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Abstract

Crops emit a variety of volatile organic compounds (VOCs) that serve as attractants or repel-
lents for pests and their natural enemies. Crop rotations, off-farm chemical inputs, and mech-
anical and cultural tactics – collectively called cropping systems – alter soil nutrients, moisture
content, and microbial communities, all of which have the potential to alter crop VOC emis-
sions. Soil legacy effects of diversified cropping systems have been shown to enhance crop
VOC emissions in greenhouse studies, but how they influence emissions under field condi-
tions remains virtually unknown. To determine the effect of cropping systems on plant
VOC emissions in the field, air samples were collected from the headspace of wheat
(Triticum aestivum L. Judee) grown in simplified wheat-fallow rotations or diversified
wheat-cover crop rotations where cover crops were terminated by grazing cattle. Across two
growing seasons, wheat grown in rotation with fallow emitted greater amounts of Z-3-hexenyl
acetate and β-ocimene, key attractants for wheat stem sawfly (Cephus cinctus Norton), a major
pest of wheat. While overall VOC blends were relatively similar among cropping system dur-
ing the first growing season, emissions varied substantially in the second year of this study
where wheat grown in rotation with cover crops emitted substantially greater quantities of
volatile compounds characteristic of abiotic stress. Below-average precipitation in the second
growing season, in addition to reduced soil water content in cover crop rotations, suggests that
cropping system effects on wheat VOCs may have been driven primarily by water availability,
a major factor limiting crop growth in dryland agriculture. While the specific mechanisms
driving changes in VOC emissions were not explicitly tested, this work shows that agricultural
practices applied in one growing season can differentially influence crop VOC emissions in
the next through soil legacy effects, illustrating additional avenues through which cropping
systems may be leveraged to enhance pest management.

Introduction

Plants produce an array of volatile organic compounds (VOCs) that mediate a variety of
plant-insect interactions (Metcalf and Metcalf, 1992) including the attraction or repulsion
of pollinators, pests and predators (Kessler and Kalske, 2018; Bouwmeester et al., 2019).
Plant volatile emissions are affected by a suite of soil abiotic and biotic properties such as tem-
perature, moisture, nutrients, allelochemicals, and microbes (Gouinguené and Turlings, 2002;
Pineda et al., 2010; Sharifi et al., 2018), all of which can result in the altered attraction of pests
and their natural enemies (Pineda et al., 2013; Pangesti et al., 2015; Mariotte et al., 2018).
Agricultural practices alter many – if not all – of the aforementioned soil properties known
to alter crop VOC emissions, and as such, may result in unintended consequences for crop
pest management.

By developing soils that yield more favorable crop VOC blends, producers could leverage
agricultural practices to increase pest management efficiency (Shrivastava et al., 2010;
Kaplan et al., 2018). It is well-established that crop rotation complexity reduces insect
pest and pathogen incidence by disrupting their life cycles (Wang et al., 2002; Huang
et al., 2013); however, crop rotation complexity can also confer pest resistance indirectly
through soil effects that alter plant defense metabolism (Hu et al., 2018; Pineda et al.,
2020; Davidson-Lowe et al., 2021). Studies have shown that the soil legacy effects of organic
systems and cover crop rotations increase foliar defenses important for pest resistance
(Murrell et al., 2019; Blundell et al., 2020), and these responses are driven by changes in
soil nutrients and microbial communities. Not only can diversified agricultural practices
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enhance foliar defense, they can also alter crop VOC emissions.
Compared to monocultures, crops grown in polyculture with a
companion crop emit altered VOCs and experience reduced her-
bivory (Mutyambai et al., 2019), and in greenhouse studies,
plants grown in soil from diversified crop rotations emit altered
constitutive and herbivore-induced VOC emissions (Malone
et al., 2020; Davidson-Lowe et al., 2021). Still, the extent to
which cropping system diversification through the inclusion of
cover crops influences in situ VOCs emissions is virtually
unknown.

