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p-adic L-functions for GL,

Daniel Barrera Salazar and Chris Williams

Abstract. Since Rob Pollack and Glenn Stevens used overconvergent modular symbols to construct
p-adic L-functions for non-critical slope rational modular forms, the theory has been extended to
construct p-adic L-functions for non-critical slope automorphic forms over totally real and imagi-
nary quadratic fields by the first and second authors, respectively. In this paper, we give an analogous
construction over a general number field. In particular, we start by proving a control theorem stating
that the specialisation map from overconvergent to classical modular symbols is an isomorphism
on the small slope subspace. We then show that if one takes the modular symbol attached to a small
slope cuspidal eigenform, then one can construct a ray class distribution from the corresponding
overconvergent symbol, which moreover interpolates critical values of the L-function of the eigen-
form. We prove that this distribution is independent of the choices made in its construction. We
define the p-adic L-function of the eigenform to be this distribution.

1 Introduction

The study of L-functions has proved extremely fruitful in number theory for almost
two centuries, and there are a wealth of research papers relating their critical values
to important arithmetic information. A much more recent branch of the theory is
the construction and study of p-adic L-functions that are natural p-adic analogues of
classical (complex) L-functions. These p-adic L-functions are distributions on cer-
tain ray class groups that interpolate the algebraic parts of critical classical L-values.
Such p-adic L-functions have been constructed in a number of cases; for example,
one can attach p-adic L-functions to Dirichlet characters, number fields, and ratio-
nal elliptic curves. Where they exist, these objects have had a number of interesting
applications. For example, the Iwasawa main conjectures are a wide-ranging series of
conjectures predicting deep links between p-adic L-functions and Selmer groups at-
tached to Galois representations. The Iwasawa main conjecture has been proved by
Skinner and Urban for a large class of elliptic curves [SU14]. If the main conjecture
holds for an elliptic curve E, then the order of vanishing of the p-adic L-function
of E is directly related to the rank of the p-Selmer group of E. Under finiteness of
II1(E/Q), this is enough to deduce a p-adic analogue of the Birch and Swinnerton-
Dyer conjecture (see [MTT86, Dis16] for details of the conjecture). Moreover, the
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Iwasawa main conjecture has been used to prove the p-part of the leading term for-
mula in the (classical) Birch and Swinnerton-Dyer conjecture in analytic ranks 0 and 1
[JSW15, Casl7, CCSS17].

Mazur and Swinnerton-Dyer [MSD74] gave the first constructions of p-adic L-
functions for classical modular forms, and their work has been followed by a variety
of other constructions. In particular, in 2011, Pollack and Stevens gave an alternative
construction using overconvergent modular symbols [PS11]. Until recently, p-adic L-
functions of automorphic forms for GL, over more general number fields had been
constructed only in isolated cases. For the most general results previously known,
see [Har87,Depl6], where such p-adic L-functions are constructed for weight 2 (also
known as parallel weight 0) forms that are ordinary at p.

Pollack and Stevens’s construction of p-adic L-functions for small slope classical
modular forms is both beautiful and computationally effective. The first author gen-
eralised their approach to the case of Hilbert modular forms [BS13], whilst the second
author generalised their approach to Bianchi modular forms (that is, modular forms
for GL, over imaginary quadratic fields) [Will7]. These two generalisations use very
different methods, owing to the different difficulties that arise in the respective cases.
In this paper, we generalise these results further to construct p-adic L-functions for
small-slope automorphic forms for GL, over any number field.

1.1 Summary of the Results

The construction of these p-adic L-functions is essentially completed via a blend of
the methods used previously by the authors in their respective Ph.D. theses. We now
give a quick summary of the argument. Throughout the paper, we take @ to be a
cohomological cuspidal automorphic eigenform of weight A and level Q;(n) over a
number field F, where A and Q;(n) are defined as in Section 2.1. We write d = r; +2r,
for the degree of F, where r; (resp. r,) denotes the number of real (resp. complex)
places of F.

Let g = r; + r,. The space of modular symbols of level (;(n) and weight A is the
compactly supported cohomology space HI(Y;(n),V,), where Y;(n) is the locally
symmetric space associated with Q;(n) and V, is a suitable sheaf of polynomials on
Y1(n) depending on the weight. The Eichler-Shimura isomorphism gives a Hecke-
equivariant isomorphism between this cohomology group and the direct sum of cer-
tain spaces of automorphic forms. In particular, with each automorphic form @ as
above—an inherently analytic object—one can associate a canonical modular symbol
(up to scaling) in a way that preserves Hecke data. In passing from an analytic to an
algebraic object, we obtain something that is in some ways easier to study.

Using evaluation maps, which were described initially by Dimitrov for totally real
fields [Dim13] and which we have generalised to the case of arbitrary number fields,
we relate this modular symbol to critical values of the L-function of the automorphic
form. We show that these results have an algebraic analogue; that is, we can pass to a
cohomology class with coeflicients in a sufficiently large number field, and then relate
this to the algebraic part of the critical L-values of ®. In particular, we sketch a proof
of the following result (see Theorem 6.7 for a more precise formulation):
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Theorem 1.1  For each Hecke character ¢ of F, there is a map
Evg: HE(Yi(n), Vo (4)) — A

such that if © is a cuspidal automorphic form of weight A with associated A-valued
modular symbol ¢ 4 (for A either C or a sufficiently large number field), then

Evy(94) = (+)L(D, ),
where L(®, -) is the L-function attached to ® and (*) is an explicit factor.

All of this is rather classical in nature, and makes explicit results that are, in theory,
well known, although the authors could not find the results in the generality they
require in the existing literature. At this point, we start using new p-adic methods.
Henceforth, assume that (p)|n, and take L to be a (sufficiently large) finite extension
of Q,. We define the space of overconvergent modular symbols of level O,(n) and
weight A to be the compactly supported cohomology of Y;(n) with coefficients in an
(infinite-dimensional) space of p-adic distributions equipped with an action of Q;(n)
that depends on A.

For each prime p|p in F, we have the Hecke operator Uy, at p on both automorphic
forms and (classical and overconvergent) modular symbols, induced from the action
of the matrix ( § ,TOF ), where 7, € L is a fixed uniformiser at p. There is a natural spe-
cialisation map from overconvergent to classical modular symbols that is equivariant
with respect to these operators.

In Section 8, we prove that for any h, € QQ, the space of overconvergent modular
symbols admits a slope < h, decomposition (Definition 8.2) with respect to the U,
operator.

Definition 1.2 Let M be an L-vector space with an action of a collection of operators
{Up : p|p}. Where it exists, we denote the slope < h,, subspace with respect to the U,
operator by M<"»:Us 'Ifh := (hp)p)p is a collection of rationals indexed by the primes
above p, we define M= := N, M="»>U» to be the slope < h-subspace at p.

Definition 1.3 Let pOp = []p°» be the decomposition of p in F, and for each p|p
let hy, € Q. Let X denote the set of complex embeddings of F, and write the weight
Aas A = ((ko),(vs)) € Z[Z]*. For each o € Z, there is a unique prime p(o)|p
corresponding to o, and to denote this we write ¢ ~ p. Define kg == min{ky, : 0 ~p}
and vp(A) = Xyup Vo

We say that the slope h == ()|, is small if by < (k) + v, (1) +1)/e, for each p|p.

There is a surjective Hecke-equivariant specialisation map p from the space of
overconvergent modular symbols to the space of classical modular symbols of fixed
weight. In Section 9, we prove the following control theorem.

Theorem 1.4  Leth € QUPIP} be a small slope. Then the restriction of the specialisation
map p to the slope < h subspaces of the spaces of modular symbols is an isomorphism.

In particular, to a small slope cuspidal eigenform, i.e., an eigenform whose asso-
ciated modular symbol lives in some small-slope subspace of the space of classical
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modular symbols, one can attach a unique small-slope overconvergent eigenlift of its
associated modular symbol.

Let ¥ be an overconvergent eigensymbol. We can use a slightly different version of
the evaluation maps from previously to construct a distribution yy on the narrow ray
class group Clj(p®™) attached to ¥, closely following the work of the first author in
[BS13]. We prove that the distribution we define is independent of the choice of class
group representatives. Via compatibility between classical and overconvergent evalu-
ation maps, this distribution then interpolates the critical values of the L-function of
@, and we hence define the p-adic L-function to be this distribution. To summarise,
the main result of this paper is the following.

Theorem 1.5 Let ® be a small slope cuspidal eigenform over F. Let ¢ be the (p-adic)
classical modular symbol attached to @, and let Yo be its (unique) small-slope overcon-
vergent eigenlift. Let uq be the distribution on Cly,(p™) attached to ¥o.

If ¢ is a critical Hecke character, then we can define a canonical locally algebraic
character ¢ g, on Cli(p™) associated with ¢. Then po(9p-fin) = (x)L(D, @), where
(%) is an explicit factor.

Definition 1.6 We define the p-adic L-function of ® to be the distribution yg on
Cl(p*).

For a precise notion of which characters are critical, and the factor (*), see Theo-
rem 12.1.

In the case that F is totally real or imaginary quadratic, given slightly tighter con-
ditions on the slope, one can prove that the distribution we obtain is admissible, that
is, it satisfies a growth property that then determines the distribution uniquely. In
the general situation, it is rather more difficult to define the correct notion of admis-
sibility; we discuss this further in Section 13. We instead settle for proving that our
construction is independent of choice, so that it is indeed reasonable to define the
p-adic L-function in this manner.

1.2 Structure of the Paper

Sections 2 to 6 of the paper focus on the classical side of the theory. The main results
of this part of the paper come in Sections 5 and 6, where we relate modular symbols
to L-values using evaluation maps. Sections 7 to 9 focus on proving the control theo-
rem, allowing us to lift small slope classical eigensymbols to overconvergent symbols.
Section 10 then uses evaluation maps to define a distribution attached to an overcon-
vergent eigensymbol. In Section 11, we prove compatibility results between overcon-
vergent and classical evaluation maps that allow us to prove interpolation properties
of this distribution. Our results are summarised fully in Section 12.

2 Notation, Hecke Characters and Automorphic Forms

2.1 Notation

This section will serve as an index for the notation we will use in this paper. Let p be a
prime, and fix, once and for all, embeddings inc: Q = C and inc,:Q < Q,. Let F be
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a number field of degree d = ry + 2r,, where r; is the number of real embeddings and
1, the number of pairs of complex embeddings of F. Write q = r; + r,. We write X for
the set of all infinite embeddings of F. Let £(R) denote the set of real places of F and
let £(C) be the set containing a (henceforth fixed) choice of embedding from each
pair of complex places, so that £ = Z(R) u £(C) u ¢Z(C), where ¢ denotes complex
conjugation. We write © for the different of F and D for the discriminant of F. For
each finite place v in F, fix (once and for all) a uniformiser 7, in the completion F,.
Let Ap = Foo x A{: denote the adele ring of F, with infinite adeles F, = F ®g R

and finite adeles AJ;. Let 612 ~ 7 ®; Of denote the integral (finite) adeles. Let F,
RZ, x (C*)" be the connected component of the identity in F,.
Let n ¢ O be an ideal with (p)[n. This will be our level; write

Qi(n):={(}) e GLy(OF) : ¢ =0 (modn),d =1(modn)}.

112

This is an open compact subgroup of GLZ(AJ;). Let K, := SO,(R)™ x SU,(C)"™,
subgroup of the standard maximal compact subgroup Ko, of GL,(Fo ), and let Z, :
Z(GLy(F)) = (F ®g R)* (with ZZ, the connected component of Z, including the
identity). Then the locally symmetric space associated with Q;(n) is

Yi(n) := GLy(F)\GL,(Ar)/Q1(n)KL Zoo.

