Bull. Austral. Math. Soc. Vol. 60 (1999) [487-493]

ON THE THREE-SPACE PROBLEM FOR THE DUNFORD-PETTIS PROPERTY

J.M.F. CASTILLO AND M.A. SIMOES

A Banach space X is called a twisted sum of the Banach spaces Y and Z if it has a subspace isomorphic to Y in such a way that the corresponding quotient is isomorphic to Z. In this paper we study twisted sums of Banach spaces with either have the Dunford-Pettis property, are c_0 -saturated or l_1 -saturated. Amongst other things, we show that every Banach space is a complemented subspace of a twisted sum of two Banach spaces with the Dunford-Pettis property.

1. INTRODUCTION

Let \mathcal{P} and \mathcal{Q} be two properties of Banach spaces stable by isomorphisms. Following [7], a Banach space X is said to have the \mathcal{P} -by- \mathcal{Q} property if it admits a subspace Y with property \mathcal{P} so that X/Y has property \mathcal{Q} . In such case, we shall also say that X is a twisted sum of Y and Z (in this order). If Y is complemented in X we say that it is a trivial twisted sum. A property \mathcal{P} is said to be a three-space property (3-space property in short) if \mathcal{P} -by- \mathcal{P} implies \mathcal{P} . The monograph [5] contains rather complete information about 3-space problems in Banach spaces.

In the present paper we are interested in the choices

 $\mathcal{P}, \mathcal{Q} \in \{\text{Dunford-Pettis}, c_0\text{-saturation}, l_1\text{-saturation}\}.$

Previously known results are that the Dunford-Pettis property is not a 3-space property, while c_0 -saturation, l_1 -saturation and the Schur property are well-known 3-space properties (see [5]). Let us briefly recall the meaning of those properties. The Dunford-Pettis property (DPP for short) means that given two weakly null sequences (x_n) and (f_n) in X and X^{*}, respectively, then $\lim_{n} f_n(x_n) = 0$. It is an important property of Banach spaces, notwithstanding the fact that very few examples of spaces with this property are known. The main examples are the C(K) and $L_1(\mu)$ -spaces; or, more generally, the \mathcal{L}_{∞}

Received 8th March, 1999

The research of the first author has been supported in part by DGICYT project PB97-0377. It is a pleasure to thank Félix Cabello Sánchez who suggested the possibility of obtaining Proposition 4; and David Yost who remarked that Proposition 1 should be as it is.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/99 \$A2.00+0.00.

and \mathcal{L}_1 spaces. Even more scarce are those spaces such that every closed subspace has DPP. They are called spaces with the hereditary Dunford-Pettis property (DPPh); $c_0(\Gamma)$ and $l_1(\Gamma)$ are perhaps the simplest examples. A Banach space X is said to be c_0 -saturated (respectively l_1 -saturated) if every closed subspace contains c_0 (respectively l_1). We shall study the implications between these notions in section 4. Now we simply recall that particular cases of DPPh-spaces are the Schur spaces: those in which weakly convergent sequences are norm convergent; that if X^* has the DPP then X has the DPP and that if X has the DPP then X^* is Schur if and only if X does not contain l_1 .

2. The twisted Dunford-Pettis property

In [6] it was proved that the Dunford-Pettis property is not a 3-space property, (this was an open problem for some time). The following result shows that the world has plenty of counterexamples.

THEOREM 1. Every Banach space is a complemented subspace of a twisted sum of two Banach spaces with the Dunford-Pettis property.

PROOF: Let X be a Banach space. It is possible to find a compact space K such that X is isomorphic to a subspace of C(K) and then an index set Γ such that C(K) is isomorphic to a quotient of $l_1(\Gamma)$. Let $j: X \to C(K)$ be the isomorphic embedding and $Q: l_1(\Gamma) \to C(K)$ the quotient map. Since $Q^{-1}(j(X))$ is a subspace of $l_1(\Gamma)$ it has the Schur property (hence, the hereditary Dunford-Pettis property). If $p \in Q^{-1}(j(X))$ there exists a unique $x \in X$ such that Qp = jx. Thus, the operator $T: Q^{-1}(j(X)) \to l_1(\Gamma) \oplus X$ given by Tp = (p, x) is well-defined and an isomorphic embedding. Moreover, the operator $l_1(\Gamma) \oplus X \to C(K)$ given by $(l, x) \to Ql - jx$ is a quotient map whose kernel is precisely $TQ^{-1}(j(X))$.