Abiotic and biotic soil properties can alter VOC synthesis and
emission (Gouinguené and Turlings, 2002; Pineda et al., 2010;
Sharifi et al., 2018). For example, greater nutrient availability
and soil water content tend to increase VOC emissions
(Gouinguené and Turlings, 2002; Timmusk et al., 2014), while
microbial colonization of plants may increase (Fontana et al.,
2009) or decrease (Babikova et al., 2014) emissions of VOCs,
which can enhance (Ballhorn et al., 2013; Babikova et al., 2014)
or reduce (Brock et al., 2018) their attraction to herbivores.
While many studies have demonstrated effects of individual soil
properties and biological variables on the emissions of volatiles,
how these properties interact in field conditions is less clear, limit-
ing our ability to understand the practical implications of soil-
modified VOC emissions in agricultural settings (Brilli et al.,
2019).

Crop rotations, off-farm chemical inputs, and mechanical and
cultural tactics – collectively called cropping systems – drive biotic
and abiotic soil properties (Navarro-Noya et al., 2013; Lapsansky
et al., 2016; Ishaq et al., 2020), and thus, may influence VOC
emissions indirectly through soil legacy effects (Kaplan et al.,
2018). Compared to fallowing practices, cover crops enhance
soil organic matter enrichment and nutrient availability, while
reducing soil compaction and species-specific autotoxins
(Fageria et al., 2005; Huang et al., 2013). Cover crops also increase
the abundance and diversity of soil microbes important to plant
growth and productivity (Fageria et al., 2005; Kim et al., 2020).
However, cover crops may pose trade-offs, particularly in dryland
agroecosystems where water is a primary driver of crop product-
ivity. Cover crops may deplete deep-soil water stores and reduce
cash crop growth in the following season (Robinson and
Nielsen, 2015; Ghimire et al., 2018; Bourgault et al., 2021).

Crop production in the semi-arid Northern Great Plains (NGP)
is dominated by monocultures of drought-resistant crops, especially
wheat (Triticum aestivum L.), that are grown in rotation with a fal-
low growing season, a period when the land is left unsown to
replenish soil moisture (Padbury et al., 2002). In this region,
wheat production is largely limited by low precipitation and a
highly specialized pest complex that includes the wheat stem sawfly
(WSS; Cephus cinctus Norton), which is the most economically
important insect pest of wheat (Beres et al., 2011). Female WSS
use volatile cues from wheat, including (Z)-3-hexenyl acetate and
β-ocimene, to locate appropriate hosts for oviposition (Weaver
et al., 2009; Buteler and Weaver, 2012). Other insect pests and
beneficial species, including wheat grain aphid (Sitobion avenae),
cereal leaf beetle (Oulema melanopus), and two species of braconid
parasitoids (Bracon cephi and B. lissogaster) (Pérez, 2009; Delaney
et al., 2013; Drakulic et al., 2015) also exhibit preferential attraction
to wheat plants based on the composition and quantity of the vola-
tile compounds they emit.

Given the importance of VOCs in mediating wheat–pest–para-
sitoid interactions, it is possible that wheat plants emitting
unattractive, unrecognizable, or reduced amounts of VOC blends

could experience enhanced pest resistance directly or indirectly by
altering the attraction of pests or their natural enemies, respect-
ively. To assess whether cropping systems might be leveraged to
increase resistance of crops through shifts in their volatile emis-
sions, we measured wheat VOCs across two growing seasons
from wheat grown in rotation with fallow and paired with
wheat grown in rotation with a seven-species cover crop mixture
that was terminated by grazing cattle.

Materials and methods

Study site and cropping systems

The study was conducted at the Montana State University (MSU)
Northern Agriculture Research Center located south of Havre,
MT (48°29′48.8′′N, 109°48′10.4′′W). The site is a representative
water-limited agroecosystem of the NGP with an average annual
precipitation of 305 mm. Average annual high and low tempera-
tures at the site are 13.6 and 0.0°C, respectively (Western
Regional Climate Center, 2020). The present study is part of a lar-
ger long-term study established in 2012 to assess cover crops in
the NGP (Bourgault et al., 2021). Using a randomized complete
block design, two replicate fields (40 × 360 m each) were divided
into 8 × 14 m plots to which cropping systems were assigned in
replicates of three (Fig. 1). The location of each cropping system
was randomized in 2012 and has been maintained through time.
For a comprehensive description of crop rotations and manage-
ment methods, see Bourgault et al. (2021).

