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Abstract

We consider the problem of optimally stopping a general one-dimensional Itô diffusion
X. In particular, we solve the problem that aims at maximising the performance criterion
Ex [exp(− ∫ τ

0 r(Xs) ds)f (Xτ )] over all stopping times τ , where the reward function f
can take only a finite number of values and has a ‘staircase’ form. This problem is partly
motivated by applications to financial asset pricing. Our results are of an explicit analytic
nature and completely characterise the optimal stopping time. Also, it turns out that the
problem’s value function is not C1, which is due to the fact that the reward function f is
not continuous.
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1. Introduction

This paper is concerned with the problem of optimally stopping the one-dimensional Itô
diffusion

dXt = b(Xt ) dt + σ(Xt ) dWt, X0 = x > 0. (1)

Here, W is a standard one-dimensional Brownian motion, and b and σ are deterministic
functions such that (1) has a unique weak solution that is nonexplosive and assumes values
in the interval (0,∞). The objective of the discretionary stopping problem is to maximise the
performance criterion

Ex

[
exp

(
−

∫ τ

0
r(Xs) ds

)
f (Xτ )

]

over all stopping times τ , where r > 0 is a given deterministic function. The reward function f
takes finite values, and is increasing and piecewise constant, so its graph looks like a staircase
with a finite number of steps.
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Discretionary stopping of one-dimensional Itô diffusions 985

The simplest version of this problem, which arises when b ≡ 0 and σ ≡ 1, i.e. when
X is a standard Brownian motion, and when f can take only two values, was solved by
Salminen (1985) using Martin boundary theory. The more general version of Salminen’s
model that arises when X is a Brownian motion with drift was recently solved by Dayanik and
Karatzas (2003, Section 6.7) using a new methodology for addressing general one-dimensional
discretionary stopping problems by means of a new characterisation of excessive functions that
they have developed.

The investigations undertaken here have been partly motivated by the problem of pricing
digital options of American type. In this context, the stochastic differential equation (1) models
the underlying asset price dynamics, and the discounting rate r can be interpreted as the interest
rate (i.e. the short rate). In such financial applications, r would typically be taken to be a strictly
positive constant.

We have also been motivated by some general stochastic control-theoretic issues; in par-
ticular, it is of interest to observe that the problem we study provides an example in which
the so-called ‘principle of smooth fit’, which suggests that the value function of an optimal
stopping problem should be C1, does not hold. Indeed, it turns out that the value function is
not C1 at all points that belong both to the boundary of the stopping region and to the set of
points at which f is discontinuous. This phenomenon has been observed by Salminen (1985)
and Dayanik and Karatzas (2003). One of the purposes of this paper is to offer a new way of
addressing this issue, based on local-time techniques. At this point, we should mention that
our methodology has some similarities with the analysis of Karatzas and Sudderth (1999), who
solved a stochastic optimisation problem that combined discretionary stopping with control of
the underlying diffusion’s drift.

Incidentally, we should note that we have opted to consider the case in which f takes
finite rather than infinite values only to simplify the presentation of our results. Simplicity of
exposition has also been behind our assumption that f is increasing. Indeed, our construction
of the solution to the problem follows a ‘stepwise’ approach that, at least in principle, can be
adapted to account for arbitrary piecewise-constant reward functions.

2. The discretionary stopping problem

We consider a stochastic system whose state process X satisfies (1). We impose conditions
(ND)′ and (LI)′ in Karatzas and Shreve (1988, Section 5.5.C); these conditions are sufficient
for (1) to have a weak solution that is unique in the sense of probability law. In particular, we
make the following assumption.

Assumption 1. The deterministic functions b, σ : (0,∞) → R satisfy the following condi-
tions:

σ 2(x) > 0, for all x > 0,

for all x > 0, there exists an ε > 0 such that
∫ x+ε

x−ε
1 + |b(s)|
σ 2(s)

ds < ∞.

We also assume that the probability that the diffusionX hits either of the boundaries, 0 or ∞,
of its state space in finite time is zero.

Assumption 2. The diffusion X is nonexplosive.

Feller’s test for explosions provides a necessary and sufficient condition for X to be non-
explosive (see Karatzas and Shreve (1988, Theorem 5.5.29)).

https://doi.org/10.1239/jap/1165505202 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1165505202


986 A. L. BRONSTEIN ET AL.

We adopt a weak formulation of the optimal stopping problem that we study. In particular,
we allow for the stopping strategy to depend, in principle, on the underlying diffusion’s initial
condition x > 0.

