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Abstract
The finite dual H◦ of an affine commutative-by-finite Hopf algebra H is studied. Such a Hopf algebra H is an
extension of an affine commutative Hopf algebra A by a finite dimensional Hopf algebra H. The main theorem
gives natural conditions under which H◦ decomposes as a crossed or smash product of H

∗ by the finite dual A◦ of
A. This decomposition is then further analysed using the Cartier–Gabriel–Kostant theorem to obtain component
Hopf subalgebras of H◦ mapping onto the classical components of A◦. The detailed consequences for a number of
families of examples are then studied.

1. Introduction
1.1 Background

This is the second in a series of papers about affine commutative-by-finite Hopf algebras and their duals,
the first in the series being [3]. In that paper, we defined a Hopf algebra H over the algebraically closed
field k to be affine commutative-by-finite if H is a finitely generated module over a normal commutative
finitely generated Hopf subalgebra A. (To say that A is normal in H means that it is closed under the
adjoint actions of H on A, recalled at the start of Section 2.1.) Let A+ denote the augmentation ideal of
A. Normality of A ensures that A+H is a Hopf ideal of H, so that H := H/A+H is a finite dimensional
quotient Hopf algebra of H, and it is natural to view H as an extension of A by H.

Our aim in this paper is to obtain, for an affine commutative-by-finite Hopf algebra H, a description
of the finite dual H◦ of H which generalises the classical description valid when H = A given by the
Cartier–Gabriel–Kostant structure theorem [26, Corollary 5.6.4, Theorem 5.6.5]. Recall that in that
case, assuming that k has characteristic 0, A◦ is a smash product U(g)�kG, where A is the algebra of
polynomial functions O(G) of the affine algebraic group G, U(g) is the enveloping algebra of its Lie
algebra g and kG is the group algebra of G. The description we obtain combines (generalisations of)
these ingredients with the dual H

∗ of H. It comes closest to replicating the classical cocommutative
picture when H satisfies two additional hypotheses. Currently, we know of no examples where these
hypotheses fail to hold. We briefly explain the additonal hypotheses in Section 1.2, then state the main
theorem in Section 1.3.

1.2 Coideal splitting and orbital semisimplicity

Let H and its Hopf subalgebra A satisfy the hypotheses of Section 1.1, and assume that A is semiprime
or central, or that H is pointed. It is known, as we will recall in Theorem 2.2, that A is a direct summand
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of H as right A-modules, say

H = A ⊕ X. (1.1)

Our first additional hypothesis is:

(CoSplit) X in (1.1) can be chosen to be a coideal of H.

To explain the second hypothesis, note first that the left adjoint action of H on A factors through H,
so that for each maximal ideal m of A we can define m(H) to be the unique largest H-invariant ideal of A
contained in m. By work of Skryabin [33], which we recall in Section 5.1, A/m(H) is a finite dimensional
algebra. The second hypothesis is:

(OrbSemi) For every m ∈ MaxspecA, A/m(H) is semisimple.

1.3 Main theorem

Here is the main result stated here in the simplest case, namely when k has characteristic 0; the full result
is Theorem 6.1. The symbol R#T is used to denote the smash product of the k-algebra R by the Hopf
algebra T , see [26, Definition 4.1.3].

Theorem 1.1. Let k have characteristic 0 and let H be an affine commutative-by-finite Hopf k-algebra,
finite over the normal commutative Hopf subalgebra A. (So A =O(GH) for an affine algebraic k-group
GH with Lie algebra g.) Assume that A ⊆ H satisfies (CoSplit) and (OrbSemi). Denote the finite dual
of H by H◦ and recall that H denotes the finite dimensional Hopf algebra H/A+H.

(1) As a vector space, H◦ decomposes as U(g) ⊗ H
∗ ⊗ kGH; as an algebra it decomposes as a

smash product

H◦ ∼= H
∗
# A◦ ∼= (H

∗
# U(g))#kGH . (1.2)

(2) H◦ contains three distinguished Hopf subalgebras, namely H
∗, a differential smash product

W(H◦) ∼= H
∗
# U(g), (1.3)

and a skew group algebra

k̂GH
∼= H

∗
# kGH . (1.4)

(3) Suppose in addition that H is semisimple. Then the action of U(g) on H
∗ is inner, so that

H◦ ∼= (H
∗ ⊗ U(g))#kGH , (1.5)

a skew group algebra with coefficient ring the Hopf subalgebra W(H◦).

We currently know no counterexample to the possibility that, given any affine commutative-by-
finite Hopf algebra H, there is a choice of normal commutative Hopf subalgebra A ⊆ H which satisfies
(CoSplit) and (OrbSemi). This is recorded as Question 6.3.