VOCs were collected from wheat grown in two cropping sys-
tems: (1) wheat rotated with a fallow season, hereafter called ‘fal-
low’, and (2) wheat rotated with a seven-species mixture of cover
crops that was terminated with grazing cattle, hereafter called
‘cover crop’. Species in the cover crop mixture included radish
(Raphanus raphanistrum L.), lentil (Lens culinaris Medikus), field
pea (Pisum sativum L.), oat (Avena sativa L.), turnip (Brassica
rapa L.), sorghum-sudangrass (Sorghum × drummondii (Steud.)
Millsp. & Chase), and soybean (Glycine max (L.) Merr.). Species
were selected based on United States Department of
Agriculture-Agricultural Research Service (USDA-ARS) recom-
mendations for the NGP and represent a range of functional groups
with potential for the provision of various ecosystem services. Cover
crops were planted on 14 May 2018, and 9 May 2019. At peak
development, cover crop was dominated by oat which represented
∼70% of the total biomass (Dupre et al., 2021). Termination by tar-
geted cattle grazing, an ecologically based management approach
used to enhance the economic and environmental sustainability
of farm diversification (McKenzie et al., 2017), occurred from 26
to 28 July 2018, and from 14 to 16 August 2019. Cropping systems
were treated with a glyphosate application prior to planting, and fal-
low plots were treated with an additional application of glyphosate
during the season to control weeds. Wheat was visually monitored
for pathogens and herbivores throughout the course of the study
and no notable pest or pathogen damage was observed.
Specifically, stem cutting by mature wheat stem sawfly larvae was
less than <5% during the experiment. Total precipitation was 343
and 287mm in 2018 and 2019, respectively, and mean annual tem-
peratures were 4.6 and 4.7°C (Table 1).

Volatile organic compound (VOC) collections

To characterize the effect of cropping systems on VOC emissions,
wheat VOCs were collected during two days over two growing
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seasons: 2018 (20 June and 4 July) and 2019 (11 June and 25
June). These sample dates overlap with the host searching periods
of WSS adults (June) and of their natural enemy parasitoids
(July). The average developmental stage of plants at the time of
sampling was Zadoks 75, 86, 55 and 77, respectively (Zadoks
et al., 1974). VOCs were collected from four ∼10 cm sections of
a row within each plot and the four samples were averaged to
determine the mean emission rate within each plot (ncover = 3,
nfallow = 3). We used a push-pull sampling technique in which
VOCs were collected from the headspace of chambers constructed
from Teflon bags (48.26 × 54.61 cm; ClearBags, El Dorado Hills,
CA) placed over the row and secured at the base of the plants
with twist ties. VOC-free air was delivered into the chamber at
225 ml min−1 for at least 10 min prior to sample collection to
flush ambient air from the chamber. Sample air including
wheat VOCs was then collected over single HayeSep Q solid-
phase adsorbent traps (Sigma Scientific, Gainesville, FL) at a
flow rate of 225 ml min−1. Wheat VOC emissions were collected
for 2 to 3.5 h between the hours of 9:00 and 14:00 on mostly
sunny days to avoid excessive afternoon heat and correspond to
times when WSS and their natural enemies are most actively ovi-
positing (Beres et al., 2011).

After collection of VOCs, sampled wheat plants were immedi-
ately harvested to standardize the emission rate by aboveground
fresh weight. Adsorbent traps were wrapped in aluminum foil
and stored on ice for transport and eluted within 24 h. Identities
and relative amounts of VOCs were determined using GC-MS
and are reported as nonyl acetate equivalents (Text S1). To account
for day-to-day variability of temperature and light, chamber tem-
perature and PAR were measured (Text S2) and used to calculate

basal VOC emission rates standardized to 30°C according to
Guenther (1997). Basal emission rates are reported as emissions
standardized by aboveground fresh weight and for the number of
hours collected (ng nonyl acetate equivalents g−1 h−1).

Biomass and volumetric water content

To assess variation in plant growth among rotation and season,
we quantified the end-of-season wheat biomass by harvesting
aboveground tissue from one quadrat (0.75 × 0.75 m) within
each plot from which we had collected VOC emissions earlier
in the growing season. End-of-season biomass was sampled
immediately before wheat harvest in mid-July. Plants were cut
at the soil surface and dried at 50°C for 48 h before being weighed.