S

For an ideal f ¢ O, we define U () to be the set of elements of O that are congruent
to 1 (mod f), and denote the narrow ray class group modulo f by

Clx (F) = F\AF/U(F)FL.
When § = Of, we write simply Cly; (the narrow class group of F). Write h for the
narrow class number of F and choose fixed representatives Iy, ..., I, of the narrow
class group, coprime to n, represented by ideles ay, . . . , ap, with (a;), = 1for all v|noo.

Throughout, A = (k,v) € Z[Z]?, with k > 0, will denote an admissible weight (see
Definition 2.8). If r € Q[X] is parallel, then we write [r] for the unique rational such
thatr = [r]t, wheret=(1,...,1) € Z[Z].

For a ring A and an integer k, we define Vi (A) to be the ring of homogeneous
polynomials in two variables of degree k over A. This has a natural left GL,(A)-
action given by (¢ %) - f(X,Y) = f(bY + dX,aY + cX). For k ¢ Z[X], we write
Vi(A) := ®, Vi, (A). This has a natural GL,(A)“-action induced from that on each
component. For A = (k,v) as above, we also write V} (A) for the module Vi (A) with
GL,(A)? action twisted by det”, that is, given by

yafXY) = (Ez det(y,)")y- F(XY),  y=(3v)ves € GLo(A)“.

2.2 Hecke characters

A Hecke character for F is a continuous homomorphism ¢: F*\A% — C*. For a place
v of F, we write ¢, for the restriction of ¢ to F,’, where F, denotes the completion
of F at v. We will typically write f for the conductor of ¢. For an ideal I c OF, write
@1 = [Ty ¢v. We write ¢ = 1,100 9v and @ = [Tyjoo Pv-

We can identify a Hecke character ¢ with a function on ideals of F that has support
on those that are coprime to the conductor in a natural way. Concretely, if q is a prime
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ideal coprime to the conductor, define ¢(q) = ¢(mq) (which is independent of the
choice of uniformiser 74), and if g is not coprime to the conductor, define ¢(q) = 0.
In an abuse of notation, we also write ¢ for this function.

2.2.1 Admissible Infinity Types

Let ¢ be a Hecke character. There is a canonical decomposition FX, = {+1}*(®) x F% |
and we write 97, = ¢|p: . We say ¢ is arithmetic if ¢, takes the form
z2=(2) oo — 2" = [ 2}
v|oo
for some r € Z[ 2], and we say r is the infinity-type of ¢. Henceforth, all Hecke char-
acters will be assumed to be arithmetic.

Define a character ¢, of the Weyl group {+1}*(®) attached to ¢ by e, (1) := poo (1)15,
where we consider ¢ € {+1}*(®) as an infinite idele by setting its entries at complex
places to 1. In the sequel, we will (in an abuse of notation) write ¢, for both this
character of {+1}*(®) and for the character of the ideles given by

€y (x) =& ( (Sign(xv) )VEE(R) ) .

Note then that ¢.. ¢, is the unique algebraic character of F, that restricts to ¢, on
F%; namely, it is the character of F}, given by z — z*. Note thatif F = Q and ¢ =
|| is the norm character on Ag, then g,(~1) = -1, even though ¢ itself takes only
positive values. Not all elements of Z[ 2] can be realised as the infinity type of a Hecke
character. See [Hid94, Chapter 3] for a description of the set & c Z[X] of admissible
types. A necessary (but not sufficient) condition for r € E is that r + cr is parallel. This
motivates the following piece of notation required in the sequel.

Definition 2.1 Letr € Z[Z] be admissible, that is, let r € E. Then define [r] € R to
be the unique number such that r+ cr = 2[r]t. Note that, in particular, for any { € F*,
we have N(({))[] = |¢|F, which we will use later.

Proposition 2.2 ([Wei56]) An element r € Z[X] can be realised as the infinity type
of a Hecke character of F if and only if r € B, that is, t is admissible.

For example, if F is totally real (or more generally has any real embedding), then
the only admissible infinity types are parallel. If F is imaginary quadratic, then any
pair (r,s) € Z[2] is admissible.

2.2.2 Hecke Characters on Ray Class Groups

With a Hecke character ¢ of conductor f|p*° we can associate a locally analytic func-
tion ¢, on the p-adic analytic group

Cli(p%) = F\AR/U(p™)F,,
where U(p®) is the group of elements of O that are congruent to 1 (mod p") for all

integers 7 (that is, elements of O% such that their components at primes above p are
all equal to 1). By class field theory, Cl;(p®) is isomorphic to the Galois group of the
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maximal abelian extension of F unramified outside p and oo. The p-adic L-function
of an automorphic form over F should be a distribution on this space, and to this end
we discuss the structure of this space in the sequel.

Let ¢ be a Hecke character with infinity type r and associated character ¢, on
{£1}*®) a5 above. Then there is a unique algebraic homomorphism w*: F* — @X
given by w*(y) = [1,ex 04 ()", where g, is the complex embedding corresponding
to the infinite place v. This then induces maps

Wwei (FegR) — C* and wj:(F®gQp)” —>@; cC.

Note that w7, is equal to £, ¢, the unique algebraic character of F., that agrees with
@oo ON FL.

The finite part of any Hecke character takes algebraic values [Wei56]. In particu-
lar, under our fixed embedding Q — C,, we can see ¢ as taking values in Cy. In
particular, the following function is well defined.

Definition 2.3 We define ¢,_fi, to be the function
(Pp_fin:A; —_ (C;
x> eo@r(x)w},(xp).
Proposition 2.4  Let ¢ be a Hecke character of conductor f| (p*). Then the function

@ p-fin gives a well-defined function on the narrow ray class group Cl;(p*).

Proof By definition, ¢,_n is trivial on F,. Since wg, and W; are both induced from
the same function on F*, we see that @p-fin = ¢ = Lon F*. As ¢ has conductor f, it
is trivial on U(f), and hence on U(p*®). Finally, if x € U(p®), then x, = xo =1, 50
that w} (xp) = wg, (%o ) = 1. This completes the proof. [ |

2.2.3 Gauss Sums

Let ¢ be a Hecke character of conductor f. We can attach a Gauss sum to ¢ that has
many of the desirable properties that Gauss sums of Dirichlet characters enjoy. We
first introduce a more general exponential map on the adeles of F.

Definition 2.5 Let ep be the unique continuous homomorphism ep: Ag/F - C*
that satisfies xo, — 217 /0(*=) where x. is an infinite adele. We can describe e
explicitly as

er (X) _ 1—1 eZniTnc/R(xv) H lerixV H eE(_TrFA/Qg (x}L))>
veZ(C) veZ(R) Al€ finite

where ee( > cjgj) _ 2Tt
Let d be a (finite) idele representing the different ©.

Definition 2.6 Define the Gauss sum attached to ¢ to be

w(p)=9(d™) 3 o1(b)er(bd ™ (m;"))),
be(OF/f)*
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where (ﬂf’l)v‘f is the adele given by

m, M if wf,

0 otherwise.

((”f_l)vlf)w = {

Remark  This definition, which is independent of the choice of d, is a natural one;
in fact, it is the product of the e-factors over v|f, as defined by Deligne [Del72]. For
this particular iteration of the definition, we have followed [Hid94, p. 480], although
we have phrased the definition slightly differently by choosing more explicit repre-
sentatives.

Proposition 2.7  For { € O non-zero, we have

oi(O)7' (@) i ((0):) =1,

0 otherwise,

ICEDY <Pf(b)eF((bd_1(ﬂf_l)vf)={

be(OF/f)*
where the notation (({),f) = 1 means that the two ideals are coprime.

Proof See [Del72], or, for an English translation, [Tat79]. There is also an account
of Gauss sums and their properties in [Nar04]. ]

2.3 Automorphic Forms

We now give a brief summary of the theory of automorphic forms for GL,, fixing as
we do so the notation and conventions we will use during the rest of the paper. For a
more comprehensive survey, see [Hid94, Chapters 2, 3], or for a more detailed account
of the general theory, see [Wei71].

Definition 2.8 Anelement A = (k,v) € Z[Z] x Z[Z] is an admissible weight if we
have k = ck > 0, and k + 2v is parallel.

Let A = (k,v) be an admissible weight as above. Recall the definition of Y;(n)
from Section 2.1; we now define a representation p of K, x Z, that will give us the
appropriate weight A automorphy condition. We do this individually at each place.

* Suppose v € Z(C). Note that for any non-negative integer n, the space V,(C)
(as defined in Section 2.1) is an irreducible right SU, (C)-module; write

F(n):SU(C) — GL(V,(T))
for the corresponding antihomomorphism. Then define
pv:SU2(C) x C* —> GL(V2,+2(C))
(u,2) — p(2k, +2)(u)|z| 2.
* Suppose v € Z(R). Define
py:SO2(R) x R* — C*
(7(8), x) —> efkOx—k2v

- (0) -sin(9)
where r(0) := (3:(9) cf,sw) )-
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Define k* € Z[Z] by

k¥ =

v

2k, +2 ifveZ(C)ucZ(C),
0 veX(R).

Now define p: K%, x Zoo = GL(Vi+(C)) by p := Qyes(C)us(R) P

Definition 2.9  We say that a function ®:GLy(Afr) - Vi« (C) is a cusp form of

weight A and level () if it satisfies the following.

(i) (Automorphy condition) ®(zgu) = ©(g)p(u,z) foru € K, and z € Zo, =
(F ®Q R)x .

(ii) (Level condition) @ is right invariant under Q;(n).

(iii) @ is left invariant under GL, (F).

(iv) (Harmonicity/holomorphy condition) If we write @, for the restriction of ®
to GL,(FZ ), where FZ, is the connected component of the identity in Fo, then
®, is an eigenfunction of the operators §, for all places v, with

k2
0, (Poo) = (2” + kv) I

where 6, is a component of the Casimir operator in the Lie algebra s, (C) ®r F,
(see [Hid93, §1.3]).

(v)  (Growth condition) Let B = (%) € GL,(Af)}. Then @ is B-moderate in the
sense that there exists N > 0 such that for every compact subset S of B, we have

[@LC6 I = O™ + [£7)

(for any fixed norm | - |) uniformly over (%) € S.
(vi) (Cuspidal condition) We have |, F\Ar ®(ug)du = 0, where Ap > GL,(Ap) via
uw (%), and du is the Lebesgue measure on Ap.

We write S) (Q;(n)) for the space of cusp forms of weight A and level Q;(n).

There is a good theory of Hecke operators on the space of automorphic forms, in-
dexed by ideals of O and given by double coset operators. We do not go into details
here; see [Wei71, Chapter VI], [Hid88, §2]. Many of the nice properties that Hecke
operators satisfy for classical modular forms, such as algebraicity of Hecke eigenval-
ues, also hold in the general case. By a Hecke eigenform we mean an eigenvector of all
of the Hecke operators.

3 L-functions and Periods

In the following section, we attach L-functions to automorphic forms, and state some
algebraicity results for their critical values.
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Let @ be a cuspidal eigenform over F of weight A = (k,v) and level Q;(n), with
Tr-eigenvalue A; for each non-zero ideal I c Op.

Definition 3.1 Let ¢ be a Hecke character of F. The L-function of ® twisted by ¢
is defined to be

L(®,9,s)= Y. Mo(I)N(I)™*, forallseC.
0#IcOpF

This converges absolutely for Re(s) > 0 [Wei71, Chapter II]. In fact, one can show
that it has an analytic continuation to all of C by writing down an integral formula for
L(®, ¢, s). With this analytic continuation taken as a given, we also define

L(D, ¢) := L(D, p,1).