Definition 1. Given an initial condition x > 0, a stopping strategy is any collection Sx =
(�,F ,Ft ,Px,W,X, τ), where (�,F ,Ft ,Px,W,X) is a weak solution to (1) and τ is an
(Ft )-stopping time. We denote by Sx the family of all stopping strategies associated with a
given initial condition x > 0.

With each stopping strategy Sx ∈ Sx , we associate the performance criterion

J (Sx) = Ex[exp(−�τ )f (Xτ )], (2)

where

�t =
∫ t

0
r(Xs) ds. (3)

The reward function f appearing here is assumed in the present investigation to have the form
of a finite staircase, given by

f (x) = K0 1(0,p1)(x)+
N−1∑
j=1

Kj 1[pj ,pj+1)(x)+KN 1[pN ,∞),

where 0 < p1 < · · · < pN and 0 ≤ K0 < K1 < · · · < KN are given constants. The objective
of the discretionary stopping problem is to maximise J over Sx . Accordingly, we define the
value function

v(x) = sup
Sx∈Sx

J (Sx). (4)

We shall also need the following assumption.

Assumption 3. The discounting rate r is locally bounded and there exists a constant r0 > 0
such that r(x) > r0, for all x > 0.

At this point, we should note that Assumption 3 and the fact that f is bounded imply that
(2) is well defined when the event {τ = ∞} has positive probability. Indeed, in this case, we
define

exp(−�τ )f (Xτ )
∣∣∣
τ=∞ := lim

t→∞ exp(−�t)f (Xt ) = 0.

3. The Hamilton–Jacobi–Bellman (HJB) equation

On the basis of the standard theory of optimal stopping, we expect that the value function v
should satisfy the HJB equation

max
{ 1

2σ
2(x)v′′(x)+ b(x)v′(x)− r(x)v(x), f (x)− v(x)

} = 0, for x > 0. (5)

It turns out that the value function v of our discretionary stopping problem, which is defined
by (4), has discontinuities in its first derivative. Therefore, it does not suffice in the present
situation merely to consider classical solutions to the HJB equation (5). For this reason, we
consider solutions to (5) in the sense of distributions. In particular, we consider candidatesw for
the value function v that are differences of convex functions; for a survey of the results needed
here, see Revuz and Yor (1994, Appendix 3). If a function w : (0,∞) → R is the difference of
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two convex functions, then its left-hand derivativew′− exists and is a function of finite variation,
which implies that w′− is locally bounded. Also, the second distributional derivative of w is
a measure, which we denote by w′′(dx). In view of this notation and these observations, we
define the measure Lw on ((0,∞),B((0,∞))), where B((0,∞)) is the Borel σ -algebra on
(0,∞), by

Lw(dx) = 1
2σ

2(x)w′′(dx)+ b(x)w′−(x) dx − r(x)w(x) dx. (6)

Now, we consider solutions to (5) in the following sense.

Definition 2. A function w : (0,∞) → R satisfies the HJB equation (5) if the following
conditions hold:

(i) w can be expressed as the difference of two convex functions,

(ii) −Lw is a positive measure,

(iii) w(x) ≥ f (x), for all x > 0, and

(iv) the support of the measure Lw is contained in the complement of the open set

C := {x > 0 : w(x) > f (x)}. (7)

At this point, it is worth noting that the set C appearing in this definition is indeed open
because w is continuous and f is upper semicontinuous.

Following Zervos (2003, Theorem 1), we can now establish conditions that are sufficient for
optimality in our problem.

Theorem 1. In the discretionary stopping problem formulated in Section 2, suppose that
Assumptions 1–3 hold, and let w : (0,∞) → R be a bounded solution to the HJB equation (5)
in the sense of Definition 2. Then, v = w and, given any initial condition x > 0, a stopping
strategy

S
∗
x = (�∗,F ∗,F ∗

t ,P∗
x,W

∗, X∗, τ ∗), (8)

such that (�∗,F ∗,F ∗
t ,P∗

x,W
∗, X∗) is a weak solution to (1) and

τ ∗ = inf{t ≥ 0 : X∗
t ∈ Cc}, (9)

where C is the open set defined by (7), is optimal.