Versions of some of the results in this paper appeared in the PhD theses of the second and third
authors, [11] and [19]. Since both these theses are publicly available online, some detailed calculations
from them are not repeated here; full references are given where this occurs.

The preprint [22], which appeared while the present paper was being written, contains presentations
by generators and relations of the finite duals H◦ of the affine prime regular Hopf algebras H of Gel’fand–
Kirillov dimension one (all of which are commutative-by-finite). The results of [22] and the present paper
are largely complementary, the only overlap being with Section 7.5 of this paper, where the implications
of Theorem 6.1 for prime regular affine Hopf algebras of GK-dimension one are examined.

https://doi.org/10.1017/S0017089522000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089522000052


64 K. A. Brown et al.

1.4 Layout of the paper

The final Section 7 of the paper reviews a number of families of affine commutative-by-finite Hopf
algebras. We discuss there the validity of the hypotheses of Theorem 6.1 for each family, and the conse-
quences for the structure of the Hopf dual for the algebras in each family. The reader may find it helpful
to review some of these examples in tandem with the rest of the paper.

There is a brief review of the properties of affine commutative-by-finite Hopf algebras H in
Section 2. Section 3 is devoted to the proof of our first key result, Theorem 3.2, which obtains suf-
ficient conditions for H to decompose as a crossed or smash product of H

∗ by A◦. Sections 4 and 5
are concerned, respectively, with the two Hopf subalgebras W(H◦) and k̂GH of H◦ which feature in
Theorem 1.1(2), and which are, respectively, generalisations from the commutative case of U(g) (in
characteristic 0) and kGH . It is in analysing the structure of k̂GH that the hypothesis (OrbSemi) comes
into play—this is introduced in Section 5.2. The very brief Section 6 contains the full statement of
Theorem 6.1 and its deduction from the results of Sections 3–5.

1.5 Notation

Throughout this paper, k will denote an algebraically closed field, all vector spaces are over k unless
stated otherwise, and all unadorned tensor products are over k. The Gelfand–Kirillov dimension of an
algebra R will be denoted by GK dim R; see [20] for details. For a Hopf algebra H, we use the usual
notation of �, ε for the coalgebra structure, with �(h) =∑

h1 ⊗ h2 for h ∈ H, and we use S to denote
its antipode. The augmentation ideal ker ε of a Hopf algebra H will always be denoted by H+. Further
notation will be introduced in Section 2.2.

2. Commutative-by-finite Hopf algebras

In this section, we briefly recall the most basic properties of affine commutative-by-finite Hopf algebras.
At the same time notation will be fixed which will remain in force throughout the paper. Full details of
the results stated here can be found in [3].

2.1 Definition and basic properties

Recall [26, Section 3.4] that a subalgebra K of a Hopf algebra H is normal if it is invariant under the
left and right adjoint actions of H; that is, for all k ∈ K and h ∈ H,

(ad�h)(k) =
∑

h1kS(h2) ∈ K and (adrh)(k) =
∑

S(h1)kh2 ∈ K.

The following class of Hopf algebras will be the focus of this paper.

Definition 2.1. A Hopf k-algebra H is affine commutative-by-finite if it is a finite (left or right) module
over a commutative normal Hopf subalgebra A which is finitely generated as a k-algebra.

For full proofs and references for the following see [3, Section 2].

Theorem 2.2. Let H be an affine commutative-by-finite Hopf algebra, finite over the normal commutative
Hopf subalgebra A with augmentation ideal A+.

(1) A and H are Noetherian k-algebras.
(2) A+H = HA+ is a Hopf ideal of H, and

H := H/A+H
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is a finite dimensional quotient Hopf algebra of H. We denote the Hopf algebra surjection by
π : H −→ H.

(3) The left adjoint action of H on A factors through H, so that A is a left H-module algebra.
(4) The antipode S of H is bijective.
(5) H is a finite module over its centre Z(H), which is affine.
(6) GK dim H = GK dim A < ∞.

Assume for (7)–(10) that A is semiprime or central, or that H is pointed.

(7) H is a finitely generated projective generator as left and right A-module.
(8) A is a left (resp. right) A-module direct summand of H.
(9) A ⊆ H is a faithfully flat H-Galois extension.

(10) A equals the right and the left H-coinvariants of the H-comodule H; that is,

Hco π = co πH = A.

Remark 2.3. Keep the notation and hypotheses of Theorem 2.2.

(1) (Radford [27]) In general, H is not a free A-module. For example, let H =O(SL2(k)). This
commutative Hopf algebra is a finite module over the Hopf subalgebra A generated by the
monomials of even degree, but it is not a free A-module.

