A PURELY ANALYTIC CRITERION FOR A DECOMPOSABLE OPERATOR

by RIDGLEY LANGE

(Received 8 November, 1978)

In [3] E. Bishop introduced the notion of an operator with a "duality theory of type 3" and gave a certain sufficient condition for an operator to have a duality theory of type 3. In this note we show that in fact Bishop's sufficient condition implies that a given operator is decomposable [4]. Moreover, this condition characterizes a decomposable operator.

Throughout this paper X denotes a reflexive complex Banach space, and T denotes a bounded linear operator on X. According to Bishop [3], Definition 5, T has a duality theory of type 3 if for each open cover $\{G_1, G_2, \ldots, G_n\}$ of the complex plane C there are invariant subspaces M_1, \ldots, M_n which span X such that $\sigma(T \mid M_i) \subset \overline{G_i}$ $(i = 1, \ldots, n)$. The above mentioned sufficient condition that T have a duality theory of type 3 is that T and its adjoint T' both have the following property β ([3], p. 394).

 β . If $f_n: D \to X$ is a sequence of analytic functions such that $(\lambda - T)f_n(\lambda) \to 0$ uniformly on D, then $\{f_n\}$ is uniformly bounded on compact subsets of D.

Decomposable operators are due to Foias [4] and may be defined as follows. First, the operator T is said to have the single-valued extension property (SVEP) if zero is the only analytic function $f: D \to X$ for which $(\lambda - T)f(\lambda) = 0$ for all $\lambda \in D$. In this case the spectral manifold $X_T(F)$ is defined for $F \subset \mathbb{C}$ as the set of $x \in X$ such that $x = (\lambda - T)f(\lambda)$ for f analytic on $\mathbb{C}\setminus F$. Now T is said to be decomposable if it has the SVEP and for each cover $\{G_1, \ldots, G_n\}$ of \mathbb{C} the manifolds $X_T(\tilde{G_i})$ are closed $(i = 1, \ldots, n)$ and X = $X_T(\tilde{G_1}) + \ldots + X_T(\tilde{G_n})$. Moreover, $\sigma(T \mid X_T(\tilde{G_i})) \subset \tilde{G_i}$ for each *i*. Thus a decomposable operator has a duality theory of type 3, but the converse is false [1] (at least on nonreflexive spaces).

To prove the desired result we require two lemmas.

LEMMA 1. If T has property β , then T has the SVEP.

Proof. Let $f: D \to X$ be analytic such that $(\lambda - T)f(\lambda) = 0$ for $\lambda \in D$. Put $f_n(\lambda) = nf(\lambda)$, n = 1, 2, ..., and note that for $\lambda \in D$ fixed $||nf(\lambda)|| \le R$ for R > 0 by β . Hence $f(\lambda) = 0$ and T has the SVEP.

By Lemma 1 the conclusion of the next lemma makes sense.

LEMMA 2. Let X' be the dual space of X, and let T' denote the adjoint of T. If T and T' both have property β , then $X_T(G)^{\perp} = X'_{T'}(\mathbb{C} \setminus G)$ for each open set G. In particular, $X'_{T'}(F)$ (dually, $X_T(F)$) is closed for F closed.

Proof. First let H, K be arbitrary disjoint sets in \mathbb{C} . For $x \in X_T(H)$ and $u \in X'_{T'}(K)$ it follows by a straightforward application of Liouville's theorem that $\langle x, u \rangle$ (evaluation of u at x) is 0. Hence for any $G \subset \mathbb{C}$, we obtain $X_T(G)^{\perp} \supset X'_{T'}(\mathbb{C} \setminus G)$.

Glasgow Math. J. 21 (1980) 69-70.

RIDGLEY LANGE

We next prove the reverse inclusion. Let G be open, and let H and K be two open sets such that $\overline{H} \subset G$ and such that $\{G, K\}$ and $\{H, K\}$ separately cover C. By [3], Theorems 3 and 4, p. 394, and Definition 3, p. 381, and the evident fact that $X_T(\overline{H}) \subset X_T(G)$, we obtain the inclusions $X_T(G)^{\perp} \subset X_T(\overline{H})^{\perp} \subset X'_{T'}(\overline{K})$. Now let $\{K_j\}$ be a sequence of open sets such that $\{G, K_j\}$ covers C for j = 1, 2, ..., and $\mathbb{C} \setminus G = \cap \overline{K_j}$. By the last inclusion $X_T(G)^{\perp} \subset \cap X'_T(\overline{K_j}) = X'_T(\cap \overline{K_j}) = X'_T(\mathbb{C} \setminus G)$, since $X_T()$ preserves intersections. Thus $X_T(G)^{\perp} = X'_T(\mathbb{C} \setminus G)$.

THEOREM. Let X be reflexive with dual X', and let T be an operator on X with adjoint T'. Then T is decomposable if and only if T and T' both have property β .

Proof. Suppose T and T' both have property β . By a recent result of Radjabalipour [7], it is enough to prove that T is 2-decomposable, i.e. $X = X_T(\bar{G}_1) + X_T(\bar{G}_2)$ and $X_T(\bar{G}_i)$ are closed whenever G_1 , G_2 cover C. Let $\{G_1, G_2\}$ be such a cover, so that $H_i = \mathbb{C} \setminus \bar{G}_i$ (i = 1, 2) have disjoint closures. By [2], Lemma 2.3, and Lemma 2, $X'_T(\bar{H}_1) + X'_T(\bar{H}_2)$ is a direct sum, hence $X'_T(H_1)^- + X'_T(H_2)^-$ is also direct. It is not hard to prove that $X'_T(H_1)^\perp + X'_T(H_2)^\perp = X$ (see [6, p. 1057]). By Lemma 2 (applied to T') $X = X_T(\bar{G}_1) + X_T(\bar{G}_2)$ and the latter are closed. Hence T is decomposable.

Conversely, let T be decomposable. Then T has property β by [5], and T' is 2-decomposable by [6], Theorem 2; hence T' also has property β by [5], final remark This completes the proof.

REFERENCES

1. E. Albrecht, An example of a weakly decomposable operator which is not decomposable Rev. Roumaine Math. Pures Appl. 20 (1975), 855-861.

2. C. Apostol, Roots of decomposable operator-valued analytic function, Rev. Roumain Math. Pures Appl. 13 (1968), 147-150.

3. E. Bishop, A duality theory for an arbitrary operator, Pacific J. Math. 9 (1959), 379-397.

4. C. Foias, Spectral maximal spaces and decomposable operators in Banach spaces, Arch Math. (Basel) 14 (1963), 341-349.

5. C. Foias, On the maximal spectral spaces of a decomposable operator, *Rev. Roumain Math. Pures. Appl.* 15 (1970), 1599–1606.

6. S. Frunza, A duality theorem for decomposable operators, Rev. Roumaine Math. Pure Appl. 16 (1971), 1055-1058.

7. M. Radjabalipour, Equivalence of decomposable and 2-decomposable operators, *Pacific J Math.*, 28 (1978), 243–247

DEPARTMENT OF MATHEMATICS UNIVERSITY OF NEW ORLEANS NEW ORLEANS, LOUISIANA 70122 Present address: Department of Mathematics Youngstown State University Youngstown, Ohio 44555