Proof. Fix an initial condition x > 0 and a weak solution (�,F ,Ft ,Px,W,X) to (1).
Using the Itô–Tanaka formula (see, e.g. Revuz and Yor (1994, Theorem VI.1.5)), we obtain

w(Xt) = w(x)+
∫ t

0
b(Xs)w

′−(Xs) ds +
∫ t

0
σ(Xs)w

′−(Xs) dWs + 1

2

∫ ∞

0
Lat w

′′(da), (10)

whereLa is the local-time process of the diffusionX at level a. In view of the occupation times
formula (Revuz and Yor (1994, Corollary VI.1.6)), we can see that∫ ∞

0
Lat
b(a)w′−(a)− r(a)w(a)

σ 2(a)
da =

∫ t

0
[b(Xs)w′−(Xs)− r(Xs)w(Xs)] ds.

It follows that (10) is equivalent to

w(Xt) = w(x)+
∫ t

0
r(Xs)w(Xs) ds +

∫ t

0
σ(Xs)w

′−(Xs) dWs + ALw
t ,
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988 A. L. BRONSTEIN ET AL.

where Lw is the measure defined by (6) and the process ALw is defined by

ALw
t =

∫ ∞

0

Lat

σ 2(a)
Lw(da), for t ≥ 0. (11)

Also, using integration by parts, we calculate

exp(−�t)w(Xt ) = w(x)+
∫ t

0
exp(−�s) dMs +

∫ t

0
exp(−�s) dALw

s , (12)

where M is the stochastic integral defined by

Mt =
∫ t

0
σ(Xs)w

′−(Xs) dWs. (13)

To proceed further, fix any admissible stopping strategy Sx ∈ Sx , and let (τm) be a sequence
of (Ft )-stopping times such that limm→∞ τm = ∞ and the stopped process Mτm , where M
is defined as in (13), is a uniformly integrable martingale. Rearranging terms and taking
expectations in (12), we can see that

Ex[exp(−�τ∧τm)f (Xτ∧τm)] = w(x)+ Ex[exp(−�τ∧τm)[f (Xτ∧τm)− w(Xτ∧τm)]]
+ Ex

[∫ τ∧τm

0
exp(−�s) dALw

s

]
. (14)

Now, Definition 2(ii) and the definition (11) imply that −ALw is an increasing process because
the local time La is an increasing process. In view of this observation and Definition 2(iii), it
follows that

Ex[exp(−�τ∧τm)f (Xτ∧τm)] ≤ w(x).

However, by taking the limit as m → ∞ in this inequality using the dominated convergence
theorem, we can see that J (Sx) ≤ w(x), which proves that v(x) ≤ w(x).

Now, let S
∗
x be the stopping strategy given by (8)–(9), and let (τ ∗

m) be a localising sequence
for the local martingale M∗, which is defined as in (13). Since the measure dLat

∗ is supported
on the set {t ≥ 0 : X∗

t = a}, the definition of τ ∗ implies that

Lat
∗ = 0, for all t ∈ [0, τ ∗] and a ∈ Cc,

which, in view of Definition 2(iv) and (11), implies that ALw∗
t = 0, for all t ≤ τ ∗. However,

combining this observation with (14) and the fact that the set {x > 0 : w(x) = f (x)} is closed,
which follows from the upper semicontinuity of f , we can see that

E∗
x[exp(−�∗

τ∗∧τ∗
m
)f (X∗

τ∗∧τ∗
m
)] = E∗

x[exp(−�∗
τ∗
m
)[f (X∗

τ∗
m
)− w(X∗

τ∗
m
)] 1{τ∗

m<τ
∗}] + w(x).

In view of the boundedness of f and w, and the uniform positivity of the discounting factor r
(seeAssumption 3), we can take the limit asm → ∞ using the dominated convergence theorem,
to conclude that J (S∗

x) = w(x). Combining this result with the inequality v(x) ≤ w(x) that
we established above, we can see that v(x) = w(x) and that S

∗
x is an optimal strategy.

We shall also need the following result, which is a version of the classical maximum principle,
for the construction of an appropriate solution to the HJB equation (5) in Section 4.
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Lemma 1. Suppose that Assumptions 1–3 hold, fix two constants y, z ∈ [0,∞] such that
y < z, and suppose that g : (y, z) → R is a bounded function such that

(i) g is the difference of two convex functions,

(ii) Lg is a positive measure on ((y, z),B((y, z))),

(iii) if y > 0 then limx↓y g(x) ≤ 0 and limx↓y |g′−(x)| < ∞, and

(iv) if z < ∞ then limx↑z g(x) ≤ 0 and limx↑z |g′−(x)| < ∞.