Asin the case of classical normalised eigenforms, we can make sense of this L-func-
tion in terms of Fourier coeflicients, for a suitable Fourier expansion of ®. For details
of this approach, see [Hid94, §6]. We make one more definition for convenience. The
L-function has been built using local data at finite primes; here we complete it by
adding in Deligne’s T'-factors at infinity.

Definition 3.2 Let A(®,9) = [ [Tyex %] L(®, ¢), where ¢ has infinity type
j+v.

3.1 Periods and Algebraicity

To p-adically interpolate L-values, we need to renormalise so that they are algebraic.
The following is a result proved by Hida [Hid94, Theorem 8.1]. Earlier, Shimura
proved this result over QQ and later over totally real fields [Shi77, Shi78].

Theorem 3.3  Let @ be a cuspidal eigenform over F of weight A = (k,v) and level
Qy(n), with associated L-function L(®, ). Let ¢ be a Hecke character of infinity type
j+ v, where 0 < j <k, and let ¢ = ¢, be its associated character on {£1}*®) (g5 in
Section 2.2.1). Let K be a number field containing the normal closure of F and the Hecke
eigenvalues of ®. Then there is a period Qg € C*, depending only on @ and &, such

that Se(q:(z)) € K(¢), where K(¢) is the number field generated over K by adjoining the
@

values of ¢.

Remarks e We are assuming that all Hecke characters are arithmetic; if we

dropped this assumption, then K(¢) need not be finite over K [Hid94, §8].

¢ There are many choices of such a period, differing by elements of K*. Through-
out the rest of the paper, we shall assume that we fix a period for each character ¢.

* Note that the period depends on the character &, (1) = ¢| .1z (1)7*" of the
Weyl group, and not on the character ¢| .3z .

Thus we have a collection of 2" periods attached to @, and each corresponds to a

different collection of L-values, depending on the parity of the corresponding Hecke
characters.
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4 Classical Modular Symbols

Modular symbols are algebraic objects attached to automorphic forms that retain
Hecke data. As we discard analytic conditions, they are frequently easier to work
with than automorphic forms themselves. In this section, we give a brief description
of how one associates a p-adic modular symbol with an automorphic form. We start
with an essential piece of notation.

Definition 4.1 Let Abearing. Define V) (A)* := Hom(V, (A), A) to be the topolog-
ical dual of the weight A polynomials over A. This inherits a right action of GL,(A)“

via (Ply)(f) = P(y- f).
4.1 Local Systems

We will need to study the interplay between complex and p-adic coeflicients. We give
two ways of defining local systems on Y;(n).

Definition 4.2  For all modules M below, we suppose that the centre of
GLZ (F) N Ql (n),

which is isomorphic to {€ € OF : ¢ =1 (mod n)}, acts trivially on M. If this were not

the case, the following local systems would not be well defined.

(i) Suppose M is a right GL,(F)-module. Then define £;(M) to be the locally
constant sheaf on Y;(n) given by the fibres of the projection

GLy(F)\(GLy(Af) x M)/ Q1 (n)KL, Zoo — Yi(n),

where the action is given by y(g, m)ukz = (ygukz, m|y™).
(ii) Suppose M is a right Q1 (n)-module. Then define £,(M) to be the locally con-
stant sheaf on Y;(n) given by the fibres of the projection

GL(F)\(GL,(Ag) x M)/Qu(n)K5 Zeo —> Yi(n),

where the action is given by y(g, m)ukz = (ygukz, m|u).

Remarks 4.3 Note that if M is a right GL,(F ®g R)- or a right GL,(F ®¢ Q,)-
module, then M can be given a GL, (F)-module structure by restriction in the natural
way, giving a sheaf £;(M) as in (i) above.

Similarly, for any right GL, (F ®g Q,)-module, we have an action of ;(n) on M
via the projection Pr: GL,(Ar) — GL,(F®gQ), ), and we get a sheaf £, (M) as above.
In this case, the sheaves £;(M) and £, (M) are naturally isomorphic via the map

(gm) — (g, mlgy)

of local systems, where g, is the image of g under the map Pr above.

Note that, for a number field K containing the normal closure of F, the space
Vi (K)* is naturally a GL, (F)-module via the embedding of GL, (F) in GL,(F®gR),
whilst if L/Q,, is a finite extension containing inc,(K), then V3(L)* is naturally a
GL,(F ®g Q,)-module. So our above comments apply and we get sheaves attached
to V3 (A)* for suitable A.
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It will usually be clear which sheaf we must take. However, when the coefficient
system is V3 (L)* (for a sufficiently large finite extension L/Q,), we can associate
two different (though isomorphic) local systems. As we will later need (in Lemma
11.1) to keep track of precisely what this isomorphism does to cohomology elements,
throughout the paper we will retain the subscript for clarity.

4.2 Operators on Cohomology Groups
4.2.1 Hecke Operators

Recall g := r; + r,. We can define actions of the Hecke operators on the cohomol-
ogy groups HZ (Y;(n), V3 (A)*). This is described fully in [Hid88, pp. 346-347] and
[Dim05, p. 518]. We give a very brief description of the definition, following Dimitrov.

For each prime ideal p of O, we have a Hecke operator T, induced by the double
coset [Qy(n)a, Qq(n)], where ay, € GL,(AF) is defined by

(a,J)V:{(‘l”?p) v =p.

3o otherwise.

When p|n, we write Uy, in place of T}, in the usual manner.

4.2.2 Action of the Weyl group

We also have an action of the Weyl group {+1}*®) on the cohomology, again de-
scribed by Dimitrov. To describe this, recall that we took I, . .., I, to be a complete
set of representatives for the class group, with idelic representatives a;, and define

gi=(%Y) eGLy(AF).
Note that via strong approximation [Hid94, (3.4b)], there is a decomposition

(41) Yi(n) = ﬁl Y (n),
where
Y/ (n) = GLy(F)\GLy(F)gi Q1 (n)GL; (Foo ) /1 (W) KL Z2, = Ty (n)\H.

Here I} (n) == SL,(F) N g; Q1 (n)GL] (Foo ) g7 ' and Hp = HE®) x 3{32(@), where H is
the standard upper half-plane and H; := {(z,t) € C x R0} is the upper half-space.
Now let 1 = (1y)yex(r) € {£1}*®). Then 1 acts on Hp by

vz =[(ty - 20 )ves(r)> (20 )vex(0) s

where for v € £(R) we define

z, ify, =1,
by <2y = _

-z, ifr, =-1

This action induces an action of {+1}*®) on Y; (n) for each i and hence on Y;(n).
The action of {+1}*®) on HI(Y;(n), £1(V3(C)*)) is then induced by the map of
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local systems ¢ - (g, P) — (¢ - g, P). We write this action on the right by ¢ — ¢|i. The
actions of the Hecke operators and the Weyl group commute.

4.3 The Eichler-Shimura Isomorphism

The major step in the construction of a modular symbol attached to an automorphic
form is the Eichler-Shimura isomorphism.

Theorem 4.4 (Eichler-Shimura) There is a Hecke-equivariant injection
$1(Qu(n)) = HI(Yi(n), £L;(V2(C)")).

Proof An explicit recipe is given in [Hid94]. Note that we have composed the clas-
sical version of the theorem with the canonical inclusion of cuspidal into compactly
supported cohomology. ]

Under the decomposition of equation (4.1), we see that for sufficiently large exten-
sions A of Q or Q,, there is a (non-canonical) decomposition

h .
HI(Yi(n), £1(Va(A)Y)) = gPlHZ( Y (n), £1(V2(A)*)).
4.4 Modular Symbols
Let L/Q, be a finite extension.

Definition 4.5 'The space of modular symbols of weight A and level Q;(n) with values
in L is the compactly supported cohomology space HZ(Y;(n), £,(Va(L)*)).

Let @ € S, (Q;(n)) be a Hecke eigenform. Then via Theorem 4.4 we can attach to
@ an element ¢¢ € HI( Y3(n), £1(V)(C)*)). We want to pass from a cohomology
class with complex coeflicients to one with p-adic coefficients. To do this, we use the
theory of periods described earlier in Section 3.1.

Definition 4.6 Let ¢ be a character of the Weyl group {+1}*(®)_ Then define
HE(i(n), £2(Va(C))) [e] € HI(Yi(n), £2(Va(C)"))
to be the subspace on which {1}*(®) acts by ¢.

Proposition 4.7 Let K be a number field containing the normal closure of F and
the Hecke eigenvalues of @, and let € be as above. Let Qf, be the period appearing in
Theorem 3.3. Define ¢¢ := 27" ¥, 1yz €(1) dc|t. Then

¢c € HI(Yi(n), £L,(Va(C)"))[e]
and
¢k = $5/Qp € H(Yi(n), L1(Va(K)")) [e]-

Proof See [Hid94, Chapter 8]. [ |
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Definition 4.8 Define 0g = ¥, ¢% € HI(Y1(n), £1(V3(K)*)), where the sum is
over all possible characters of the Weyl group {+1}*(®),

Now let L/Q, be a finite extension containing inc, (K) (for our fixed embedding
i(ncp): Q = Q). Then inc, induces an inclusion
4.2
HI( Yi(n), £1(Va(K)*)) = HI(Yi(n), £1(Va(L)*)) = HI(Yi(n), L2(Va(L))).

Finally, there is a canonical inclusion

(4.3) HI(Vi(n), L2(Va(L)*)) = HI( Yi(n), £L2(Va(L)")).

Definition 4.9 Let @ be an eigenform of weight A and level Q;(n), and let L be as
above. The modular symbol attached to @ with values in L is the image

01 € H(1i(n), £2(Va(1)"))

of the symbol Ok under the inclusion of equations (4.2) and (4.3).

5 Automorphic Cycles, Evaluation Maps, and L-values

Let @ be a cuspidal automorphic form over F. In this section, we give a connection
between the cohomology class ¢¢ associated with @ via the Eichler-Shimura iso-
morphism and critical values of its L-function. We do so via automorphic cycles. The
cycles we define here are a generalisation of the objects Dimitrov used in the totally
real case [Diml13]. As a consequence of this section, we also get an integral formula
for the L-function of @, generalising the results of [Hid94, §7], where such a formula
is obtained for Hecke characters with trivial conductor.

5.1 Automorphic Cycles
Let f be an integral ideal of F. We begin with some essential definitions.

Definition 5.1 Recall F, c (F ®gR)* is the connected component of the identity
in the subgroup of infinite ideles, and let F, be the subset defined by

FL :={xeF% :|x,|, =1forall v|co}.

Definition 5.2  Recall the definition of U(f) c A} 7 from Section 2.1, and define a
global equivalent E(f) := {x € Of , : x =1(mod f)} = U(f) n F*.
We define the automorphic cycle of level § to be X; := F*\A}/U(f)FL.

Remark  There is a natural decomposition X = [ lyeciz () Xy, where

Xy = {[x] € X : x represents y in Cl;(f)}.
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There is a natural embedding #;: Xj < Y;(n) induced by
A > GLo(Ar)

v (5 T,

where (717 "),j is the idele defined in Definition 2.6. This map is shown to be well
defined in Proposition 5.3 below.

Recall that we have a decomposition Y;(n) = ||, Y/ (n), where Y{ (n) is as defined
in equation (4.1). In particular, Y{ (n) can be described as

{[g] € Yi(n) : det(g) represents i in Cl}}.

Proposition 5.3  The map 15 induces a well-defined map ny: X; — Yi(n). Moreover,

the restriction of n; to X, has image in Yliy(n), where iy denotes the element of the
narrow class group given by the image of y under the natural projection Clj(§) — Clj.