Hence, it makes sense to define the *twisted* Dunford-Pettis property as the property DPP-by-DPP. Reflexive spaces do not possess the twisted DPP. There exist c_0 -saturated spaces without the twisted Dunford-Pettis property:

PROPOSITION 1. The Schreier space does not have the twisted DPP.

PROOF: The Schreier space S (see [16]) is c_0 -saturated, and every quotient of S is c_0 -saturated (see [14]). Thus, if S is the twisted sum of two DPP spaces Y and Z then both Y^* and Z^* would be Schur spaces. This being a 3-space property, also S^* should be a Schur space, which it is not since it fails the DPP.

It would be interesting to know if the twisted DPP and the DPP coincide for c_0 -saturated spaces; we remark in passing that quotients of c_0 -saturated spaces need not be c_0 -saturated (see [12]). As a corollary to the proof of Theorem 1, choosing X = S and $C(K) = C(\omega^{\omega})$ we obtain:

PROPOSITION 2. Schur-by-(DPP and c₀-saturated) does not imply DPP.

This result shall be completed with Propositions 6 and 7. Exchanging the two properties yields (see [5, 6.6.c]).

PROPOSITION 3. DPP-by-Schur and DPP coincide.

3. Twisted sums of c_0 -saturated and l_1 -saturated spaces

In [5, 6.6.d.], it was proved that the DPPh is equivalent to the property that every weakly null sequence admits a weakly 1-summable subsequence, that is, a subsequence satisfying an estimate

$$\sup_{F \in FIN(\mathbb{N})} \left\| \sum_{n \in F} \pm x_n \right\| < +\infty$$

where $FIN(\mathbb{N})$ denotes the set of finite subsets of \mathbb{N} . We say that a Banach space is $\{c_0, l_1\}$ -saturated if every closed infinite dimensional subspace contains either c_o or l_1 . It is clear that Banach spaces with the DPPh are $\{c_0, l_1\}$ -saturated. Our first result clarifies the structure of twisted sums of c_0 -saturated and l_1 -saturated spaces.

PROPOSITION 4. (c₀-saturated)-by-(l_1 -saturated) implies { c_0 , l_1 }-saturated; also (l_1 -saturated)-by-(c_0 -saturated) implies { c_0 , l_1 } saturated.

PROOF: Let X be a twisted sum of a c_0 -saturated space Y_0 and a l_1 -saturated space Z_1 . Let W be a subspace of X that does not contain c_0 . Since Y_0 and W are totally incomparable, $Y_0 + W$ is closed (see [15]) in X; therefore W, which is isomorphic to $W/(W \cap Y_0)$, is also isomorphic to $(Y_0 + W)/Y_0$; this is a subspace of Z_1 , and hence l_1 -saturated. The proof of the other case is entirely analogous and thus we omit it.

We show that the converse does not hold. Our counterexample is modelled upon a transfinite version of Schreier space.

PROPOSITION 5. DPPh does not imply $(c_0$ -saturated)-by- $(l_1$ -saturated).

PROOF: Let ω_1 be the first uncountable ordinal. We say that an element $g \in \omega_1^{\omega_1}$, that is, a function $g: \omega_1 \to \omega_1$, is *increasing* if for every countable ordinal $\alpha \in \omega_1$, $\alpha < g(\alpha)$ and whenever $\alpha < \beta$ then $g(\alpha) \leq g(\beta)$. Given an increasing element g, a countable subset A of the ordinal interval $[0, \omega_1)$ is said to be g-admissible if $\sup A \leq g(\min A)$.

We define the Schreier space S_g as the closure of the elements of \mathbb{R}^{ω_1} having countable support with respect to the norm

$$||x||_g = \sup \left\{ \sum_{\alpha \in A} |x_{\alpha}| : A \text{ is } g \text{-admissible} \right\}.$$

The space S_g has the DPPh. Let (x_n) be a weakly null sequence in S_g . If $\alpha < \omega_1$, we denote by $S_g(\alpha)$ the subspace formed by those elements having support contained in $[0, \alpha)$. Since elements in S_g have countable support and ω_1 does not admit countable cofinal subsets, there is some $\Omega < \omega_1$, such that $(x_n) \subset S(\Omega)$. The vectors $(e_{\gamma})_{\gamma < \Omega}$ form