Volumetric soil water content was measured during the 2018
growing season from field 2 only when the field was planted
with cover crops or laid follow (see Fig. 1). Because these rotations
preceded the wheat from which we sampled VOCs in 2019, 2018
soil water content measurements serve as a proxy for understand-
ing how the cropping system may have influenced the soil water
stores available to wheat crops subsequently planted. We mea-
sured volumetric soil water content (%) at six depths – 10, 20,
30, 40, 60 and 100 cm – using a PR2/6 Profile Probe (Delta-T
Devices Ltd, Burwell, Cambridge, UK) on 25 May, 4 June, 20
June and 2 July. Probes were removed prior to grazing.

Data analysis

To determine the effect of cropping system and year on the com-
position of VOCs, we calculated dissimilarity in VOC compos-
ition using the Bray-Curtis metric and by applying the ‘vegdist’
function in the ‘vegan’ package (Oksanen et al., 2019). We used
the permutational multivariate ANOVA (perMANOVA) and
the ‘adonis’ algorithm to evaluate whether a significant propor-
tion of the variation in VOC composition was accounted for by
cropping system, year, and their interaction; however, the inter-
action term was insignificant and not included in the final
model (Anderson, 2014). To visualize differences in VOC com-
position across cropping system and year, we used ‘metaMDS’
to perform non-metric multidimensional scaling (NMDS) ana-
lysis and we plotted the first two axes.

To compare the effect of cropping system on the quantity of
VOC emissions for individual compounds, families of

Fig. 1. Sample design used to determine the effect of
diversified cropping systems on VOC emissions through
soil legacy effects. Two replicate fields divided into
8 × 14m plots were randomly assigned cropping sys-
tems in replicates of three. VOCs were measured from
wheat grown in wheat-fallow and wheat-cover crop rota-
tions where the cover crops were terminated by grazing
cattle. VOC emissions were collected twice each season
in 2018 and 2019. For each collection period, four VOCs
samples were collected and averaged within a plot
(nfallow = 3, ncover = 3).

Table 1. Summary of climatic data for crop years 2018 and 2019 at the Northern
Agricultural Research center in Harve, MT (Northern Agricultural Research
Center, 2019)

Crop
year

Total annual precipitation
(mm)

Mean annual temp
(°C)

2018 342.9 (+27.9) 4.6 (−1.5)

2019 286.7 (−19.8) 4.7 (−1.3)

Crop year 2018 and 2019 include September 2017–August 2018 September 2018–August
2019, respectively. Deviation from the historical averages (1916-current year) are in
parentheses.
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compounds (ketones, aldehydes, etc.), and the sum of all mea-
sured compounds, hereafter called ‘total’, we fit linear mixed
models using the ‘lmer’ function in the ‘lm4’ package (Bates
et al., 2015). Measures of individual, family, or total VOCs were
the dependent variables, cropping system, year, and their inter-
action were the fixed effects, and sample day was the random
effect. When the interaction term was not significant for a given
family or compound, it was not included in the model. Prior to
the analysis, response variables were log-transformed to meet
assumptions of normality and homoscedasticity, except when
volatile compounds were not detected (i.e., when emission rates
for a given compound were zero), in which case, square root
transformations were used. To assess whether cropping system,
year, and their interaction accounted for variation in VOCs, we
performed Type III ANOVA using the ‘Anova’ function in the
‘lmerTest’ package (Kuznetsova et al., 2017) and when the inter-
action term was not included in the final model, we used Type II
ANOVA. To assess post hoc pairwise comparisons among treat-
ments, we used Tukey’s HSD test using the ‘emmeans’ package.

We modeled the effect of cropping system on end-of-season
biomass by fitting a linear model with cropping system and
year as the predictors. To determine the relationship between
cropping system and soil water content, we fit linear mixed mod-
els with soil water content as the response variable, cropping sys-
tem, depth, and their interaction as fixed effects and sample day
as the random effect. We performed all analyses in R version 3.5.2
(R Core Team, 2018).