Proof Suppose yxur is a different representative of [x] € X;. Then

G [ns(yxur)] = [()’Ji)ur (yxurff_l)VIf)]

LG DG 6 TG )

0 1/\0 1 0 0 1
= [np(x)] € i(n),
showing that the induced map is well defined. To see that the restriction to Xy lands

in Yf’(n), note that det(75(x)) = x, so that if x represents y € CI;(f), we see that
17(x) represents iy € Cly, and in particular, ; induces a map

{xeAf:[x] =y e CIE(P)} — ¥, (n),
which then descends as claimed. |
5.2 Evaluation Maps

We now use these automorphic cycles to define evaluation maps
Ev:HI (Yi(n), £;(V2(C)*)) — C.

This will be done in several stages.

5.2.1 Pulling Back to X;

First, we pullback under the inclusion 7 X; < Yi(n). The corresponding sheaf
L51(Va(€)*) = 7 £1(Va(C)™) can be seen, via equation (5.1), to be given by the
sections of the natural map F*\(A} x V3 (C)*)/U(§)FL — X;, where the action is
given by

f(x, Pyur = ( fxur, P|( f(;l (1’))
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5.2.2 Passing to Individual Components

We can explicitly write Xy := F*\F*ayU(f)FL, /U(f)FL, for {ay : y € Clp(f)} a
(henceforth fixed) set of class group representatives. Note here that there is an iso-
morphism

E(f)FL\FL — Xy,

rr—>ayr

Pulling back under this isomorphism composed with the inclusion X, c Xj, we see
that the corresponding sheaf Ly,y,1 := 77 £,1(V2(C)”) is given by the sections of

E(F)Feo\(Foo x VA(C©)") — E()Foo\Fes,
where now the action is by

es(r,P) = (esr,P|( e! ?)

5.2.3 Evaluating

Let j € Z[Z] be such that there is a Hecke character ¢ of conductor f and infinity type
j +v. Note that in this case, for all e € E(f), we have /™Y = 1; indeed, /¥ = ¢, (e) =
¢s(e)™" =1, since e = 1(mod f). Now let p; denote the map p;: V3 (C)* — C given
by evaluating at the polynomial X*7Y. Then p; induces a map (p;). of local systems
on E(f)FL\FL, as

Pl( %" 9) (XIY) = () P(XTY) = P(XY)).

We see that the sheaf (p;j).Ly,y,1(Va(C)) is the constant sheaf attached to C over
E(f)FL \FZ, . But note that this space is a connected orientable real manifold of di-
mension ¢, and hence that there is an isomorphism H{ (E(f)FL, \F%,,C) = C, given
by integration over E(§)F. \FZ.

Definition 5.4 Define EV?);)IZ HI(Y1(n), £1(V3(C)*)) - C to be the composition
of the maps

* T*
HI(H(n), £ (VA(€)")) = HE(X; £ (Va(€))) =5 -
HE(B()FL\FS: L1y (VA(C))) 225 HUE(FL\FL.©) = C.

Remarks (i) Note that this definition is not restricted to polynomials with coefhi-
cients in C. Indeed, the evaluation maps are well defined for cohomology with co-
efficients in a number field or an extension of Q,. We will distinguish between the
various cases by using a subscript on the cohomology class (for example, ¢¢ is a com-
plex modular symbol).

(ii) The subscript 1 in EV?,?,I dictates that this is an evaluation map from the
cohomology with coefficients in £;(V;(C)*). Later, we will define an evaluation
map EV‘;);)Z.
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5.3 An Integral Formula for the L-function

Let ¢ be a Hecke character of conductor f and infinity type j + v for some 0 < j < k.
The following is a generalisation of a result of Hida.

Theorem 5.5 Let F/Q be a number field, let ® be a cuspidal eigenform over F of
weight A = (k,v) € Z[Z]* where k + 2v is parallel, and let ¢ be a Hecke character of
conductor § and infinity type j + v, where 0 < j < k. Let A(D, -) be the normalised
L-function attached to @ defined in Definition 3.2. Then there is an integral formula

S play) B (90) - (-1F00[ O] (a, ),

yeCli () 2

where

()  {ay}isa (fixed) set of adelic representatives for Cly, () with (ay), = Lforv infinite,
(i) RG,k) = Eyesc) kv + Zyes(r) kv + jivs

(iii) 7(¢) is the Gauss sum attached to ¢ defined in Definition 2.6,

(iv) D is the discriminant of the number field F,

) Ev;f’yj’l is the classical evaluation map from Definition 5.4,

(vi) ¢ is the modular symbol attached to O under the Eichler-Shimura isomorphism.

Proof (Sketch). The proof is standard but long, messy, and technical, and we omit
the details. A full and detailed proof can be found in [Will6, Chapter 12.1.4].

The proof relies on explicit computations using the Fourier expansion of the auto-
morphic form. It can be split broadly into several stages, as follows.

Step 1: First, we explicitly compute the differential 8y := 77 #; ¢c. This uses the iso-
morphism between Betti and de Rham cohomology at the level of complex coefhi-
cients, and was done for trivial conductor f in [Hid94, §2.5].

Step 2: Write Oy = ¥ o<jex 8{,(2)3Ck_j9j. We then introduce an auxiliary varible s and

consider the integral C{,(s) = () FL\F* 6{,()’) lyli,» where y denotes an element of
F%.

Step 3: For Re(s) > 0, we explicitly compute C;,(s), broadly following [Hid94, §7].
To do this, we substitute the Fourier expansion of our automorphic form into the ex-
pression, and rearrange the result into a product of local integrals at the archimedean
places, which are easily computed. We are left with a sum over ideals that are equiva-
lent to ayOF in CL;(f).

Step 4: By summing over y € Cl;(f), we get a sum over all ideals of O, and this
collapses via a Gauss sum to give the value of the L-function at ¢|- |*. We deduce that
there is an analytic continuation of L(®, ¢, s) to the whole complex plane, and that
setting s = 0, we see the (critical) L-value at the character ¢.

Step 5:  We conclude by noting that C{,(O) = Ev?’yj’1 ¢¢, from which we deduce the
theorem. u
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For later use, it is convenient to record a variant of this theorem here. In particular,
in the sequel, we will only be able to consider evaluations at conductors f divisible by
every prime above p. We want to use such evaluations to obtain L-values at characters
whose conductors do not necessarily satisfy this (for example, the trivial character).
To do so, we need a compatibility result between evaluation maps for different con-
ductors. By examining the Gauss sum in the proof of the integral formula, we obtain
the following.

Theorem 5.6  Suppose ¢¢ is an eigensymbol for all the Hecke operators. Let ¢ be a
Hecke character of conductor § and infinity type j + v, and let p be a prime that divides
the level n, but does not divide §. Then

> pa) B (60) = (pAa -1 Y glay) Ev (go),

xeCly (fp) yeCl; ()

where A, is the Hecke eigenvalue at .

Corollary 5.7  Suppose (p)|n, and let ¢ be a Hecke character of conductor f|(p°)
and infinity type j + v. Let B be the set of primes above p for which ¢ is not ramified,
and define §' := [ [1pep p. Then |’ is divisible by every prime above p and we have

> ola) By (90) = (oMM =D) 5 play) B (40).

yeClz (F) yeClE ()

6 Algebraicity Results

So far all of our work has been done over C. We will now refine these results to connect
the algebraic modular symbol to the critical L-values above.

Definition 6.1 Let A; = {ay :y € Cl;(f)} denote a fixed set of representatives for
Cl;(f), with components at infinity that are not necessarily trivial. For a Hecke char-
acter ¢ of conductor § and infinity type j + v, where 0 < j < k, define a function

A * A a
Evy,":HI(Yi(n), £1(Vi(C)*)) — Cby Evy' () = Dyeciz () eos(ay) vy, (9),
where as previously we write &, as a function on the ideles by composing it with the
natural sign map A} — {+1}*®),

Lemma 6.2 The function EV',EF is independent of class group representatives.

Proof Let ay be an alternative representative corresponding to y € Cl;(f). Then
ay = fayur, where f € F*,u € U(f), and r € FJ,. Looking at the description of the

evaluation maps, we see that EV?; () = 1Y Ev?yJ (¢). But

ep07(ay) = eo@s(fayur) = e,05(f)ep@s(ay) = f7 Ve, (ay),

since £, ¢ is trivial on U(f)FZ, and by our earlier comment, we have

ep9s () = 9(N]9E(f) =77
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Putting this together, we find that

eps(ay) Evy) () = €995 (ay) BV]), (9),

which is the required result. u

Definition 6.3 Define Ev,, to be the map EV'(zf for any choice of class group repre-
sentatives Aj. This is well defined by the above lemma.

We will combine this with the following to deduce the result we desire.

Proposition 6.4 Let 1 € {£1}*®)_ Then for any idele a, we have
Evi§1(gl) = Bvi;. ().

Proof Recall that the definition of the action of 1 € {+1}*(®) on the cohomology of
Y;(n) was described in Section 4.2.2. There is a well-defined action of {+1}*(®) on
the local system corresponding to £;,,(V)(C)*) given by ¢ - (x, P) = (1x, P), where
here we have considered ¢ to be an idele by setting ¢, = 1 for all complex and finite
places v. A simple check shows that if ¢ € HI(Y;(n), £;(V3(C)*)), then we have

15 (@) = 15 (P)s

coming from the commutative diagram

;

(g.P) — > (x,P)
e |t

(1-g.P) —> (ix,P)

oflocal systems. Continuing to work at the level of local systems, suppose x is an idele
that, under the natural quotient map, lies in the component of X corresponding to
ay. Then the image of ix lies in the component corresponding to tay. (Here we note
that if {ay : y € CI;(f)} is a complete set of representatives for Cl;(f), then so is the
set {1ay : y € Clz(§)}). Thus we see that there is a commutative diagram of maps of
local systems

Y

o
(X,P) (T’, P) ev. at XY’ (1’, C)

|t
T*

(ix, P) ’ (r,P) =2 XY (40

where the local system on the far right-hand side defines the constant sheaf given by
sections of (E(§)FL, \F%) x C — E(f)FL \FZ,. The result follows. [ |

Corollary 6.5 We have the relation Ev,(¢|t) = €4(1) Evy(9).
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Proof Considering ! as an idele in the usual way, we have
EV¢(¢|‘) = Z 5<p§9f(lay)EV;flf}:1(¢|l) :€<p(‘) Z 5<p§9f(ay)EV‘fl,yj,1(¢)
yeClz () yeClz ()

= 84,(1) EV¢(¢)’

as required. ]
Corollary 6.6  We have

Evy(¢c) ife=¢,,
0 otherwise.

EV(p(‘/’fC) = {

Proof By definition,

Bg(9) =Evp (27" % e(gch) =[27" X e(0)ep(n)] Evglgo),
re{+1}3(®) re{£1}2(®)
using linearity of the evaluation maps and Corollary 6.5. The result then follows from

orthogonality of characters, since eé =1L ]

Recall that in Definition 4.8, we set 0k := Y., ¢%. Note that here 0k is an element
of the cohomology with algebraic coefficients in the number field K.

