using Kimura 2-parameter (K2P) distances that correct for
transition rate bias (relative to transversions) in the substitu-
tion process (Kimura 1980). The default for the minimum
relative gap width was set to different values between 0.1
and 0.15.

3) Genetic distances: pairwise ML distances (given as the number
of nucleotide substitutions per site) among the ITS rDNA
sequences of Parmotrema crinitum and P. perlatum were
calculated. Genetic distances were calculated with TREE-
PUZZLE v. 5.2 (Schmidt et al. 2002) using the GTR model
of nucleotide substitution, assuming a discrete gamma distri-
bution with six rate categories. The program generates an
output file which consists of a triangular matrix with all pair-
wise distances between all the samples included. This matrix
was visualized with Microsoft Excel 2010 and genetic distances
between different specimens of P. crinitum and P. perlatum
were manually identified. Candidate species were proposed
based on the threshold of 0.016 substitutions per site (s/s)
which separates intra- and interspecific distances in parme-
lioid lichens (Del-Prado et al. 2010). Distance values in the
matrix ≤ 0.016 s/s have been considered as the values between
samples of a single species. By using the Excel filter, we sepa-
rated values ≤ 0.016, providing for every specimen included in
the analysis a group of specimens that share the values charac-
terizing its species range.

Results

Morphological and chemical analyses

Morphological and chemical characters of the specimens (P. cri-
nitum and P. perlatum) newly generated and included in the
phylogenetic analysis are presented in Supplementary Material
Table S1, available online. Parmotrema crinitum and P. perlatum
could not be distinguished based on the colour of the thalli, pres-
ence of cilia (Fig. 1A & B) and colour of the lower surface (Fig. 1E
& F). However, the reproductive structures allowed unequivocal
separation into the two species; Parmotrema perlatum has soralia
(Fig. 1C) and P. crinitum has isidia (Fig. 1D).

The TLC test showed that both species contained the stictic
acid complex (stictic acid, menegazzic acid and hypostictic acid)
and atranorin. The spot tests of P. crinitum were similar to
those of P. perlatum (Fig. 2, Supplementary Material Table S1).

The Lichenologist 187

https://doi.org/10.1017/S0024282922000147 Published online by Cambridge University Press

https://www.phylo.org/portal2/ 20home.action
https://www.phylo.org/portal2/ 20home.action
http://species.h-its.org/ptp/
http://species.h-its.org/ptp/
http://wwwabi.snv.jussieu.fr/public/abgd/abgdweb.html
http://wwwabi.snv.jussieu.fr/public/abgd/abgdweb.html
http://wwwabi.snv.jussieu.fr/public/abgd/abgdweb.html
https://doi.org/10.1017/S0024282922000147


However, the samples Parmotrema perlatum 34 and P. perlatum
35 lacked menegazzic acid (nos 10 and 12 in Fig. 2). The spot
test was congruent with other samples of P. perlatum, and the
morphology of both samples showed the same characteristics of
P. perlatum, although the cilia were not as abundant as is usual
in this species.

Phylogenetic analysis

The ITS data matrix consisted of a total of 74 sequences of
Parmotrema species, including 46 of P. crinitum and P. perlatum
(11 sequences of P. crinitum and 35 sequences of P. perlatum),
with two sequences of Crespoa carneopruinata were included as

outgroup (Table 1). The final matrix used as input for the phylo-
genetic reconstruction contained 451 unambiguously aligned base
pairs (bp). The tree reconstruction (Fig. 3) comprised the follow-
ing species of Parmotrema, included to test the monophyly of
P. crinitum and P. perlatum: Parmotrema clavuliferum, P. dilata-
tum, P. flavotinctum, P. grayanum, P. haitiense, P. hypoleucinum,
P. mellissii, P. paulense, P. perforatum, P. pseudoreticulatum,
P. reticulatum, P. robustum, P. subtinctorium and P. tinctorum.

The phylogenetic trees estimated from ML and Bayesian
methods did not show any well-supported conflict; ML topologies
are presented with bootstrap and B/MCMC analysis with poster-
ior probability (ML bootstrap ≥ 70%; PP ≥ 0.95 in B/MCMC ana-
lysis) (Fig. 3). The LnL value was −1938.068210 for ML, and

Fig. 1. Main morphological characters of P. perlatum (A, C, E) and P. crinitum. (B, D, F), as indicated with arrows. A & B, black, simple cilia. C, marginal soralia
concolorous with the thallus. D, isidia with apical cilia. E & F, black lower surface with brown naked zone peripherally. In colour online.
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−2184.428 for the Bayesian analysis. The phylogenetic analysis
showed that all samples of Parmotrema included in this analysis
formed a monophyletic group. Within this genus the samples of
Parmotrema crinitum and P. perlatum were grouped in one
monophyletic group (clade A), with the exception of two samples
of P. perlatum that were grouped in a separate clade B. While
clade A comprised specimens of P. crinitum and P. perlatum col-
lected from various geographical regions, clade B included only
two specimens of P. perlatum collected from Tenerife (Canary
Islands) and Lisbon (Portugal).

