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CENTRAL AUTOMORPHISMS OF FINITE GROUPS

M.J. Curran AND D.J. McCaugHaN

This paper considers an aspect of the general problem of how the
structure of a group influences the structure of its automorphism
group. A recent result of Beisiegel shows that if P is a p-group
then the central automorphism group of P has no normal subgroups
of order prime to p . So, roughly speaking, most of the central
automorphisms are of p-power order. This generalizes an 0ld result
of Hopkins that if Aut P 1is abelian (so every automorphism is

central), then Aut P is a p-group.

This paper uses a different approach to consider the case when P
is a nm-group. It is shown that the central automorphism group of
P has a normal 7w'-subgroup only if P has an abelian direct

factor whose automorphism group has such a subgroup.

An automorphism a of a group (G is said to be central when it

commutes with every inner automorphism of ( , or equivalently when

g lalg) 1lies in the centre Z(G) of G for each g in G . The

central automorphisms of G form a normal subgroup of the full automorphis:
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group Aut(G)

Non-abelian p-groups having abelian automorphism groups have been
studied recently ([3], [61, [9]) and not so recently ([5], [7]): in this
case of course all automorphisms are central, and the classical result of
Hopkins [5] states that the automorphism group is again a p-group. In
this paper we obtain results on central automorphisms which extend the

work of Hopkins and others in various directions.

Throughout this paper we will consistently use the following

notation:

m will always denote a set of primes, with
w' its complement in the set of all primes;

P will be a finite mw-group;

A will be a 7'~subgroup of Aut(P), the group of
automorphisms of P ;

Ow(H) will denote the largest normal mw-subgroup
of the group H ;

Autc(P) will denote the group of central automorphisms

of P ;
@ will denote [P,4], that is <x_1xa:x € P, ac A) R
where z% means alx) ;

C will denote {x ¢ P:z® =2 for all a 1in A},

the centralizer of 4 in P .

All groups considered are finite. The remaining notation follows that of

Gorenstein [4].

We begin with three lemmas. The first is a straightforward
generalization of a standard result: see, for example, 5.2.3 and 5.3.5
of Gorenstein [4]. The other two are little more than observations, but

are stated separately to avoid repetition and deviation later on.

LEMMA 1. We have in general: P =(Q and [Q,A] = Q. Moreover
if P 1is abelian them P = C x Q.
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Proof. First note that @ = [P,A] is A-invariant and normal in
P . Thus by 6.2.2.(iv) of Gorenstein the centralizer in P/@ of A is
just the image in P/Q of (C , that is, C(Q/Q . On the other hand 4
in fact centralizes P/Q by the definition of @ . We deduce that

P = (g . Now using a standard commutator formula
Q@ =[P,A]1 = [€Q,4] = [C,A] [Q.4]

which, since A centralizes ¢ , reduces to @ = [@,4]

In the special case where P is abelian we can use an "averaging"
argument, following Gorenstein 5.2.3 almost word for word, to conclude

that the product (@ is direct.

REMARK. The quaternion group of order 8 shows that in the last

part of Lemma 1 the restriction on P 1is essential.

LEMMA 2. If P=UxV where V 1is abelian and invariant under
central automorphisms of P , then elements in V and Z(U) have coprime

orders.

Proof. Suppose if possible that some prime ¢q divides both
lZ(U)[ and |V| . Choose an element 2z of order ¢q in |Z(U)| and
write V as a direct product W X X , where W is a cyclic ¢-group.

Iet the map o« be defined by
o(u) =u forall u in U ; aw) = 2w,

where w is a generator of W ; af{x) =x for all & in X . Then it is
easy to verify that a extends to a central automorphism of P . But

V is not invariant under o , a contradiction.
LEMA 3. o, (Aut (P)) and O, (Aut(P)) coincide.