Then g(x) ≤ 0, for all x ∈ [y, z].
Proof. In view of Lemma 1(iii)–(iv), if y > 0 and/or z < ∞, then we extend g by setting

g(x) = lims↓y g(s) for all x ≤ y, and/or g(x) = lims↑z g(s) for all x ≥ z, and we note that the
resulting function on (0,∞) is the difference of two convex functions.

Now, fix any initial condition x ∈ (y, z) and any weak solution (�,F ,Ft ,Px,W,X) to (1),
and define

T = inf{t ≥ 0 : Xt /∈ (y, z)}.
Also, let (τm) be a localising sequence of (Ft )-stopping times for the stochastic integralM that
is defined in (13). Since g is the difference of two convex functions, it satisfies (12). Taking
expectations in (12), and using Lemma 1(iii)–(iv), we obtain

Ex[exp(−�τm)g(Xτm) 1{τm<T }] ≥ Ex[exp(−�τm∧T )g(Xτm∧T )]

= g(x)+ Ex

[∫ τm∧T

0
exp(−�s) dALg

s

]
.

Since local times are increasing processes, we can see that Lemma 1(ii) and the definition of
ALg as in (11) imply that ALg

·∧T is an increasing process. It follows that

Ex[exp(−�τm)g(Xτm) 1{τm<T }] ≥ g(x).

In view of Assumption 3 and the boundedness of g, we can take the limit asm → ∞ using the
dominated convergence theorem, to conclude that 0 ≥ g(x).

4. The solution to the discretionary stopping problem

We solve the optimal stopping problem that we consider by constructing a solution to the
HJB equation (5) that satisfies the requirements of Theorem 1. To this end, we first observe
that the general solution to the homogeneous ordinary differential equation (ODE)

1
2σ

2(x)w′′(x)+ b(x)w′(x)− r(x)w(x) = 0, (15)

which is associated with (5), is given by

w(x) = Aϕ(x)+ Bψ(x),

where A,B ∈ R are constants. The functions ψ and ϕ are defined by

ψ(x) =
{

Ex[exp(−�Ty )] for x < y,

(Ey[exp(−�Tx )])−1 for x ≥ y,

ϕ(x) =
{
(Ey[exp(−�Tx )])−1 for x < y,

Ex[exp(−�Ty )] for x ≥ y,
(16)
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990 A. L. BRONSTEIN ET AL.

for a given choice of y > 0. Here � is defined by (3), while Tx and Ty are, respectively, the
first hitting times of {x} and {y}. For future reference, note the following remark.

Remark 1. The functions ϕ and ψ are both strictly positive and C1, their second derivative
exists in the classical sense, ϕ is strictly decreasing, and ψ is strictly increasing.

Also, the Wronskian W of ϕ and ψ , which is identified with the first derivative of the scale
function of the diffusion X, is given by

W(x) := ϕ(x)ψ ′(x)− ϕ′(x)ψ(x)

= W(y) exp

(
−2

∫ x

y

b(s)

σ 2(s)
ds

)
, for x > 0 and for any given choice of y > 0.

(17)

These results have been known for several decades, and can be found in various forms in several
references, including Feller (1952), Breiman (1968), Itô and McKean (1974), Karlin and Taylor
(1981), Rogers and Williams (2000), and Borodin and Salminen (2002).

Returning now to our optimal stopping problem, we conjecture that the value function
satisfies the HJB equation (5) in the classical sense outside the set of points at which the
discontinuities of f occur, namely inside the set (0,∞) \ {p1, . . . , pN }. This conjecture and
the intuitive idea that some of the points p1, . . . , pN (e.g. pN ) should belong to the stopping
region Cc of the discretionary stopping problem that we are solving motivate a ‘stepwise’
approach, the first objective of which is to solve the following two problems.

Problem 1. Given constants 0 < y < z and 0 ≤ K < L, find a continuous, bounded function
w̃ : [y, z] → R that is a classical solution to (5) with f (x) = K , for x ∈ (y, z), and satisfies
the boundary conditions

w̃(y) = K and w̃(z) = L.

Problem 2. Given constants z > 0 and 0 ≤ K < L, find a continuous, bounded function
w̃ : [0, z] → R that is a classical solution to (5) with f (x) = K , for x ∈ (0, z), and satisfies
the boundary conditions

w̃(0) ≥ K and w̃(z) = L.