Theorem 6.7  Let ¢ be a Hecke character of conductor f and infinity type j + v, where
0 <j <k, and write ¢, for the associated character of {£1}*®) defined in Section 2.2.1.
Let Ev,, be as in Definition 6.3. We have

_(_nrGR[ IPIT(9)7 |
Evg(0x) = ()" 00| A@.)
where R(j, k) = Xyexr) jv + kv + Lyes () kv-
Proof We use Theorem 5.5. In particular, note that we choose (dy)oo = 1, so that

eo9s(ay) = ¢(ay). Thus the sum we obtained in the statement of this theorem is
exactly Evy (¢c). The result follows. ]

To summarise: we have now defined an algebraic cohomology class that encom-
passes the algebraic parts of all of the critical L-values that we hope to interpolate. In
particular, by embedding K into a sufficiently large finite extension L/Q,, we get a
p-adic modular symbol 6}, that sees all of these critical values.

7 Distributions and Overconvergent Cohomology

In this section, we define the distribution modules that we will use as coeflicient mod-
ules for the spaces of overconvergent modular symbols. This closely follows the anal-
ogous section of [BS13].

Throughout this section, L is a finite extension of Q, containing the image of

inco00:F > Q,
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for each embedding o of F into Q. First, we give some motivation by reformulating
the definition of the space V) (L). We previously defined this to be the d-fold tensor
product of the polynomial spaces Vg, (L), Wlth an action of GL,(L) depending on
A. Note that O ®7 Z, embeds naturally in QP, and in particular, we can see an ele-
ment of V3 (L) as a function on O ®z Z,, in a natural way. We see that the following
definition agrees with the definition we gave in Section 2.

Definition 71 ~Let L/Q, beafinite extensionandlet A = (k,v) € Z[X] be admissible
(so that, in particular, k > 0). Define V, (L) to be the space of functions on Of ®7 Z,
that are polynomial of degree at most k with coefficients in L, with a left action of
GL,(Of ®z Z,) given by

) P(x) = (ad - be)*(a + cx)*p( L4z,

atcx

We have passed to a non-homogeneous version here. This definition is more easily
seen to be compatible with the rest of this section. In particular, it is compatible with
the following.

Definition 7.2 Let A(L) be the space of locally analytic functions on O ®z Z,, that
are defined over L.

We would like to define an action of GL, (O ®z Z, ) on this space, analogously to
above. Unfortunately, the action above does not extend to the full space A(L). We
can, however, define an action of a different semigroup.

Definition 7.3 Let Zq(p) be the semigroup
Zo(p) = {(? Z) € Mz(OF ®7 Zp) ‘CE€ pOF ®7 Zp,d € (OF ®7 Zp)x,tld —bc ?é 0}

Define A, (L) to be the space A(L) equipped with a left ‘weight A action’ of Z(p)
given by

Z) -f(z) =(ad —bc)"(a+ cz)kP( ’;:’Z)

Note in particular that this semigroup contains the image of I (n) under the nat-
ural embedding M, (OFr) c¢ M,(Of ®z Z,) as well as the matrices that we will need
to define a Hecke action at primes above p. It is not a subset of GL,(Of ®7 Z, ), but
the action of this different semigroup also extends naturally to V; (L), since both live
inside GL,(F ®g Q,).

We are now in a position to define the distribution spaces.

Definition 7.4 Define D, (L) := Hom(Ar(L), L) to be the topological dual of
Ay, with a right action of 2 (p) defined by (u|y)(f) = u(y - f).

Note that 2 (n) acts on D, (L) via its projection to GL,(Q, ), giving rise to a local
system £,(D, (L)) on Y;(n).

Definition 7.5 'The space of overconvergent modular symbols is the compactly sup-
ported cohomology group H(Y;(n), £,(D,(L))).
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By dualising the inclusion V(L) c A, (L), we get a Zo(p)-equivariant surjection
D)(L) - Vy(L)*. This gives rise to a Xo(p)-equivariant specialisation map, a map

p:HE(Yi(n), £2(Da(L))) — HE(Yi(n), £2(Va(L)")).

The space of overconvergent modular symbols is, in a sense, a p-adic deformation of
the space of classical modular symbols. It was introduced by Glenn Stevens [Ste94].

We conclude this section with a result that will be crucial in the following sec-
tion, where we prove that the space of overconvergent modular symbols admits a
slope decomposition with respect to the Hecke operators. For the relevant defini-
tions, see [Urbll, §2.3.12]. The space D, (L) is naturally a nuclear Fréchet space;' in-
deed, let A, (L) be the space of functions that are locally analytic of order n, that
is, functions that are analytic on each open set of the form a + p"Of ®z Z,. Each
Ana(L) is a Banach space, and the inclusions A, ; (L) < Ap;12(L) are compact
[Urbll, Lemma 3.2.2]. We write D,, (L) for the topological dual of A, 3 (L). Then
Di(L) = lim D, 5 (L) is equipped with a family of norms coming from the Banach
spaces D, 1 (L).

Definition 7.6 ~ Let M = lim M, be a nuclear Fréchet space. We say that an endo-
morphism U of M is compact if it is continuous and there are continuous maps U,
making the following commute:

MM,
oo
M M,,

where the horizontal maps are the natural projections.

Lemma 7.7 Let nj € GLy(F) n Z¢(p), which acts naturally on D) (L). This action is
compact. In particular, the action of (§ ) is compact on Dy(L).

Proof See [Urbll, Lemma 3.2.8]. [ |

8 Slope Decompositions
We start by recalling the relevant definitions about slope decompositions.

Definition 8.1 Let L be a finite extension of Q,, and let h € Q. We say a polyno-
mial Q(X) € L[X] has slope < hif Q(0) € O} and if a € L is a root of Q*(X) :=
X4e8(QQ(1/X), then v, (a) < .

Definition 8.2 Let M be an L-vector space equipped with the action of an L-linear
endomorphism U. We say that M has a slope < h decomposition with respect to U
if there is a decomposition M = M; @ M, such that M is finite-dimensional, the
polynomial det(1 — UX)|y, has slope < h, and for all polynomials P € L[X] with

IThat is, an inverse limit of Banach spaces in which the projection maps are compact. In [Urbli],
Urban calls this a compact Fréchet space. We instead follow the terminology utilised in [Sch02].
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slope < h, the polynomial P*(U) acts invertibly on M,. We write M=V := M for
the elements of slope < h in M. Where the operator U is clear, we drop it from the
notation and just write M<".

The crucial theorem we require is the following:

Theorem 8.3 Let A = (k,v) be an admissible weight. Then for each i € N and any
h € Q, the L-vector space H:(Yy(n), £2(Di(L))) admits a slope < h decomposition
with respect to the Hecke operator U,

Sketch of Proof To prove this theorem we follow the arguments given in [Urbll,
BS15], where the same statement is proved in the cases of the cohomology without
compact support and GL, over a totally real field, respectively. Both of these rely on
general results from earlier in [Urbll], where Urban proved that any nuclear Fréchet
space M equipped with a compact endomorphism U admits a slope decomposition
with respect to U. Given this, the key step is to construct a complex whose cohomol-
ogy is H2 (Y1(n), £2(D,(L))) and such that each term of the complex is isomorphic
to finitely many copies of D, (L). We can find a lift of the Hecke operators on the co-
homology to this complex, and then we use the fact that the action of (§ ) on D, (L)
is compact to deduce that this lift acts compactly on the complex. Using Urban’s re-
sults, we deduce the theorem. ]

9 A Control Theorem

In this section, we prove a control theorem, showing that the restriction of the spe-
cialisation map from overconvergent to classical modular symbols to the small slope
subspaces is an isomorphism. We actually need a slightly finer definition of slope de-
composition; namely, we define the slope decomposition with respect to a finite set of
operators rather than just one.

To this end, let I be a finite set, and suppose that for each i € I, we have an en-
domorphism U; on the L-vector space M. Write A := L[U;, i € I] for the algebra of
polynomials in the variables U;. Then A acts on M, and for h = (h;) € Q! we define
the slope < h subspace with respect to A to be M<™4 = ;. M=">Ui, Where the choice
of operators is clear, we will drop the A from the notation and just write M<P.

9.1 Preliminary Results

We start by stating some properties of slope decompositions that will be required in
the proof.

Lemma 9.1 (i) Let M, N, and P be L-vector spaces equipped with an action of A,
and suppose that M, N, and P each admit a slope < h decomposition with respect
to A. If0 > M - N — P — 0 is an exact sequence of A-modules, then we have
an exact sequence 0 - Mh — N<b  p<h

(ii) Let M = lim M, be a nuclear Fréchet space equipped with a compact endomor-
phism U that induces compact operators U, on M, for each n. Then for each n
there is an isomorphism M<™U = M=MUs This fact holds as well for compact
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maps between complexes of nuclear Fréchet spaces and the induced slope decom-
position on their cohomology.

(iii) Let (M, | -|) be an L-Banach space equipped with an action of A, where |- || de-
notes the norm on M, and suppose that there is a O -submodule

Me {meM:|m| >0}

that is stable under the action of A. Let h = (h;);e1 with h;, < 0 for some ig € I.
Then M=? = 0.

Proof Part (i) is simple [Urbll, Corollary 2.3.5]. Part (ii) was proved in [Urbll,
Lemma 2.3.13]. For part (iii), suppose that M<! # 0. Then, after possibly replac-
ing L with a finite extension, we can find « € L and x € M such that v,(«) < 0 and
Ui, x = ax. Then there exists n € Z such that «” x ¢ M. This is a contradiction because
a"x = U x € M by A-stability of M. ]

In particular, we have Corollary 9.4.

Definition 9.2  For each o € X, denote by p(0) the unique prime p|p such that
the embedding 0: F - Q c C extends to an embedding F, — Q, c C, that is

compatible with the fixed embedding inc,: Q — @p. If 0 corresponds to p under this
identification, we write o ~ p.

Definition 9.3 Letv = (k,v) € Z[Z]? be an admissible weight. Define

vp(v) = > ve.
o~p
Corollary 9.4 (1) Letv = (k,v) € Z[Z]* be a weight with k + 2v parallel (but
allowing for negative values of k). Let h € QUPIP} be such that h, < V"e—(pv) for
some prime p above p. Then for all r we have H.(Yy(n), £2(D,(L)))<* = {0}.
(ii) Under the same hypotheses, the same result holds if we replace D, (L) with any
2o (p)-stable submodule or by quotients by such submodules.

Proof From Section 7, we know that D, (L) = l(iLnDA,n(L), where D, , (L) is the
L-Banach space of distributions that are locally analytic of order n. We also know
(from results in the previous section) that the cohomology group

H.(Y;(n), £2(Dy0(L)))

is an L-Banach space, and we see that HZ (Y7, £,(D,,0(01))) is a Op-submodule of
the elements of non-negative norm. This space is not necessarily preserved by the
Hecke operators at p, but it is preserved by the modified operators Uy, = My P ) Uy,
where we scale by 7, (") to ensure integrality in the case v, (v) is large and negative.
Write A" := L[U, ] for the algebra generated by these modified operators. Applying
Lemma 9.1 (ii) and (iii), we see that if h’ € Q{*IP} is chosen such that h; < 0 for some
prime p above p, we have H(Y;(n), £5(D,0(L)))s""4" = {0}. By Lemma 9.1 (ii), the
finite slope cohomologies of D, (L) and D, ¢(L) are isomorphic; hence we conclude
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’

that HZ(Yi(n), £2(Dy(L)))s"4" = {0}. Now note that for any operator U on a
nuclear Fréchet space M, we have a relation

MERPU o pgsh-kU

In particular, define h € Q*IP} by h,, = hy, + vy (v)/ep. Note that hy, < 0 for some p

above p if and only if h, < v,(v)/e, for some p above p, and that the space on which

the Hecke operators at p act with slope < h is isomorphic to the space on which the
operators Uy, act with slope < h'. Part (i) follows.