Although four well-supported monophyletic clusters can be
recognized in clade A, the phylogenetic relationships among
them remained unresolved (Fig. 3).

Cluster A1 (Fig. 3) contained 15 specimens of Parmotrema
perlatum, most of them collected from Morocco, except four
from the Canary Islands and two from Portugal and Turkey.

Cluster A2 included eight specimens of Parmotrema crinitum
from different geographical regions (Table 1). Cluster A3 grouped
18 samples of Parmotrema perlatum from the Canary Islands
(Tenerife, Palma, Gomera), and cluster A4 included three samples
of P. crinitum from the Canary Islands.

Identifying candidate species

We used the same RaxML tree obtained from the phylogenetic
analysis to illustrate the delimitation of putative species recog-
nized by the different approaches conducted with the ITS dataset.
ABGD, PTP and genetic distance analyses applied to the ITS data-
set detected two candidate species that corresponded to the well-
supported clades A (including P. crinitum + P. perlatum) and B
(including P. perlatum) obtained in the phylogenetic analysis
(Fig. 3).

Fig. 2. Thin-layer chromatography profile of Parmotrema species (included in the DNA analysis) in solvent system C. P is the control, Pleurosticta acetabulum. Lanes
1 & 7, P. dilatatum. Lane 2, P. flavotinctum. Lane 3, P. mellissii. Lane 4, P. paulense. Lanes 5, 6, 8, 11 & 19, P. crinitum. Lane 9, empty. Lanes 10 & 12, Parmotrema
perlatum. Lanes 13, 14, 15, 16, 17, 18 & 20, P. perlatum; these have the same TLC result as P. crinitum but were distinguished from each other based on the morph-
ology. a = norstictic acid; b = atranorin; c = protocetraric acid; d = unknown; e = hypostictic acid; f = stictic acid; g = menegazzic acid. In colour online.
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Fig. 3. Phylogenetic relationships between Parmotrema crinitum and P. perlatum. The green (thickened) line indicates the clade supported by maximum likelihood
(ML) and Bayesian analyses; * = clades supported only by ML. ** = clades supported only by Bayesian analysis. Alphanumeric labels indicate clades and clusters.
Species delimitation scenarios obtained from PTP, ABGD and genetic distances are indicated in columns to the right. In colour online.
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Discussion

Previous molecular phylogenetic studies have proposed the
monophyly of Parmotrema crinitum and Parmotrema perlatum
(Blanco et al. 2006; Crespo et al. 2010). The primary goal of
the present investigation was to evaluate the phylogenetic rela-
tionship between the two species using ML and Bayesian analyses.
Additionally, we used different approaches to assess the species
boundary, such as genetic distances based on the threshold of
0.015–0.017 s/s established by Del-Prado et al. (2010) to measure
intra- and interspecific genetic distances in parmelioid lichens,
and separate ranges of intra- and interspecific divergence. This
threshold was established using both phylogenetically and mor-
phologically well-delimited species (for details see Del-Prado
et al. (2010)). We also used the poisson tree processes (PTP)
model (Zhang et al. 2013) and the automatic barcode gap discov-
ery (ABGD; Puillandre et al. 2012). Furthermore, we combined
ecological, biogeographical, morphological and chemical data.

Most of the samples belonging to P. crinitum and P. perlatum
were recovered in a well-supported monophyletic clade (clade A,
Fig. 3), with the exception of two samples of P. perlatum, one
from Tenerife (Canary Islands) and one from Lisbon (Portugal),
that are separated in the monophyletic clade B, supported by ML
and B/MCMC analysis. Morphologically, P. perlatum in clade A
has more cilia compared to P. perlatum in clade B.

Thin-layer chromatography (TLC) revealed that the samples in
clade B (nos 10 and 12 in Fig. 2) differ chemically from the sam-
ples of Parmotrema perlatum grouped in clade A. Several studies
have shown that environmental factors, such as light, temperature,
pH and culture media, can influence the secondary metabolism
in lichens (BeGora & Fahselt 2001). However, we have samples
from the same localities and same conditions as the samples in
clade A. Furthermore, ABGD, PTP and genetic distance analyses
supported clade B as a new sister group to clade A (Fig. 3), sug-
gesting polyphyly, a common phenomenon in Parmeliaceae in
general (Lumbsch & Leavitt 2011; Leavitt et al. 2016) and
Parmotrema in particular (Divakar et al. 2005b; Del-Prado et al.
2016, 2019; Widhelm et al. 2016).