The solution to Problem 1 is associated with two qualitatively different possibilities. The
first of these arises when w̃ satisfies the ODE (15) for all x ∈ (y, z), in which case w̃ is given
by

w̃(x) =

⎧⎪⎨
⎪⎩
K for x = y,

Aϕ(x)+ Bψ(x) for x ∈ (y, z),
L for x = z,

(18)

where A and B are constants (see Figure 1(a)). The continuity of w̃ at the boundary of [y, z]
yields a linear system of two equations for the unknowns A and B, the solution of which is
given by

A =
(

L

ψ(z)
− K

ψ(y)

)(
ϕ(z)

ψ(z)
− ϕ(y)

ψ(y)

)−1

, (19)

B =
(
L

ϕ(z)
− K

ϕ(y)

)(
ψ(z)

ϕ(z)
− ψ(y)

ϕ(y)

)−1

. (20)
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L

K

y z

L

K

y zq

(a)

(b)

Figure 1: Graphs of (a) the first possible solution w̃ and (b) the second possible solution w̃ to the HJB
equation (5) that satisfies the boundary conditions w̃(y) = K and w̃(z) = L > K , when f ≡ K and the

independent variable x takes values in the interval (y, z), for y < z.

Lemma 2. The function w̃ defined by (18), where A and B are given by (19) and (20),
respectively, provides a solution to Problem 1 if and only if

ψ ′(y)
ϕ′(y)

≤ Lψ(y)−Kψ(z)

Lϕ(y)−Kϕ(z)
. (21)

In Appendix A, we present the proofs of results not fully developed in the text.
The second possibility for the solution to Problem 1 arises when there is a point q ∈ (y, z)

such that w̃(x) = K for x ∈ [y, q], and w̃ satisfies the ODE (15) for x ∈ (q, z), i.e.

w̃(x) =

⎧⎪⎨
⎪⎩
K for x ∈ [y, q],
Aϕ(x)+ Bψ(x) for x ∈ (q, z),
L for x = z,

(22)

where A and B are constants (see Figure 1(b)). To determine A, B, and the free boundary
point q, we appeal both to the requirement that w̃ should satisfy (5) in the classical sense in
(y, z), which implies that w̃ should be C1 at q, and to the boundary condition w̃(z) = L. It is
straightforward to see that the resulting system of equations is equivalent to the expressions

A =
(

L

ψ(z)
− K

ψ(q)

)(
ϕ(z)

ψ(z)
− ϕ(q)

ψ(q)

)−1

, (23)

B =
(
L

ϕ(z)
− K

ϕ(q)

)(
ψ(z)

ϕ(z)
− ψ(q)

ϕ(q)

)−1

, (24)
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and the algebraic equation
F(q) = 0, (25)

where the function F is defined by

F(x) = −[Lψ(x)−Kψ(z)] + [Lϕ(x)−Kϕ(z)]ψ
′(x)
ϕ′(x)

, for x ∈ [y, z).
Lemma 3. Given any y > 0, (25) has a solution q ∈ (y, z) if and only if

ψ ′(y)
ϕ′(y)

>
Lψ(y)−Kψ(z)

Lϕ(y)−Kϕ(z)
. (26)

If this condition is satisfied, then the solution q to (25) is unique and the function w̃ defined by
(22), where A and B are given by (23) and (24), respectively, solves Problem 1.

Now, let us consider Problem 2, which is again associated with two qualitatively different
solutions. Since limx↓0 ϕ(x) = ∞, which follows from the definition, (16), of ϕ and the
assumption that X is nonexplosive, we can see that

w̃(x) = L

ψ(z)
ψ(x), for x ∈ [0, z], (27)

is the appropriate choice for w̃ that is analogous to the solution of Problem 1 developed in
Lemma 2, because it is the only bounded solution to the ODE (15) that satisfies the boundary
condition w̃(z) = L. Taking note of the fact that ψ is strictly increasing and positive, it is
straightforward to see that this choice indeed provides the solution to Problem 2 if Lψ(0) ≥
Kψ(z), where ψ(0) := limx↓0 ψ(x). When the data in Problem 2 are such that Lψ(0) <
Kψ(z), which can be true only if K > 0, we are faced with the possibility that the solution to
Problem 2 is as in Lemma 3.