Results

VOC emissions

A total of 33 volatile compounds were quantified from wheat plants
grown in rotation with fallow or cover crops including five ketones,
nine aldehydes, seven terpenes, eleven alkanes/alkenes and one
green leaf volatile (Table S1). Wheat VOC composition varied in
response to cropping system and year (Fig. 2; cropping system:
F1,23 = 3.13, P = 0.03, year: F1,23 = 19.87, P < 0.0001), with year
explaining considerably more variation in VOC composition (R2

= 0.45) than cropping system (R2 = 0.07). The total VOC emission
rate varied in response to the interaction of cropping system and
year (cropping system × year: F1,18 = 14.65, P = 0.001). In 2018,
wheat grown in rotation with fallow emitted VOCs at rates 1.6
times greater than wheat grown in rotation with cover crops (P =
0.02; Fig. 3 and Table S1). However, in 2019, the opposite was
observed: wheat grown in rotation with cover crops emitted
VOCs at rates 1.7 times greater than wheat grown in rotation
with fallow (P = 0.01). VOC emissions showed day-to-day variabil-
ity (Fig. 3) with the interaction of cropping system and year
explaining 11% of the variation while sample day – a random effect
in our model – explained an additional 88%. Though sample day
impacted the magnitude of emissions, likely due to plant ontogeny
and seasonality, the overall pattern of VOC emissions remained
consistent among sample days within a growing season (Fig. 3).

Across both growing seasons, wheat grown in rotation with fal-
low emitted more terpenes, alkanes and alkenes, and GLVs (Fig. 3
and Table S1). In 2019, however, wheat grown in rotation with
cover crops emitted more 4.7 more ketone and 3.2 more aldehyde
compounds (Fig. 3 and Table S1) than wheat grown in rotation
with fallow, and these compound families drove the observed
increase in total VOC emissions by cover crop rotations in
2019. Across both growing seasons, wheat grown in rotation

with fallow emitted greater amounts of compounds known to
attract WSS adults: β-ocimene and Z-3-hexenyl acetate were emit-
ted at rates 3.9 and 2.6 times greater compared to wheat grown in
rotation with cover crops (Table S1).

Biomass and volumetric water content

End-of-season biomass varied by cropping system (Fig. 4; F1,9 =
5.13, P = 0.05). Wheat grown in rotation with cover crops had
reduced biomass, particularly in 2019 when the total annual pre-
cipitation was ∼20 mm below average (Table 1). Soil water con-
tent in 2018 varied in response to the interaction of rotation
and depth (Fig. 5; F5 = 9.52, P < 0.0001), and there was minimal
variation among sample day (R2

marginal = 0.51, R2conditional = 0.52).
Fallow plots exhibited higher percentages of soil water content
at 30, 40 and 60 cm (Fig. 5), though soil water content was greater
in cover crop rotations at 100 cm.

Discussion

Understanding whether cropping systems influence crop volatile
emissions through soil legacy effects can provide critical insights
into how and when to implement best management practices
aimed at enhancing pest resistance. Using a two-year field
study, we demonstrated that cropping systems influence the quan-
tity and quality VOCs via soil legacy effects. Specifically, we
showed that wheat crops emit varied VOCs depending on the
rotation and management practices that proceed their growth.
Importantly, we demonstrate strong interannual effects of crop-
ping system on VOC emission, suggesting that annual climatic
variation may dictate the extent to which cropping systems
could influence crop pest-resistance.

In agroecosystems, shifts in crop VOC emissions can alter pest
attraction and crop resistance (Shrivastava et al., 2010; Mutyambai
et al., 2019). In 2018, VOC emission rates were greater from wheat
grown in rotation with fallow, even though VOC composition was
relatively similar among cropping systems. In contrast, during
2019, VOC emission rates were greater from wheat grown in rota-
tion with cover crops, and the composition of VOCs varied mark-
edly among cropping systems. Though we did not measure insect