Clade A was split into 4 groups; however, the phylogenetic
relationships among them remained unresolved (Fig. 3).
Previous studies have shown that phylogenetic analyses alone
are insufficient to explain phylogenetic relationships within
Parmeliaceae. For example, based only on maximum parsimony
and Bayesian analyses the sorediate P. sulcata was shown to
belong to the same clade as the isidiate P. squarrosa (Molina
et al. 2004), leaving the authors unable to reach any conclusion
regarding species boundaries. Similarly, phylogenetic analyses
were insufficient to resolve genetic variability among Parmelia
saxatilis specimens; whereas samples from distant geographical
regions formed a monophyletic group, samples from neighbour-
ing localities were separated (Crespo et al. 2002; Molina et al.
2011b, 2017). A study on Usnea perpusilla demonstrated that it
was necessary to use a combined approach with molecular and
morphological data to assess species boundaries in closely related
and morphologically variable species (Wirtz et al. 2008). For this
reason, coalescent-based species delimitation analyses have been
applied with the goal of explaining relationships among clades
and delimiting species boundaries (Parnmen et al. 2012; Leavitt
et al. 2013).

PTP, ABGD and genetic distance analyses supported clades
A and B as putative distinct species. The values obtained were
within the interspecific ranges (genetic distances as defined in

Del-Prado et al. (2010)), which would support the two samples
of P. perlatum in clade B as a separate species, different from
clade A. Focusing on clade A, our species delimitation approaches
(PTP, ABGD and genetic distance) supported P. crinitum and P.
perlatum as one species. However, based only on one molecular
marker (ITS) and the various phylogenetic analyses and species
delimitation approaches used, can we consider Parmotrema perla-
tum conspecific with P. crinitum?

Similar cases have been reported in the Parmotrema perfora-
tum species complex (Widhelm et al. 2016), and authors have
suggested that the phylogenetic relationships between sexual
and asexual populations of this species group could be more com-
plex than previously assumed. They also suggest that traditional
tools based on reproductive mode and secondary metabolites
(Culberson & Culberson 1973) are no longer the key to identify
species such as P. perforatum (Widhelm et al. 2016).

A previous study on Umbilicaria (Ott et al. 2004) focused on
Umbilicaria kappenii and U. antarctica, which are distinguished
only by their reproductive strategies. Umbilicaria antarctica pro-
pagates by thalloconidia and U. kappenii exhibits a variety of asex-
ual propagules: soredia, adventive lobes and sorediate thallyles. To
infer phylogenetic relationships between both species, the authors
used molecular data from three loci. Results indicated that all
samples morphologically referred to U. antarctica and U. kappenii
form a monophyletic group and they proposed placing U. kappe-
nii into synonymy with U. antarctica (Ott et al. 2004). In
Parmelia, Molina et al. (2011b) rejected the previous hypothesis
that P. sulcata and P. squarrosa form a monophyletic group
(Molina et al. 2004) and based on phylogenetic analyses and
species delimitation approaches confirmed that P. sulcata is not
conspecific with P. squarrosa. In addition, P. squarrosa is a repro-
ductively isolated lineage and genetic distances clearly separate
this from other Parmelia species (Del-Prado et al. 2010).
Within Usnea, studies have suggested that Usnea subfloridana
was a secondary species derived from U. florida (Clerc 1984,
1987, 1997; Purvis et al. 1992). Usnea florida and U. subfloridana
show many morphological similarities but they have different
reproductive strategies. Usnea florida always displays many
apothecia and produces no specialized asexual propagules.
Usnea subfloridana has soralia, isidiomorphs and occasionally
apothecia. Multilocus phylogenetic analyses based on sequences
of the ITS, IGS and LSU regions of the nuclear ribosomal DNA
and the gene coding for β-tubulin, Mcm7, RPB1 and RPB2
showed that specimens of the two morphospecies formed one
monophyletic intermixed group, and not two groups correspond-
ing to morphology (Articus et al. 2002; Mark et al. 2016). This
topology was further confirmed with a coalescent-based species
delimitation approach (Mark et al. 2016). Authors have suggested
that they could be conspecific but taxonomic conclusions must
await further study. Moreover, a recent study using RADseq
data suggests that closely related lichen species may need genome-
wide data to test their species boundaries (Grewe et al. 2018).

Traditionally it was thought that asexually reproducing species
in lichens, and in filamentous fungi in general, was an evolution-
ary dead end (Normark et al. 2003). However, recent molecular
studies have demonstrated that lineages with vegetative propaga-
tion can also present high genetic diversity (e.g. Parmelia sulcata
(Molina et al. 2011b), Parmotrema reticulatum (Del-Prado et al.
2016)). However, even in the absence of sexual reproduction,
lichens can exchange photobionts and this process could provide
opportunities for gene transfer (Piercey-Normore 2006; Nelsen &
Gargas 2008).
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While our study confirmed the monophyly of an intermixed
clade of Parmotrema crinitum and P. perlatum, the taxonomic
conclusion must await additional studies including more markers.
The phylogenetic tree lacked ML or B/MCMC support for other
widely accepted Parmotrema species, such as P. pseudoreticulatum
and P. reticulatum. A more comprehensive taxon sampling and
additional molecular markers will therefore be needed before
making a formal taxonomic decision on the status of clade B.
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