Lemma 4. Equation (25) has a unique solution q ∈ (0, z) if and only if Lψ(0) < Kψ(z).
Moreover, the following two statements are true.

(a) If Lψ(0) ≥ Kψ(z) then (27) provides a solution to Problem 2.

(b) If Lψ(0) < Kψ(z) then the function w̃ defined by (22)–(24), where q is the unique
solution to (25) with y = 0, solves Problem 2.

We can now construct a solution to the HJB equation (5) in the sense of Definition 2 that can
be identified with the value function of our discretionary stopping problem, using the following
algorithm.

Step 1. Set l = 0 and define the N -dimensional vectors

i(l) = (1, 2, . . . , N − 1, N) and ρ(l) = (p1, p2, . . . , pN−1, pN).

Step 2. Define the function w(l) : (0,∞) → R by

w(l)(x) = w
(l)
0 (x) 1

(0,ρ(l)1 )
(x)+

dim i(l)−1∑
j=1

w
(l)
j (x) 1[ρ(l)j ,ρ(l)j+1)

(x)+KN 1[pN ,∞),

wherew(l)0 is the solution to Problem 2 with z = ρ
(l)
1 ,K = K0, andL =K

i
(l)
1

given by Lemma 4,
while, for j = 1, . . . , dim i(l) − 1, w(l)j is the solution to Problem 1 with y = ρ

(l)
j , z = ρ

(l)
j+1,

K = K
i
(l)
j

, and L = K
i
(l)
j+1

given by Lemmas 2 and 3.
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ρ
1+j

( )lρ
j
(l 1)+ρ

j
( )l ≡ ρ

2+j
( )l ρ

1+j
(l 1)+≡

1+j
( )liK

2+j
( )liK 1+j

(l 1)+
iK≡

j
( )liK j

(l 1)+
iK≡

( )lw

(l 1)+w

Figure 2: Illustration of two successive iterations of the algorithm that provides the solution to the HJB
equation (5).

Step 3. Let m be index of the first element of the vector i(l) such that

lim
x↑ρ(l)m

d

dx
w(l)(x) < lim

x↓ρ(l)m

d

dx
w(l)(x) ⇐⇒ Lw(l)(ρ(l)m ) > 0.

If no such index exists, then set w = w(l) and STOP. Otherwise, let i(l+1) and ρ(l+1) be the
vectors obtained by deleting themth entries of the vectors i(l) and ρ(l), respectively, set l = l+1,
and go back to Step 2.

Plainly, this algorithm terminates after, at most, N − 1 steps and each of the functions w(l)

that the algorithm produces is the difference of two convex functions. Also, any functions
w(l) and w(l+1) produced by two consecutive iterations of the algorithm satisfy w(l) ≤ w(l+1),
thanks to Lemma 1 (see also Figure 2). Furthermore, we can easily check that the resulting
function w satisfies the assumptions of Theorem 1 and, therefore, can be identified with our
problem’s value function. We conclude with the main result of the paper.

Theorem 2. The value function of the discretionary stopping problem formulated in Section 2
can be identified with the functionw resulting from the algorithm above, and an optimal stopping
strategy is given by (8)–(9) in Theorem 1.

Appendix A.

Proof of Lemma 2. By construction, we will show that w̃ satisfies the HJB equation (5) for
x ∈ (y, z) if we prove that

w̃(x) ≥ K, for all x ∈ (y, z). (28)

To this end, we first note that the facts y < z and 0 ≤ K < L, Remark 1, and the definition of
B in (20) imply that B > 0. In view of this observation and Remark 1, we can see that

w̃′(x) ≡ Aϕ′(x)+ Bψ ′(x) ≥ 0, for all x ∈ (y, z), (29)

if and only if

−ψ
′(x)
ϕ′(x)

≥ A

B
, for all x ∈ (y, z). (30)
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Now, using the fact that ϕ and ψ satisfy the ODE (15) and the expression (17) for their
Wronskian, we can see that

d

dx

(
−ψ

′(x)
ϕ′(x)

)
= −ψ

′′(x)ϕ′(x)− ψ ′(x)ϕ′′(x)
[ϕ′(x)]2

= 2r(x)W(x)

[σ(x)ϕ′(x)]2

> 0, for all x ∈ (y, z). (31)

This inequality shows that (29)–(30) are both true if and only if

−ψ
′(y)
ϕ′(y)

≥ A

B
. (32)

Moreover, if (32) is not true then w̃′(x) < 0 for all x sufficiently close to y. Combining this
observation with the fact that w̃(y) = K , we can see that (28) fails to be true. We conclude
that (28) is true if and only if (32) holds, which, in view of the definitions of A and B in (19)
and (20), respectively, is equivalent to (21) holding; thus, the proof is complete.

