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In [3] E. Bishop introduced the notion of an operator with a “duality theory of type
3” and gave a certain sufficient condition for an operator to have a duality theory of type
3. In this note we show that in fact Bishop’s sufficient condition implies that a given
operator is decomposable [4]. Moreover, this condition characterizes a decomposable
operator.

Throughout this paper X denotes a reflexive complex Banach space, and T denotes a
bounded linear operator on X. According to Bishop [3], Definition 5, T has a duality
theory of type 3 if for each open cover {G;, G, . .., G,} of the complex plane C there are
invariant subspaces My, ..., M, which span X such that o(T | M) G, (i=1, ..., n). The
above mentioned sufficient condition that T have a duality theory of type 3 is that T and
its adjoint T" both have the following property B ([3], p. 394).

B. If f,:D— X is a sequence of analytic functions such that (A—T)f,(A)—0
uniformly on D, then {f,} is uniformly bounded on compact subsets of D.

Decomposable operators are due to Foias [4] and may be defined as follows. First,
the operator T is said to have the single-valued extension property (SVEP) if zero is the
only analytic function f:D — X for which (A — T)f(A)=0 for all A € D. In this case the
spectral manifold Xr(F) is defined for F<C as the set of x € X such that x = (A — T)f(A)
for f analytic on C\F. Now T is said to be decomposable if it has the SVEP and for each
cover {G,,...,G,} of C the manifolds X(G,) are closed (i=1,...,n) and X=
XHGy)+. ..+ X(G,). Moreover, o(T | X(G,)) = G, for each i. Thus a decomposable
operator has a duality theory of type 3, but the converse is failse [1] (at least on
nonreflexive spaces).

To prove the desired result we require two lemmas.

LemMma 1. If T has property B, then T has the SVEP.

Proof. Let f: D — X be analytic such that (A ~ T)f(A) =0 for A € D. Put f,(A) = nf(A),
n=1,2,..., and note that for A € D fixed ||nf(A)||<R for R>0 by 8. Hence f(A)=0 and
T has the SVEP.

By Lemma 1 the conclusion of the next lemma makes sense.

LemMma 2. Let X' be the dual space of X, and let T' denote the adjoint of T. If T and T’
both have property B, then X (G)* = X%(C\G) for each open set G. In particular, X*-.(F)
(dually, X1(F)) is closed for F closed.

Proof. First let H, K be arbitrary disjoint sets in C. For x € X;(H) and u € X%(K) it
follows by a straightforward application of Liouville’s theorem that (x, u) (evaluation of
u at x) is 0. Hence for any G < C, we obtain X;(G)* = X4(C\G).
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We next prove the reverse inclusion. Let G be open, and let H and K be two open
sets such that H< G and such that {G, K} and {H, K} separately cover C. By [3]
Theorems 3 and 4, p. 394, and Definition 3, p. 381, and the evident fact that X (H)c
X,(G), we obtain the inclusions X(G)* < X (H)* < X%(K). Now let {K;} be a sequence
of open sets such that {G, K;} covers C for j=1,2,..., and C\G = ﬂﬁj. By the last
inclusion X, (G)' = NX%(K;) = X (NK;)= X7(C\G), since Xr( ) preserves intersec-
tions. Thus X;(G)* = X4.(C\G).

Taeorem. Let X be reflexive with dual X', and let T be an operator on X with adjoint
T'. Then T is decomposable if and only if T and T' both have property B.

Proof. Suppose T and T’ both have property B. By a recent result of Radjabalipour
[7], it is enough to prove that T is 2-decomposable, i.e. X = X(G,)+ X;(G,) and X(G)
are closed whenever G,, G, cover C. Let {G,, G,} be such a cover, so that H,;=C\G,
(i=1, 2) have disjoint closures. By [2], Lemma 2.3, and Lemma 2, X%.(H,)+ X%.(H,) is a
direct sum, hence X%(H,)” + X% (H,)” is also direct. It is not hard to prove that
Xt (H) + X(Hy) =X (see [6, p. 1057]). By Lemma 2 (applied to T) X=
X+(Gy)+ X+(G,) and the latter are closed. Hence T is decomposable.

Conversely, let T be decomposable. Then T has property 8 by [5], and T is
2-decomposable by [6], Theorem 2; hence T’ also has property 8 by [5], final remark
This completes the proof.
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