Proof. Oﬂ.(Aut(P)) is a normal r'-subgroup of Aut(P) , and as

such it commutes elementwise with any normal w-subgroup of Aut(P) , in
particular, the group P/Z(P) of inner automorphisms of P . Thus
O“,(Aut(P)) is a subgroup of Autc(P) , and the result follows.

https://doi.org/10.1017/50004972700010054 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700010054

194 M.J. Curran and D.J. McCaughan

THEOREM A.
Then:
(al)

(a2)
(a3)
(ad)
(a5)
(a6)

(a7)
(a8)

(a) Suppose that A is a subgroup of Autc(P).

Q lies in the centre Z(P) of P (so that @ <is
abelian);

Q = [@,A]1 ;

P=Cx@Q ;

A 1is isomorphic to a subgroup of Aut(Q) ;

A acts fized-point-freely on @ and trivially on C ;
aut(@) is isomorphic to a subgroup of Aut,(P);

Q@ & trivial if and only if A is trivial;
C 1is trivial only if P 1is abelian.

(b) Now suppose that A is normal in BAut (P) . Then in
addition to the facts in {a) we have:

(bl)
(b2)

C and @ are Autc(Fv-invariant;
Z2(C) and @ have coprime orders.

(¢) Finally, let A be normal in naut(P) . Then:

(cl)

(c2)

(c3)

(c4)

(c5)

Proof.

(al) is immediate.

Lemma 1 also gives P = (@ .

A 1is in fact a subgroup of Autc(P) (so that all

the conclusions in (a) and (b) hold);
C and Q are characteristic in P ;
A s Oﬂ,(Aut(Q)) €0, (But,(P)) ;

0 . (But (P)) =0 ,(M) x Oﬂ,(Aut(Q)), where M 1is the

group of central automorphisms of C;
in particular, when A = On'(A“tc(P))’ we have

equalities in (c3) and so 0",(M) =1 1in (cd).
(a) Since A consists of central automorphisms of P ,

(a2) is obvious from Lemma 1.

By (al) both € and @ are normal in

P , so to complete the proof of (a3) we need only check that ¢ and @

intersect trivially. Note that ¢ is A-invariant abelian and the last

part of Lemma 1 gives

@ of A , that is, the intersection of ¢ and @ .

finiteness of @ ,

@ = R x [@,A] where PR denotes the centralizer in
Then by (a2) and the
R =1, and (a3) follows.
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Now the definition of ( and the decomposition (a3) of P quickly
yield (a4) and (a5).

The proof of (a6) is easy, as any automorphism of & extends to
the product (¢ x @ in a natural way (acting trivially on () and gives

a central automorphism of P .
(a7) follows from (a2) and (a4).
Finally (a8) is an cbviousconsequence of (al) and (a3).
(b) Since A and P are both invariant under Autc(P) ,
(bl) follows easily.

Now (b2) is a simple consequence of Lemma 2.

(c) A 1is contained in 0",(Aut(P)) which by Lemma 3
coincides with 0“,(Autc(P)), so (cl) is immediate.

We are assuming that A4 is normal in Aut(P) . Hence both [P,A4]
(=) and the centralizer of A in P (= () are invariant under

Aut(P) , that is, characteristic in P . Thus (c2) is proved.

To establish (c3), first note that in (a4) we have identified 4
with a subgroup, here clearly a normal w'-subgroup, of aut(@) , so it

lies in O_,(Aut(Q)) . On the other hand, (aé) tells us that Aut(Q)
is a subgroup of Autc(P) , indeed in this case a normal subgroup because

@ and ( are characteristic in P and Aut(P) is isomorphic to

aut(C) x aut(Q) . Thus Oﬂ,(Aut(Q) is contained in 0, (Aut (P))
So (¢3) is proved.

Since (¢ and ¢ are characteristic in P , we have
Autc(P) =M x Aut(@) and so oﬂ, (Autc(P)) = o", M x 0 (aut(@)). This
is (c4), and (c5) follows easily.