Fig. 2. Variation of VOC composition in response to cropping system and year. Large
symbols represent the centroid of each grouping.
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behavior in the present study, the observed VOC differences
among cropping systems suggest that cropping systems may dif-
ferentially attract or repel insect pests and their natural enemies.
For example, across both growing seasons wheat-cover crop rota-
tions emitted lower amounts of terpene compounds. Greater ter-
pene emissions by wheat have been shown to effectively repel
adult cereal leaf beetles (Delaney et al., 2013), suggesting that
wheat-cover crop rotations may be less resistant to herbivore dam-
age by cereal leaf beetles. However, in the case of WSS, wheat
grown in rotation with cover crops may be less conspicuous to
host-searching females. Wheat grown in rotation with cover
crops emitted lower amounts of β-ocimene and Z-3-hexenyl acet-
ate, both of which have been shown to act as important
host-location cues for ovipositing WSS females (Weaver et al.,

2009; Buteler and Weaver, 2012). Additionally, smaller wheat
plants, like those observed in the cover crop rotation, are less
attractive to ovipositing WSS (Perez-Mendoza et al., 2006;
Buteler and Weaver, 2012), suggesting that wheat grown in rota-
tion with cover crops may experience reduced WSS herbivore
pressure through olfactory and visual modalities. Given these
observations, future research is required to determine whether
the observed shifts in VOCs emissions translate to the altered
attraction of pests and natural enemies. Finally, it is important
to note that significant reductions in wheat yields were detected
in wheat-cover crop rotations in 2019 (Bourgault et al., 2021).
While cropping systems may improve pest resistance through
altered volatile emissions, reductions in crop biomass and yield
will likely be the key factors that drive cropping management
decisions.

Fig. 4. Mean wheat aboveground biomass in response to cropping system and year.
Significance between treatments is expressed using different lower-case letters
(95% CI).

Fig. 3. VOC emissions by wheat grown in wheat-fallow
(Fallow) or wheat-cover crop (Cover) rotations. Year is
shown when emissions varied by sampling year. ‘Total
VOCs’ represents the sum of all families of compounds
(ketones, aldehydes, terpenes, alkanes and alkenes,
and green leaf volatiles (GVLs)). Shapes represent indi-
vidual sampling day.

Fig. 5. Mean water content (%) (95% CI) of soil during fallow and cover crop rotations
at six soil depths: 10, 20, 30, 40, 60 and 100 cm. Water content was measured during
the 2018 growing season on 25 May, 4 June, 20 June and 2 July when the plots were
fallow or planted with cover crops.
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We observed interannual variability in VOC emissions among
cropping systems. While our experimental design precludes us
from testing specific mechanisms driving the observed emissions,
we posit that annual differences in VOC emissions were driven by
the interaction of cropping system and annual precipitation. Total
precipitation was nearly 30 mm above average in 2018, but ∼20
mm below average in 2019 when we observed lower wheat bio-
mass. Given that cover crops can reduce water stores (Fageria
et al., 2005; Robinson and Nielsen, 2015), timely cover crop ter-
mination is vital to maintain subsequent cash crop productivity,
especially in dryland agriculture where precipitation is the pri-
mary constraint of wheat production (Padbury et al., 2002;
Bourgault et al., 2021). In 2018, we observed reduced soil water
content in cover crop plots compared to those that remained fal-
low, which – compounded by below-average precipitation in 2019
– may have created drought-like conditions for wheat grown in
rotation with cover crops during 2019. Indeed, these plants emitted
unusually high amounts of C9-C14 aldehydes, natural oxidation
products of lipid peroxides (Shahidi, 2001) that occur concomi-
tantly with environmental stressors such as drought (Wildt et al.,
2003; Giron-Calva et al., 2017). To understand how cropping sys-
tems will impact crop emissions in a given growing season, future
research should seek to understand the mechanisms driving crop
emissions in the field where multiple abiotic and biotic factors
are likely to interact in contrasting ways to influence net VOC emis-
sions (Gadhave et al., 2018; Heinen et al., 2018).

Our work explored the role of cropping system on plant VOCs
through soil legacy effects. While our study suggests that soil
water availability is vitally important in predicting shifts in
VOC emissions, our goal was not to identify specific mechanisms,
and future studies should work towards disentangling the abiotic
and biotic drivers responsible for the observations made here. Our
results indicate that crop management strategies have the poten-
tial to modify plant volatile emissions of cash crops through
soil legacy effects, illustrating the importance of considering the
temporal role of cropping systems and soils on pest resistance.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S174217052200014X
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