The proof for submodules is identical. The case of quotients then follows by taking

a long exact sequence, applying Lemma 9.1 (i), and using the result for submodules.

|

9.2 Theta Maps and Partially Overconvergent Coefficients

We now introduce modules of partially overconvergent coeflicients that will play a

key role in the proof.
Forany o € Z,let A, = (k/, v") be the weight defined by
o1 K k. %f‘[ # 0, v Vs %f‘r# o,
-2-k, ift=o, ve+ks+1 ifr=0.

Let f be a locally analytic function on O ®7 Z,, and let {V'} be an open cover of
OF ®z Zj such that f|y is analytic for each V. Then we can consider f|y as a power
series in the d variables {z, : ¢ € }. We can consider the operator (d/dz,)*"*! on
such power series in the natural way, and note that this induces a map

04 Ar(L) — Ap, (L)

For more details about this map, see [Urbll, Proposition 3.2.11]. Taking the continuous
dual of this map, we obtain a map ©}: D, (L) - D, (L).

Remark  This map is equivariant with respect to the action of £y (p). Note, however,
that the action of the U}, operator is different on D, (L) and D, (L), due to the scaling
of v at 0. Indeed, we introduce a factor of the determinant of the component at ¢ to
the power of k, + 1.

Now label the elements of X as 03, 03, . . ., 04, where we can choose any ordering
of the elements. We write ®3:{0} — D,, and for each s = 1,...,d, we denote by
©; the map @] := ¥i,07:®;; Dy, (L) — D,(L). The cokernels of the maps
®; play a crucial role in the sequel. In particular, from the definition it is clear that
coker(®5) = Dy (L). Consider now the map ©7. If € D), (L), then @] (u) is 0 on
elements of A, (L) that are locally polynomial in z,, of degree at most k,,. Hence, for
p € Dy(L), we have p ¢ Im(®y ) if and only if there exists a monomial z* := [ e 25
with 75, < kg, +1such that u(z") # 0. From this one can see that coker(®;) can
be seen as the module of coefficients that are classical at 0; and overconvergent at
02, ...,04. This motivates the following.
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Definition 9.5 Let ] c X. Forv = (k,v) € Z[Z]?, define A/(L) to be the space of
functions on Of ®z Z, defined over L that are locally analytic in the variables z, for
o ¢ ] and locally algebraic of degree at most max(k,,0) in the variables z, for o € J.
Define D/ (L) be the topological dual of A/ (L).

Thus we see that coker(©;) = Di”l} (L). Continuing in the same vein, we see that
coker(®7) = fo(L), where J; := {01, ..., 0s}. In particular, if we write V) 1. (L) for
the space of locally algebraic polynomials on Of ®7 Zj, of degree at most k, with the
natural action of 4 (p) depending on A, then we get the following.

Proposition 9.6  There is an exact sequence
@)('
@ Dy, (L) —5% Di(L) — Vijoc(L) — 0.
o€
In particular, we have coker(©%) = D¥ (L) = V) joc(L)*.

These are the last terms of the locally analytic BGG resolution introduced in [Urbll,
§3.3]; see [Urbll, Proposition 3.2.12] for further details of this exact sequence.

9.3 The Control Theorem

The following theorem is the main result of this part of the paper, and allows us
to canonically lift small-slope classical modular symbols to overconvergent modular
symbols.

Theorem 9.7 Let A = (k,v) be an admissible weight, and leth = (hy )|, € Qtrlrt,
Let ky = min{k, : 0 ~ p} and recall the definition of v, (1) from Definition 9.3. If for
each prime p above p we have

©02) L <k3+vp()t)+1
. b 7% ,
then, for each r, the restriction
prHI(Yi(n), £2(Da(1)))™ = H{(Yi(n), £2(Va(L)*))™"
of the specialisation map to the slope < h subspaces with respect to the Uy-operators is
an isomorphism.

To prove this, we make use of the following.

Lemma 9.8 In the set-up of Theorem 9.7, if h satisfies equation (9.2), then for any s
there is an isomorphism

H{(Yi(n), £2(D3 (L))" — H{(Yi(n), £2(D} (L))"

induced from the natural specialisation maps.

Proof We follow [Urbll]. For any ¢ € X, let A, = (k’,v") be the weight defined
in equation (9.1), and recall the theta maps ©7: @®;_; D), (L) - D) (L). Recall that
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coker(@®}) = @/]{ (L) can be viewed as a module of distributions that are classical at
01,...,0s and overconvergent at 04y, . .., 04. In particular, there are natural projec-
tion maps Di”‘ (L) - Dﬁ‘ (L) given by specialising from overconvergent to classical
coefficients at g;. Moreover, from the definition of @;_there is an exact sequence

*

Dy (L) ~2 DIt (L) — DI(L) — 0,
and a closer inspection shows that the sequence
(9.3) 0—> @fy—:(L) — Dp(L) — DE(L) — 0
is exact for the quotient Dﬁ“;‘ (L) of Dy, (L).

Using Lemma 9.1 on the exact sequence of equation (9.3), we obtain the exact se-
quence

= HU(Yi (), £o(D) ()™ — HU(Yi(n), £(DF (1))
— HL(Yi(n), Lo(Df (L)) — HI(Wi(n), Lo(DS (D)™ — -+,

where here we are taking slope decompositions with respect to the Hecke operators

at p.
If by < (kg +vp(A) +1) /e, for all primes above p, it follows that

ko, + Voo (M) +1 _ Voo (Ae)

eP("S) eP(US)

hp(o's) <

Now, by Corollary 9.4 (ii), as Df" is a quotient of D), , we must have

He(Ya(n), £2(D}; (L))" = {0}
for all r. Then, using the long exact sequence, for all r we have
H{(Yi(n), £2(D7 (L)))= = H{(Yi(n), £2(D} (1))

as required. ]

Proof of Theorem 9.7 Recall that we defined V) 1,c.(L) c A(L) to be the subspace
of functions which are locally polynomial of degree at most k. We see that V) 1oc(L) =
lim V), (L), where V) (L) := Ay,n(L) 0 V3 1oc(L). Note that Vi (L) = Vj,0(L). In
particular, using part (ii) of Lemma 9.1, we have

HI(Yi(n), £2(Vaoe (L)) ™ = HE(Yi(n), £2(Va(L)"))™".

Hence it suffices to prove the theorem by considering the coeflicients of the target
space to be in V) jo(L)* instead of V, (L)*.

We use Lemma 9.8. For this, note that D} (L) = Vi joc(L)* and DF(L) = D, (L).
A simple induction on s then shows that we have the required isomorphism. ]
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10 Construction of the Distribution

Let ® be a cuspidal eigenform over F that has small slope (in the sense of the pre-
vious section). Then via Eichler-Shimura, we can attach to ® a small slope p-adic
classical modular eigensymbol, and using the results of previous sections, we can lift
this to a unique small slope overconvergent eigensymbol. In the work of Pollack and
Stevens [PSl11, PS12] and the work of the second author in [Will7], once one has such
a symbol, one can evaluate it at the cycle {0} — {oo} to obtain the p-adic L-function
we desire. This, however, relies on the identification of H{ (Y;(n), £,(D;(L))) with
the space Homr (Div’(P!(F)), D, (L)), an identification that exists only for g = 1,
that is, for F = QQ or an imaginary quadratic field. To generalise this to the totally real
case, in [BS13] the first author used automorphic cycles, as introduced in Section 5.1,
writing down overconvergent analogues of the evaluation maps we used with classical
coeflicients. Here, we generalise his results to the case of general number fields. The
notation we use here was fixed in Section 5.1.

10.1 Evaluating Overconvergent Classes

Suppose ¥ € HI(Y;(n), £,(D;(L))). Here recall that we consider the local system
given by fibres of GL,(F)\(GL2(Ar) x Dy (L))/U(n)KE Zow — Yi(n), where the
action is by y(x, g)uk = (yxuk, y * u). In this setting, slightly different versions of
the evaluation maps will allow us to associate a distribution with such a class.

Step 1. Pulling back to X;: First we pullback along the map #;: X; — Yi(n). We
have ¥ € HI(X;, 1;£2(Dy(L))). We can see (by examining equation (5.1)) that
here the local system corresponding to £ , (D1 (L)) := #; £2(Di (L)) is given by the
fibres of F*\(Aj x D (L))/U(f)Fl, — Xj, with action

y(x, p)ur = (yxur,‘u * (g ((u~ liﬂf_l)VIP) )

Step 2. Twisting the action: Unlike in the complex case described earlier, the action
describing the local system above is not a nice action, so we twist to get a nicer action
of units. To this end, the matrix

1A
(4 (ﬂf)ﬂp) ¢ GLZ(R)FP) = GL,(F 8 Q,)

lies in Zo(p). So we twist our local system by this; denote this twist on distributions
by

(:‘:DA(L) — ZDA(L),
1 -1
B (o ()

and consider {, ;¥ € HE(X;, £52(D1(L))), where the local system £;,(Dy(L))
now is given by
F*\(AF x DA(L)/U(f)Foe — X,
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y(x, p)ur = (yxur,/,t * (g (1)))

Step 3. Passing to individual components: In identical fashion to Section 5.2.2, we pull
back under the isomorphism 7, : E(f)FL, \FZ, = Xy = X; given by multiplication
by ay. Then we have

7L € B EL\ES, £1y2(D (1)),
where the local system L,y (D (L)) is given by

E(f)Fo\(Fs, x Da(L)) — E(f)Fao \Fs,,

er(z, u) = (erz,y * (e; (1)))

(Note here that whilst u € U(f) acts as (4 9), in this step we now have an inverse.
This because u is considered as an element of the finite ideles whilst we instead see e
as a diagonal infinite idele, which is equivalent under multiplication by F* to e as a
diagonal finite idele and thus an element of U(f)).

Step 4. Restricting the coefficient system: We would like a constant local system. This
would allow us to evaluate the cohomology class easily. We see that if we restrict to a
quotient of D, (L) such that, for all e € E(f), the matrix (§ ) acts trivially, then we
have precisely this. With this in mind, we make the following definitions.

Definition 10.1 Define A;’+ (L) to be the subspace of A, (L) given by

AR ()= {feAn0): (§9) f = f ve e B},

Note that equivalently this is the set of all f € A, (L) such that f(ez) = e*"V f(z).

Define @Ef (L) to be the topological dual ofﬂ»;’)r (L). Note that DR’J' (L) isa quo-
tient of D (L). (Henceforth, we will drop f from the notation, as the level will be clear
from context).

Now, if we pushforward via the map
v:Dy(L) — Di(L),
pr— H|A;(L),
then the resulting local system is constant. We see that
v, Coni ¥ € HU(E(F)FL \FL, D3 (L)) 2 DI (L),

where the isomorphism is given by integrating over E(f) FX \FZ,.
10.1.1 Definition of the Evaluation Map

Definition 10.2 We write EV?Y,r for the composition

EviHE(Yi(n), £2(Da(L))) — Di(L)
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of the maps

H{(%i(n), Lz(@A(L))) Hq(Xbsz(DA(L))) —
HI(E(P)Fao\F&, £1.y.2(Da (L)) = HU(E(F)FL\FL, D3 (1)) = Di (L)

In particular, we have maps Ev . for eachy € Cl;(f). Note that these maps are
dependent on the choice of representatlves In any case, for a fixed choice of repre-
sentatives {ay € A} :y € Cl;(f)}, we have now defined a map

@y Ev .
HI(Yi(n), £2(Da(L))) —> & Di(L).