REMARKS. An argument of Beisiegel ([2], 4.1) can be adapted to show
that provided A centralizes P' (and any group of central automorphisms

will) the product P = CQ has the properties [C,Q1 =1, ¢ n@Q =@

and @ is nilpotent of class at most 2.
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We point out that when Autc(P) is abelian then for any m'-subgroup
A of Autc(P) . the corresponding subgroup @ is cyclic and Autc(P)—

invariant. From (a6) of Theorem A we know that Aut(@) is isomorphic
to a subgroup of Aut(P) , so that Aut(Q) is abelian. But it is well
known that the only abelian groups with abelian automorphism groups are

cyclic. The fact that @ is Autc(P)—invariant follows from Theorem
A(bl) since A will always be normal in Autc(P) in this case.

COROLLARY 1. Suppose m = {p} . Assume that A <& a normal
subgroup of Autc(P) . If A <is non-trivial then P =@ , that is, P
is abelian and A acts fized-point-freely on P.

Proof. Suppose that A is non-trivial. Then by Theorem A(a7)
@ 1is non-trivial. But ( X g =P is a p-group and yet Z(C) and @
have coprime orders, by Theorem A(b2). This forces (C = 1 . Now in view
of Theorem A(a5) we have A acts fixed-point-freely on P .

COROLLARY 2. Suppose = = {p} and P is non-abelian. Then

(1) Op,(Autc(P)) =1 ;

(ii) if Autc(P) 18 nilpotent then Autc(P) 16 a p-group;

(iii) Zf Aut(P) <is nilpotent then BAut(P) <8 a p-group;
(iv) if Autc(P) 18 abelian then Autc(P) 18 a p-group;

(v) ©f Aut(P) dig abelian then BAut(P) <is a p-group;

Proof. = (i) is just a re-statement of Corollary 1, and (ii) is an
easy consequence.

(iii) can be deduced from (ii), with the help of Lemma 3: if
Aut(P) 1is nilpotent then so is Autc(P) , and by (ii) Op,(Autc(P)) is 1.

Then by Lemma 3, Op,(Aut(P)) is 1 and Aut(P) is a p-group.

(iv) is a special case of (ii), and finally (v) now follows either
as a special case of (iii) or as a consequence of (iv), since in this case

Autc(P) = Aut(P)
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REMARKS. Corollary 2(v) is the old result of Hopkins [5], and
(iii) is a generalization due to Ying [10].

All of the statements in Corollary 2 also follow from an elegant
theorem of Beisiegel [Z], stating that in this situation Op(Aut(P))

contains its own centralizer.

COROLLARY 3. (i) If P ie purely non-abelian, that is, has no
abelian direct factors, then Autc(P) is a Tw-group and On,(Aut(P))
is trivial.

(ii) Suppose 7 does not contain the prime 2. Then
the following statements are equivalent:
(a) P is purely non-abelian;
(b) Autc(Pv i8¢ a T-group;

(c) Autc(P) i8 a 2'-group.

Proof: (i) follows from Theorem A(a7) and Lemma 3.

(ii) Note that by (i), (a) implies (b). Also (b) clearly

implies (c).
Finally if P has a non-trivial abelian factor then an inverting
automorphism on this factor gives a central automorphism of P , so (c)

implies (a).

REMARKS. Corollary 3(i) was first pointed out by Adney and Yen [1],
then improved by Sanders [§].

In Corollary 3(i) it is not sufficient just to assume P non-
abelian, as it is when 7w = {p} ; for example, consider the direct

product of a group of order 11 and a non-abelian group of order 6.
The fact that On,(Aut(P)) is trivial does not imply any of the

statements of Corollary 3(ii). Consider the direct product of a cyclic
group of order 3 and any non-abelian group of order 27. 1In this case

Autc(P) has order 486 yet the Sylow 2-subgroups in Autc(P) are not

normal. Thus 03,(Autc(P)) is trivial, and so is 03,(Aut(P)).
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