Proof of Lemma 3. In view of Remark 1 and the fact that 0 ≤ K < L, we can see that

F(z) = −ψ(z)[L−K] + ϕ(z)[L−K]ψ
′(z)
ϕ′(z)

< 0.

Also, with reference to (31), we calculate

F ′(x) = [Lϕ(x)−Kϕ(z)] d

dx

(
ψ ′(x)
ϕ′(x)

)
< 0, for x ∈ (y, z).

It follows that the equation F(q) = 0 has a unique solution q ∈ (y, z) if and only if F(y) > 0,
which is equivalent to (26).

With regard to its construction, we can see that the function w̃ satisfies the HJB equation (5)
for x ∈ (y, z) if and only if

w̃(x) ≥ K, for all x ∈ [q, z). (33)

Now, following the same reasoning as in the proof of Lemma 2, we obtain

w̃′(x) ≥ 0, for all x ∈ (q, z) ⇐⇒ −ψ
′(q)
ϕ′(q)

≥ A

B
.

However, combining this observation with the fact that w̃ is C1 at q, which implies that

w̃(q) = K and w̃′(q) ≡ Aϕ′(q)+ Bψ ′(q) = 0,

we can see that (33) is true, and the proof is complete.

Proof of Lemma 4. With reference to the proof of Lemma 3, we can see that (25) has a
unique solution q ∈ (0, z) if and only if

lim
x↓0

F(x) ≡ lim
x↓0

[
Kψ(z)+ L

W(x)

ϕ′(x)
−Kϕ(z)

ψ ′(x)
ϕ′(x)

]
> 0, (34)
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where W is the Wronskian of ϕ and ψ defined by (17). To establish conditions under which
this inequality is true, we calculate

d

dx

(
W(x)

ϕ′(x)

)
= −2r(x)W(x)ϕ(x)

[σ(x)ϕ′(x)]2 < 0.

This result, combined with the inequality W(x)/ϕ′(x) < 0, which is true for all x > 0, implies
that limx↓0 W(x)/ϕ′(x) exists in (−∞, 0]. However, this observation, the fact that limx↓0 ψ(x)

exists in [0,∞) because ψ is strictly positive and increasing, and the expression

ϕ(x)ψ ′(x)
ϕ′(x)

= W(x)

ϕ′(x)
+ ψ(x), for x > 0, (35)

which follows immediately from the definition (17) of W , imply that

lim
x↓0

ϕ(x)ψ ′(x)
ϕ′(x)

∈ (−∞, 0].

Now, we use a contradiction argument to show that this limit is actually equal to 0. To this end,
we suppose that

lim
x↓0

ϕ(x)ψ ′(x)
ϕ′(x)

= −2ε, for some ε > 0. (36)

This assumption implies that there exists an x1 > 0 such that

−ϕ
′(s)
ϕ(s)

≤ 1

ε
ψ ′(s), for all s ∈ (0, x1].

In view of this inequality, we can see that

ln ϕ(x) = ln ϕ(y)+
∫ y

x

−ϕ
′(s)
ϕ(s)

ds

≤ ln ϕ(y)+ 1

ε
[ψ(y)− ψ(x)], for all x, y, 0 < x < y ≤ x1,

which implies that

ϕ(x) ≤ ϕ(y) exp

(
1

ε
[ψ(y)− ψ(x)]

)
, for all x, y, 0 < x < y ≤ x1. (37)

For fixed y, the right-hand side of this inequality remains bounded as x ↓ 0 because ψ is
positive and increasing, which implies that (37) cannot be true because limx↓0 ϕ(x) = ∞. It
follows that (36) is false and, therefore,

lim
x↓0

ϕ(x)ψ ′(x)
ϕ′(x)

= 0 �⇒ lim
x↓0

ψ ′(x)
ϕ′(x)

= 0.

However, these limits and (35) imply that (34) is equivalent to the inequalityKψ(z)−Lψ(0) >
0, which establishes the claim regarding the solvability of (25).

Now, Lemma 4(a) is obvious, while Lemma 4(b) follows by a straightforward adaptation of
the arguments used to establish the corresponding claim in Lemma 3.
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