10.2 Locally Analytic Functions on Cl;(p*)

Let L be a (not necessarily finite) extension of Q, contained in C,, the completion
of an algebraic closure of Q,. Denote by A(Cl;(p™), L) the space of locally analytic
functions on Cl;(p*) defined over L, and denote by D(Cl;(p>), L) its topological
dual over L. The p-adic L-function should be an element of this space of distributions;
we now give some properties of locally analytic functions that will be required in the
sequel.

10.2.1 The Geometry of Cl;(p*)

We first recall the geometry of Cly(p*), which is defined as follows: Clz(p*) =
F\AY/U(p>)FL. Letting f range over all ideals d1v1d1ng (p)° and taking the in-
verse limit of the series of exact sequences OF , - (Op/f)* — Cli(f) - Clp -

0, we see that we have an exact sequence O} , — (0p ®z7Z,)* — Clg(p=) —
Cl; — 0, so that, after picking a choice of representatives for Cl}, we have Clj;(p*)
Uci: (Or ®z Z,)*/E(1). (Here note that E(1) = O%,,»> and we have taken E(1) to be
the completion of E(1) in (Of ®7 Z,)*). Indeed, for any f, we can go further and
write Cl;(p*) 2 Uyects () Gy where

(10.1) = {z € Cl;(p*°): z = y under the map Cl;(p*°) — CI;(§)}.

Note that multlphcatlon by ay ! gives an isomorphism
Gy2G={ze(0r®27Z,)" :z=1(modf)}/E(}).

10.2.2 Properties of Locally Analytic Functions

For a choice of idelic representatives {ay} c A} of Cl;(f), we can consider any func-
tion ¢: Clp(p™) — Las a collection {¢, :y € C1+(f)} for

$a,:G— L,

z+—> (p(a;lz).
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Then, in a slight abuse of notation, ¢,, can be thought of as a function

q)ay:OF ®7 Zp — L

with support on a subset of (O ®7 Z,)* and with ¢, (ez) = ¢4, (2) forall e € E(1).
A simple calculation then shows the following.

Proposition 10.3  Suppose ay, = ayyur is a different representative of the class y €

Clg(f), where y € F*,u € U(f), and r € F,. Then ¢, (z) = a; (1z) as functions on
G, where U is the image of u € U(f) in U(§) /U (p™) c (Op ®z Zp)*.

10.3 Constructing uy in D(Cl;(p™),L)

Notation =~ We write A} = {ay} to denote our system of class group representatives
for Cl5 ().

We now construct a distribution ‘u@f associated with this choice of representatives.
Let ¢ be alocally analytic function on Cl;(p®). Via the above construction, we obtain
functions ¢, : Gy — L, each of which we can view as a function ¢, : O ®7 Z, — L
with support on the open subset {z € (Op ®7Z,)* : z = 1(mod f)} and satisfying
¢a,(ez) = ¢q,(2) for all e € E(f). Now, EV?YT(\I’) € D3 (L). This is a distribution that
takes as input functions y: (Or ®7 Z,)* - L with y(ez) = e**Vy(z). To force Pa, to
satisty this condition, we twist it.

Definition 10.4 If y:Op ®7 Z, — L is a function with support on elements con-
gruent to 1 (mod f) and that satisfies y(ez) = y(z) for all e € E(f), then we define
y e AT(L) by

0 otherwise.

k+v -1 : X
I//*(Z):{z v(z™) ifze(Op®z7Zp)%,

Since y has support inside the units, this remains continuous. It is simple to see that
this now satisfies the condition required. We use z™! rather than z for reasons of
compatibility in later calculations.

Now we can evaluate EV?YT (W) at ¢ . This motivates the following.
> Y

Definition 10.5 Define ygf e D(Clz(p™), L) by

A a *
uy'(9) = > Evii(¥)(¢;) €L
yeClE ()

Proposition 10.6  For fixed {, this is independent of the choice of class group represen-
tatives.

Proof There are two layers to this. Choosing representatives fixes the collection of
maps {EV?YT(‘I/) : ay € As}, and the identification of ¢ with (@, )yeci: (5). We prove
that these choices cancel each other out. To do so, we examine the local systems; see
Section 5.1 for descriptions of each local system.
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Recall that we have (.7;¥ € H{(X;,£5,2(Da(L))) (canonically), and then that
we can pull back to X, under the canonical inclusion. At the first stage where our
representatives come into play, the map of local systems induced by

Tay:E(f)Fio\F:o — Xy
can be described by the map
(102)  F*\(F*ayU(f)Fs, x Da(L))/U(f)Foe — E(F)Fo\(Fs x Da(L))

eyer s (s (7).

recalling that 7, is given by z = ayz and that # is the image of u in (Or ®7 Z,)™.

This map is well defined; indeed, consider

y'[(yayur,w)]vs = [ (y'yayuvrs, = (§9)) ] — [(rs. (= (§9)) « (€07 9))]
= (o (% 9))] = Im([yayur, u]).

Now suppose we choose a different set of representatives {a;}, with, as before,

I _

ay

ayyur, yeF*,ueU(f),reFL.

Then under the map of equation (10.2), we have
[(ay, )] = [(ayyur, )] — [ (rou* (%' 2)) ]

Thus, when we restrict, we find that EV:YT (¥) = EV?,YT (W) * ( agl 9 ) We have already
shown that, for ¢ € A(Clz(p™), L), we have ¢a;(z) = 9a,(z). Then an easy calcu-
lation shows that goz; (2)=(89)* ¢3,(2). Accordingly,

al . —1 = * *
Evi’ s (¥)(95,) = Byt (9) + (57 9) ((§9) * 02,) = BV, (¥)(93,)-
Thus this is independent of the choice of representatives, as desired. ]

Definition 10.7  For some choice of representatives A; = {ay} of Cl;(f), define
‘u\f{, = ‘ué,f. (Note that, by the proposition, this is well defined for each ).

10.4 Compatibility Over Choice of f

We have defined, for each f|p™, a distribution yfy € D(Clz(p™), L). We now investi-
gate how this distribution varies with the choice of §. Since we have independence of
choice, we now choose class group representatives that are compatible in the following
sense.

Notation  Throughout this section, take f|p* and let p|p be a prime. We will make
the following important assumption throughout this section: the ideal f is divisible by
all of the primes above p. Let A; = {ay} be a full set of representatives for Cl;(f), and
let {u, € U(f) : r € R}, for R = U(f)/E(f)U(fp), be elements of U(f) such that the
set Ajp := {ayu, : y € CIj(f), r € R} is a full set of representatives for Cl;(fp).
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Lemma 10.8 (i) There is a commutative diagram

HI(Yi(n), £5(Dy (L)) — 2= HI(Yi(n), £5(Dy(L)))
iiﬂﬁp lm;
HY(Xjp> Lip2(Da (L)) — = HI(X;, £12(Da(L)))

where the bottom map is the natural trace map on cohomology [Hid93, §7].
(ii) We have, for ¥ € HI(Yy(n), £2(Di(L))), the relation

Bvir'y (%)« (% 9) = Bvy, (¥|Up)l6

where

={2€Op®z Z,: there exists e € E(f) such that ez = u, (mod fp)}.

Proof For part (i), see [BS13, Lemme 5.2]; the proof generalises immediately to the
general number field setting. For part (ii), we bring in our explicit dependence on
class group representatives. In particular, note that there is a commutative diagram

HY(Xjp> L1p2(Da(L))) ——= HI(X;, £1.2(Da(L)))

iwi;,,,) i()

‘sz’+(L) restriction to G, ®§’+(L)

where we have written (Ta u,)" to emphasise the dependence of this map on the ideal.
Hence Evayu'(\I’) = Evayu'(‘{’\Up)|G Using the results of the previous section, we
have the equality Evff’,r (Y|U,) = Evayu’ (‘P|U,) * (% 9), hence the result. |

Proposition 10.9  Let f|p™ be divisible by all of the primes above p, and let p be a
prime above p. Let ¥ € HI(Y1(n), L2(Dy(L))) be an eigensymbol for all the Hecke

operators at p, with Uy-eigenvalue A,,. Then pr =Ap yfl,.

Proof Let ¢ € A(Clz(p*)). We evaluate y " at ¢ by using the class group repre-
sentatives Ay, and then evaluate y\lep at ¢ using the representatives Ay, and use the
previous lemma to show that they are equal.

Fixy € Clz(f) and r € R. Then we see that ¢, 4, (2) = ¢4, (14;'z) for z € G,. In
particular, we have ¢} |, = ( ’7671 ‘1’) * ¢, u,(2). Observe now that by the previous
lemma, we have

Evi’ (Y1Up)(93,) = ZEV“’”'(‘I’)| (6 1)(9ile)

Z BV () (5,)-

Summing overy € Cl;(f) on both sides and replacing ¥|U,, with A, ¥ on the left-hand
side now shows the result. ]
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We have now proved the following.

Theorem 10.10 Let ¥ € HI(Yi(n), L,(Dy(L))) be an eigenclass for the U, op-
erators for all p|p, and let §|(p™) be some choice of ideal with { divisible by all the
primes above p. Define U; := [1,r; Uy, write A; for the eigenvalue of Uj, and define
Yy = /\f‘ly\fy. This is well defined and independent of choices up to a fixed choice of
uniformisers at primes above p. Thus, for such \Y, there is a way of attaching an element
py of D(CIE(p™), L) to ¥ that is independent of choices.

Definition 10.11 In the set-up above, we call py the p-adic L-function of ®.
10.5 Evaluating at Hecke Characters

Let ¢ be a Hecke character of infinity type r € Z[X] and conductor f|(p>), where f
is divisible by every prime above p. In this section we describe the evaluation of the
distribution gy at ¢,_fiy (as defined in Section 2.2.2).

Choosing representatives { ay } for Clj;(f), we see that (¢ p—fin )a, = 1, €997 (ay)z"
where 1g, is the indicator function of the open subset of Cl;(p*) corresponding to
y € Cl; () (see equation (10.1)), and z is a variable on O ®7 Zy. We see that, for ¥ as
above,

(10.3) wy (@p—fin) = Af_l > eo0s(ay) EV?YT () (25,
Y

11 Interpolation of L-values

In previous sections, we have defined the maps denoted by solid arrows in the follow-
ing diagram.

(1L.1) H(Yy(n), £1(Va(L)*)) BV )
I N ;

HI(Y;(n), £,(VA(L)*)) T )IX
S 5

HI(H(), £2(D4 (1)) — 2 (1) 222

In particular, the isomorphism is induced by the isomorphism of local systems given
in Remark 4.3, the top (classical) evaluation map was defined in Section 5.2, the map
p is induced from the specialisation D, (L) - V) (L)*, and the bottom (overconver-
gent) evaluation map was defined in Section 10.1. In this section, we define the maps
above denoted by dotted arrows in a manner such that the diagram commutes. By
doing so, we will be able to use our previous results to relate the evaluation of the
distribution p¢ at Hecke characters with critical L-values of ©.
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11.1 Classical Evaluations, Il

We start by defining the missing evaluation map. We have already touched on all of the
key points of this construction; it is essentially a blend of our previous two evaluation
maps. Taking notation from Section 5, we pullback along #j, giving a local system
1; £2(Va(L)*) on X; that can be described by sections of the projection

F\(Af x Va(L)*)/U(F) Foo>
with action

-1

f(x, P)ur = (qur,P * (g ((u- liﬂf )Vlf) ) .
This bears relation with the overconvergent case in that we have an action of units that
is not particularly nice. As in that case, we untwist this action using the map ({}).
from Section 10.1, so that units act via the matrix (% 9). We can then pull back under
the injection 7, : E(f)FL, \FZ, < Xj of previous sections. Finally, as in the classical
case, we push forward under evaluation at the polynomial X¥7YJ, which lands us in a
cohomology group with coefficients in a constant sheaf (see Section 5.2). Combining
all of these maps, we get a map

a
Ev.>
,§>2

which gives the definition of the dotted horizontal arrow in the diagram.
The following lemma determines the definition of the map f in the diagram. For
ease of notation, write Ev for the map Ev‘;yJ i

H(Yi(n), £2(Va(1)")) — L,

Lemma 11.1 Let o denote the isomorphism
aHI((n), £i(Va(L)")) — HI(1i(n), L2(Va(L)"))

induced by the isomorphism Li(Vy(L)*) = L2(Va(L)*) of local systems given by
(g, P) — (g, Plgp) (see Remark 4.3). Then Ev,(a(¢)) = n’f+v Evi(¢).