[4]

a basis for $S(\Omega)$ and thus by standard perturbation arguments the sequence (x_n) can be considered as formed by blocks (u_n) of $(e_{\gamma})_{\gamma < \Omega}$. Now, either there is a sequence (n_j) of integers such that if B_n = support of u_n then $g(\max B_{n_j}) < \min B_{n_{j+1}}$ for all j, or there is no such sequence. If such sequence exists then for every $A \subset \mathbb{N}$ one has $\left\|\sum_{j \in A} u_{n_j}\right\|_g = 1$. If not, there is some index n_0 and some subsequence $B_{n_j} \subset (\max B_{n_0}, g(\max B_{n_0})]$, in which case $\left\|\sum_{j \in A} \lambda_j u_{n_j}\right\|_g = \sum |\lambda_j|$, and one gets a contradiction.

The space S_g depends on the choice of the initial function g. If $g(\alpha) = \alpha + 1$ then g-admissible sets are just singletons and $S_g = c_0(\omega_1)$, while if one could (it is not an increasing function) choose the constant function $g = \omega_1$ then $S_g = l_1(\omega_1)$. In this way, a proper choice of the function g, for instance $\omega^{\alpha} < g(\alpha)$, makes some copies of l_1 appear. In what follows we assume that, for all countable ordinals α , $\omega^{\alpha} < g(\alpha)$. In such case one has:

The space S_g is not a twisted sum of a c_0 -saturated space and a l_1 -saturated space. Assume that S_g is a twisted sum of a c_0 -saturated space Y_0 and a l_1 -saturated space Z_1 . Let us first remark that since S_g has the DPPh and Y_0 is c_0 -saturated then Z_1 has the DPPh (see [5]); being l_1 -saturated, it also has the Schur property.

Now, observe that if (γ_n) is a sequence of ordinals such that $g(\gamma_n) < \gamma_{n+1}$ then $\left\|\sum_n e_{\gamma_n}\right\|_g = 1$. thus, the sequence (e_{γ_n}) is weakly null in S_g . Therefore $\lim \|e_{\gamma_n} + Y_0\| = 0$. But this yields that for some $\gamma_0 < \omega_1$ and all $\gamma \ge \gamma_0$ one has $\|e_{\gamma} + Y_0\| = 0$. In this way, $e_{\gamma} \in Y_0$ for all $\gamma \ge \gamma_0$. This is absurd since then Y_0 would simultaneously be c_0 -saturated and contain l_1 .

REMARK 1. In [8], it is proved that, given a family \mathcal{F} of finite subsets of N that is compact in the topology of $\{0,1\}^N$, it is possible to construct a (so-called) Schreierlike space $S_{\mathcal{F}}$ that is c_0 -saturated. Some properties of those spaces appear related to properties of a hierarchy of functions g_n defined on the finite subsets of N. Precisely, when $S_{\mathcal{F}}$ is an *M*-ideal in its bidual then the Dunford-Pettis and the hereditary Dunford-Pettis properties are equivalent, and equivalent to the finiteness of the function $g_0 : \mathbb{N} \to \mathbb{N}$ defined by $g_0(n) = \max\{\max A : n \in A \in \mathcal{F}\}$. It is clear that the family \mathcal{F} is then defined as those sets such that $\max A < g_0(\min A)$; that is, the Schreier-like space induced by g_0 . The spaces S_g can be considered as transfinite constructions of this type where the function g_0 takes values in $[0, \omega_1)$ instead of in $[0, \omega)$.

REMARK 2. Professor Kutzarova has kindly pointed out to us that a type of function like g_0 was considered in [9] and is at the basis of the construction shown in [10].

REMARK 3. The dependence of S_g on the initial choice of g means that there is an uncountable quantity of non-isomorphic S_g spaces: let S_g and S_h be the spaces constructed starting with the functions g and h, respectively. Since an isomorphism must transform sequences equivalent to the canonical basis of c_0 (respectively l_1) into the same class of sequences, a necessary condition to be isomorphic is that, for some $M \in \mathbb{N}$, all $n \in \mathbb{N}$ and all countable ordinals α

$$h(g^n(\alpha)) \leqslant g^{n+M}(\alpha).$$

The rest is easy since there are uncountably many ways to produce functions not satisfying that requirement; say, for ever ordinal β define by transfinite induction functions such that

$$h_{\beta}(h_{\alpha}^{n}(\omega)) \leq h_{\alpha}^{n+\beta}(\omega).$$

4. FURTHER EXAMPLES

A c_0 -saturated space need not have the DPP: the Schreier space (see [16]) is c_0 saturated since it is a subspace of a $C(\omega^{\omega})$ and it was shown in [6] that it fails the DPP. A l_1 -saturated space does not necessarily have the DPP either: Lorentz sequence spaces d(w, 1) are l_1 -saturated (see [13, Proposition 4.e.3]) and fail the DPP since they are separable duals without the Schur property.

One might guess that the DPP plus either c_0 - or l_1 -saturation implies the DPPh. There are several examples showing that c_0 -saturated spaces with DPP do not need to have the DPPh; perhaps the simplest example is a c_0 -sum of renormings of c_0 . If $\|\cdot\|_N$ denotes the norm

$$\|x\|_N = \sup_{i_1 \neq i_2 \neq \dots \neq i_N} \left\{ \frac{1}{N} \sum_{j=1}^N |x_{i_j}| \right\}$$

on c_0 then $X = c_0(c_0, c_0(\|\cdot\|_2), \dots, c_0(\|\cdot\|_N), \dots)$ works. By applying [4], this space has the DPP. It is c_0 -saturated since it is a Schreier-like space [8]; or else by [11]. It is not difficult, however, to construct weakly null sequences (r_n) without weakly 1-summable subsequences in X as follows: If $\{A_i\}_{i\in\mathbb{N}}$ is a partition of N with every A_i infinite then X is isomorphic with the completion of the space of finite sequences with respect to the norm

$$\|x\| = \sup\left\{\sum_{j \in A} |x_j| : A \text{ is "admissible"}
ight\};$$

where a finite set A is now "admissible" if $A \subset A_i$ for some i and $\operatorname{card} A \leq i$. Let (B_n) be a sequence of finite subsets of N such that $\max B_n < \min B_{n+1}$. Moreover, the set B_n is chosen so that $\operatorname{card} B_n = n$, and $\operatorname{card} (B_n \cap A_i) = 1$, for $1 \leq i \leq n$. If r_n is the characteristic function of B_n then $\left\|\sum_{j=1}^{j=N} r_{n_j}\right\| \ge N/2$.

Less obvious is the fact that there exist l_1 -saturated spaces with the DPP without the hereditary DPP, as we show now. Bourgain and Pisier show in [1] that given a separable space E it is possible to embed it as a subspace of a certain \mathcal{L}_{∞} -space $\mathcal{L}_{\infty}(E)$ in such a way that $\mathcal{L}_{\infty}(E)/E$ has the Schur property. If we take E = d(w, 1), a suitable Lorentz sequence space (which is l_1 -saturated) with normalised weakly null canonical basis, one obtains a \mathcal{L}_{∞} -space $\mathcal{L}_{\infty}(d(w, 1))$ that is l_1 -saturated, has the DPP but not the DPPh:

[5]

it is l_1 -saturated since this is a 3-space property [5]; and since in a l_1 -saturated spaces the DPPh and Schur properties are equivalent, it does not have the DPPh because it contains d(w, 1) which is not Schur.

A questions implicit in [5] can be answered now.

PROPOSITION 6. $(l_1$ -saturated and DPP) is not a 3-space property.

PROOF: The method of Theorem 1, replacing the C(K) space by the l_1 -saturated DPP space $\mathcal{L}_{\infty}(d(w, 1))$ we have just obtained, and the starting space X by d(w, 1), yields that d(w, 1), is a complemented subspace of two (l_1 -saturated and DPP)-spaces.

Nevertheless, since a Banach space X is (c_0 -saturated and DPP) if and only if X^* is Schur, and the Schur property is a 3-space property, one has.

PROPOSITION 7. $(c_0$ -saturated and DPP) is a 3-space property.

Proposition 4 is not complete unless one shows it applies to some space. Nontrivial twisted sums of l_1 -saturated and c_0 -saturated spaces are provided by Theorem 1 (let us remark that it is considerably harder, although possible, to show that there exist nontrivial twisted sums of l_1 and c_0 ; see [3] or [2]). Nontrivial twisted sums of c_0 -saturated and l_1 -saturated spaces are, however, harder to find. This is so since the universal property of l_1 (every surjective map $X \rightarrow l_1$ admits a linear continuous section) prevents the existence of nontrivial twisted sums of a Banach space and l_1 ; while Sobczyk's Theorem prevents the existence of nontrivial twisted sums of c_0 and a separable Banach space.