Remark  Here, in an abuse of notation, we write 75 for the natural element of L
corresponding to (75),|, € Or®z7Z,, under our fixed choice of uniformisers at primes
above p. Note that under this map, a uniformiser 7, is mapped to Nk, g, (77), s0

that as elements of L, we have ﬂ?v = N(f)I*¥] up to multiplication by a p-adic unit.

In particular, multiplication by n’.fw is a well-defined concept.

Proof We look at the local systems in each case. A simple check shows that there is
a commutative diagram

HI(¥i(n), £(Va(L)*)) —— 1 HI(X5, £50(Va(L)*))

HI(¥i(n), £2(Va(L)*)) — 2" 13X, £52(Va (L))
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where o is the map induced by the map

I )

()i
of local systems. Then continuing, we see that there is a commutative diagram

*

H(X;, £11(Va(L)*)) — = HYE()FL\FL, £1ya(Va(L)*))

’ ”
24 o
T*

HE(X5, L52(Va(L)*)) —————— HI(E(DFL\FL, L1y (Va(1)*))

where a’ is the map induced by the map

(r,P) —> (r,

1 0
(0 (ﬂf)vlf)) )

of local systems. Finally, there is a commutative diagram

(ev. at X*7Y7),

h

HE(E(F)Fi\F& Ly (Va(L)))

" ev. at X¥TY)),
HI(E(F)Foo\F&» Ly, 2(Va(L)"))

h

Putting these diagrams together gives the required result. ]

Recall the definition of Ev,, in Definition 6.3, and relabel Ev,,; := Ev,,. Similarly
define

a
Evy,, = Z eo@s(ay) Evf,yj’z,
yeCIE (f)
where this makes sense, and note that by an identical argument to the previous one,
this is independent of class group representatives. Using the results above with the
results in Section 6, we obtain the following.

Corollary 1.2 Recall the definition of Ox € HI(Yy(n), £,(V)(K)*)) from Definition
4.8, and recall that we set 0y to be its image in HI(Yi(n), L2(Vy(L)*)) under the
inclusions of equation (4.2) and (4.3). Then

j+v
|D|T(¢)”f

Evy(01) = 7} " Bvga(Ok) = (—1)R<i’k>[ YK

] A (D, 9),

where R(j, k) = Xyesr) jv + kv + Lyes(c) kv-

Note here that this holds for any conductor f|(p°), with no condition on ramifi-
cation.
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11.2 Relating Classical and Overcovergent Evaluations

Returning to the commutative diagram in equation (11.1), we now show that the map
4 is actually nothing but the identity map. For a suitable automorphic form ®, this
will then allow us to prove the required interpolation property for the distribution

Ho.

Proposition 11.3  There is a commutative diagram

ay

HI(Yi(n), £2(Da (L)) ——— = D3 (L)

\LP ev. at 257
EviY

V.
.Js2

HI(Yi(n), Lo(Va(L)*)) —————— L

where the left vertical arrow is the specialisation map and the right vertical arrow is
evaluation at the polynomial %7

Proof This is easily shown by looking at each step of the construction of the maps
EV?YT and Ev;:’yj’2 in the previous sections. At each of steps 1, 2 and 3 we can write
down a specialisation map by restricting the coeflicients, and by looking at the level
of local systems, we can clearly see that these specialisations commute with the maps
13> Cj» and 7,,. It remains to show compatibility over step 4, where the construction
is slightly different. This amounts to showing that the diagram

Hg(E(f)F(lx\F;,Lf’y’z(‘DA(L))) res DI(L)
Hg(E(f)F}’O\F:o’Lf,y,z(VA(L)*)) ev. at X* Iyl !

commutes, where the left-hand map is restriction of the coefficients, the map res is the
restriction of coefficients to D} (L) followed by integration over a fixed cycle, and the
bottom map is the composition of (p;j). with integration over the same cycle. Since
VA(L)* g .A)L(L) via

P(X,Y) » P(z,1),

we see that when we look at the corresponding local systems, we are evaluating at the
same element in each case; thus the diagram commutes. |

By combining this with equation (10.3) for gy (¢, ), we get the following.

Corollary 11.4  Let ¢ € HI(Yi(n), L,(Vi(L)*)) be a small slope Hecke eigensymbol
with Us-eigenvalue Ay and with (unique) overconvergent eigenlift ¥, and let uy be the
corresponding ray class distribution. Then for a Hecke character ¢ of infinity type j + v
and conductor §|(p*°), where 0 < j < k and { is divisible by every prime above p, we

have py (9 p—fin) = /\f’l Evy2(9).
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In the case that ¢ is the modular symbol attached to an automorphic form, this
then gives the desired interpolation property at Hecke characters that ramify at all
primes above p as an immediate corollary (see Theorem 12.1 below).

11.3 Interpolating at Unramified Characters

We now consider interpolation of L-values at Hecke characters that are not necessarily
ramified at all primes above p. For this, we use Corollary 5.7. Whilst heretofore the
results of this section have been for arbitrary modular symbols, to use this corollary
we need to restrict to the case where the cohomology classes we consider are those
attached to automorphic forms via the Eichler-Shimura isomorphism. Let ® be such
an automorphic form of weight A and level Q(n), and suppose that @ is a Hecke
eigenform that has small slope at the primes above p. Let ¢, be the (p-adic) modular
symbol attached to @, and let ¥ be the associated (unique) overconvergent modular
symbol corresponding to ¢, under the control theorem. Then we have the following.

Lemma 11.5 Let ¢ be a Hecke character of conductor f|(p*°) (with no additional
conditions on f) and infinity type j + v, where 0 < j < k. Let B be the set of primes above
p that do not divide §, and define §' := § [1,cp b so that §' is divisible by all the primes
above p. Then we have

v (Ppfin) = ?t{flﬂ’}fv[pIZIB(fp(P)lp ~ 1] Evga(¢r)

=27 LI 9pepn (1) (12510 () ™)] B (61).

Proof By definition, yy = )Lf_,l y\fl:. Hence we see that

-1 a ki
we(@p-rin) = A5 D, epps(ay) Bvy  (¥)(27).
yeCIE(F)
Using the results of Section 11.2, we can replace the overconvergent evaluations with
classical ones, and then using the results of Section 11.1, we get

e (9p-iin) = A5l Y eppp(ay) By (41).
yeCl3 (5)
We now use Corollary 5.7, which directly gives the first equality. The second equality

follows since for p not dividing f, we have T[];:v = @p—fin(7p ) @(p) ", an identity which
follows from the definition of ¢ ,_fiy. [ |

12 Main Results

The following is a summary of the main results of this paper. Recall the setting: ® is
a small slope cuspidal eigenform for GL, over a number field F of weight A = (k,v) €
Z[Z]? where k +2v is parallel, and with level Q;(n), where (p)|n. Let A(®, - ) be the
normalised L-function attached to @ in Definition 3.2. To @, one can attach a unique
overconvergent modular symbol ¥ using Theorem 9.7. Using Theorem 10.10 we may
construct a distribution py € D(Clz(p™), L) attached to ¥, which we defined to be
the p-adic L-function of ®.
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Theorem 12.1  Let ¢ be a Hecke character of conductor f|(p™) and infinity typej+v,
where 0 < j <k, and let &, be the character of {£1}*®) attached to ¢ in Section 2.2.1.
Let ¢ p—fin € A(Cl(p™), L) be the p-adic avatar of ¢. Let B be the set of primes above
p that do not divide §. Then

I1 Zp) A(D, 9),
peB

o[ IDle(o)m™

_in) = (-1 RGR)| VAT

W (9p-in) = (-1) 200 (

where Zp, = ¢, fin(7) (1= A, @(p) ") (noting here that ¢(p) is well defined since ¢
is unramified at p).

Here R(j, k) = ¥yex(r) jv + kv + Xyes(c) kv, D is the discriminant of F, 7(¢) is the
Gauss sum of Definition 2.6, r, is the number of pairs of complex embeddings of F,
Aj is the Uj-eigenvalue of O, be“’ is the fixed period attached to ® and ¢, in Theorem
3.3, and A(®,-) is the normalised L-function of @ as defined in Definition 3.2.

13 Remarks on Uniqueness

When F is a totally real or imaginary quadratic field, we can prove a uniqueness prop-
erty of this distribution. In particular, we prove that the distribution constructed
above is admissible in a certain sense, and any admissible distribution is uniquely
determined by its values at functions coming from critical Hecke characters [Coll0,
Loel4]. For further details of admissibility conditions in these cases, see [BS13, Will7]
for the totally real and imaginary quadratic situations, respectively. In the general
case, things are more subtle. There is a good notion of admissibility for distributions
on Of ®z Z,, but it is not at all clear how this descends to a useful admissibility con-
dition on Clj;(p>).

In particular, recall that Cl(p**) = Lciz (O ® Z,)*/E(1). When F is imaginary
quadratic, the unit group is finite, and in particular, in passing to the quotient, we do
not change the rank. In this case, growth properties pass down almost unchanged.
When F is totally real, the unit group is in a sense maximal if we assume Leopoldt’s
conjecture. In particular, provided this, the quotient is just one-dimensional, and we
have a canonical direction with which to check growth properties.

Let us illustrate the difficulties of the general case with a conceptual example, for
which the authors would like to thank David Loeffler. Let F = Q(+/2), and note that
F is a cubic field of mixed signature. We see that (O ® Z,)* is a p-adic Lie group

of rank 3, and that the quotient by E(1) has rank 2 (since the unit group has rank 1 by
Dirichlet’s unit theorem). In particular, a distribution on Cly(p>) can grow in two
independent directions.

As the maximal CM subfield of F is nothing but Q, it follows that the only possible
infinity types of Hecke characters of F are parallel. In particular, there is only one
dimension of Hecke characters. In this sense, even though we have constructed a
distribution that interpolates all critical Hecke characters, there are simply not enough
Hecke characters to hope that we can uniquely determine a ray class distribution by
this interpolation property.
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One might be able to obtain nice growth properties using the extra structure that
we obtain from our overconvergent modular symbol; in particular, one might expect
the overconvergent cohomology classes we construct to take values in the smaller
space of admissible distributions on O ® Z,, which makes sense before we quotient
to obtain distributions on Cl;(p*). Without the theory of admissibility at hand in
the latter situation, however, we cannot show that the distribution constructed in this
paper is (in general) unique. We have tried to rectify this by proving that the distri-
bution we obtain is independent of choices. As seen in the previous sections, we were
able to do this up to a (fixed) choice of uniformisers at the primes above p. Hence, in
the spirit of Pollack and Stevens [PSI12], we simply define the p-adic L-function to be
this distribution.

It remains to comment on the dependence on choices of uniformisers. Whilst this
dependence seems intrinsic to our more explicit approach, since submission, Bergdall
and Hansen have given a similar, but less hands-on, construction in the Hilbert case
that removes this dependency on uniformisers [BH17].
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