PROPOSITION 8. There exists a separable nontrivial twisted sum of a c_0 -saturated and a l_1 -saturated space.

PROOF: Let E be a c_0 -saturated space without the Dunford-Pettis property. There is a separable \mathcal{L}_{∞} -space, in which E cannot be complemented since it lacks the DPP, such that $\mathcal{L}_{\infty}(E)/E$ has the Schur property.

The following question has remained elusive.

PROBLEM 1. Does a \mathcal{L}_1 -by- \mathcal{L}_{∞} -space have the Dunford-Pettis property?

Again, things are simpler when we exchange the properties.

PROPOSITION 9. \mathcal{L}_{∞} -by- \mathcal{L}_{1} implies DPP.

PROOF: If X is a twisted sum of a \mathcal{L}_{∞} space Y and a \mathcal{L}_1 space Z then $X^{**} = Y^{**} \oplus Z^{**}$ since Y^{**} is injective. Hence X^{**} has the DPP and so does X.

References

 J. Bourgain and G. Pisier, 'A construction of L_∞-spaces and related Banach spaces', Bol. Soc. Brasil Mat. 14 (1983), 109–123.

- [2] Y.A. Brudnyi and N.J. Kalton, 'Polynomial approximation on convex subsets of \mathbb{R}^{n} ', (preprint).
- [3] F. Cabello Sánchez and J.M.F. Castillo, 'Uniform boundedness and twisted sums of Banach spaces', (preprint 37 Uex, 1998).
- J.M.F. Castillo and M. González, 'New results on the Dunford-Pettis property', Bull. London Math. Soc. 27 (1995), 599-605.
- [5] J.M.F. Castillo and M. González, Three-space problems in Banach space theory, Lecture Notes in Mathematics 1667 (Springer-Verlag, Berlin, Heidelberg, New York, 1997).
- [6] J.M.F. Castillo and M. Gonzalez, 'The Dunford-Pettis property is not a three-space property', Israel J. Math. 81 (1993), 297-299.
- [7] J.M.F. Castillo, M. González, A.M. Plichko and D. Yost, 'Twisted properties of Banach spaces', *Math. Scand.* (to appear).
- [8] J.M.F. Castillo, M. González and F. Sánchez, 'M-ideals of Schreier type and the Dunford-Pettis property', in Non-associative algebra and its applications, (Santos González, Editor), Math. Appl. 303 (Kluwer Acad. Press., Dordrecht), pp. 80-85.
- [9] D. Kutzarova, 'On a class of Banach spaces', Math. Ed. 6 (1981), 147-151.
- [10] D. Kutzarova and S. Troyanski, 'On reflexive Banach spaces without equivalent norms which are uniformly convex or uniformly differentiable in every direction', *Studia Math.* 72 (1982), 91-95.
- D.H. Leung, 'Some stability properties of c₀-saturated spaces', Math. Proc. Cambridge Philos. Soc. 118 (1995), 287-301.
- [12] D.H. Leung, 'On co-saturated Banach spaces', Illinois J. Math. 39 (1995), 15-29.
- [13] J. Lindenstrauss and L. Tzafriri, *Classical Banach spaces I, sequence spaces* (Springer-Verlag, Berlin, Heidelberg, New York, 1977).
- [14] E. Odell, 'On quotients of Banach spaces having shrinking unconditional bases', *Illinois J. Math.* 36 (1992), 681-695.
- [15] H.J. Rosenthal, 'On totally incomparable Banach spaces', J. Funct. Anal. 4 (1969), 167-175.
- [16] J. Schreier, 'Ein Gegenbeispiel zur Theorie der swachen Konvergenz', Studia Math. 2 (58-62), 1930.

Departamento de Matemáticas Universidad de Extremadura Avenida de Elvas 06071-Badajoz Spain e-mail: castillo@unex.es Dipartimento di Matematica Universitá di Roma I "La Sapienza", Piazzale Aldo Moro 2 I-00185 Roma Italy e-mail: simoes@mat.uniroma1.it