(2) An important setting where H is A-free is when H decomposes as a crossed product H = A#σ H.
By a celebrated result of Doi and Takeuchi [14], this happens if and only if there is a cleaving
map γ :H −→ H - that is, γ is a convolution invertible right H-comodule map. Moreover, given
that the extension is H-Galois by Theorem 2.2(4), such a cleaving map exists if and only if
A ⊆ H has the normal basis property. For details, see [26, Propositions 7.2.3, 7.2.7, Theorem
8.2.4]. Such a decomposition of H is guaranteed when the coradical of H is contained in AG(H),
by [30, Corollary 4.3].

(3) Since Theorem 2.2(4) follows from [32, Corollary 2], which is valid for all Noetherian Hopf
algebras satisfying a PI, in Definition 2.1 it is enough to require that A is normal on one side
only; see [3, Lemma 4.10(1)].

(4) In seeking to apply Theorem 2.2(7)–(10) one can often reduce to the case where A is
semiprime. For recall that A is always semiprime when k has characteristic 0 [37, 11.6].
Moreover in characteristic p > 0 one can usually reach this setting by replacing A by its
image under a suitable power of the Frobenius map; we leave the details to the interested
reader.

2.2 Further notation

For brevity we shall henceforth record the set-up of Theorem 2.2, including H and the map π , as

A ⊆ H is an affine commutative-by-finite Hopf algebra.

The nilrdical N(A) of the commutative affine Hopf k-algebra A is a Hopf ideal by [3, Lemma 5.2(1)].
There is thus an affine algebraic k-group GH such that A/N(A) ∼=O(GH) [37, 11.7]. We will often identify
GH with the space Maxspec(A) of maximal ideals of A and with the group of algebra homomorphisms
from A to k, that is with the group-like elements G(A◦) of the finite dual A◦. For g ∈ GH , we denote the
corresponding members of Maxspec(A) and G(A◦) by mg and χg.
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3. The finite dual
3.1 Commutative recap

When A is a commutative affine Hopf k-algebra the structure of A◦ is well understood—it is cocommu-
tative and decomposes as a smash product

A◦ ∼= A′#kG, (3.1)

by the classical structure theorem for cocommutative pointed Hopf algebras, due to Cartier–Gabriel–
Kostant [26, Theorem 5.6.4(3)]. Here, A′ is a connected Hopf subalgebra of A, and, as discussed in
Section 2.2, G = G(A◦) is the group of characters of A. Moreover, when k has characteristic 0, A′ is the
enveloping algebra U(g) of the Lie algebra g of G, [26, Theorem 5.6.5]. That is, g= (A+/A+2)∗, con-
sisting of the primitive elements of A◦, the functionals vanishing at 1 and A+2. Thus, by [26, Proposition
9.2.5],

A′ = {f ∈ A◦ : f ((A+)n) = 0, for some n > 0} = U(g), (3.2)

where the first equality holds in general and the second when k has characteristic 0. Similarly, as can
easily be checked, with no condition on the characteristic of k,

kG = {f ∈ A◦ : f (m1 ∩ . . . ∩mr) = 0, r ≥ 1, mi ∈ Maxspec(A)}, (3.3)

the functionals vanishing on some finite intersection of maximal ideals of A.

3.2 Subspaces and quotient spaces of H◦

The following lemma gathers together some basic facts concerning the components A◦ and H
∗ of H◦.

Fix throughout the rest of the paper the Hopf embedding and the Hopf surjection

ι : A ↪→ H and π : H −→ H,

and the projection of right A-modules along X,

� : H = A ⊕ X � A : h = a + x �→ a, (3.4)

afforded by Theorem 2.2(8) when A is semiprime or central, or H is pointed.

Lemma 3.1. Let A ⊆ H be an affine commutative-by-finite Hopf algebra and assume that A semiprime
or central, or H is pointed.

(1) There is an embedding of Hopf algebras

π ◦ : H
∗
↪→ H◦ : β �→ β ◦ π .

(2) π ◦(H
∗
), which we identify with H

∗, is a normal Hopf subalgebra of H◦.
(3) H◦ is a free (right and left) H

∗-module.
(4) There is a map of right A◦-comodules

�◦ : A◦ −→ H◦ : α �→ α ◦ �.

(5) There is a Hopf algebra map

ι◦ : H◦ −→ A◦ : f �→ f ◦ ι,

with ι◦ ◦ �◦ = idA◦ . Thus �◦ is injective and ι◦ is surjective.
(6) Via ι◦, H◦ is canonically a right and left A◦-comodule algebra, with coinvariants

(H◦)co ι◦ = co ι◦ (H◦) = H
∗
.

(7) The Hopf ideal (H
∗
)+H◦ of H◦ is contained in ker ι◦, so that

(H
∗
)+H◦ ⊕ �◦(A◦) ⊆ ker ι◦ ⊕ �◦(A◦) = H◦. (3.5)

https://doi.org/10.1017/S0017089522000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089522000052


Glasgow Mathematical Journal 67

Proof. (1),(2) Define T := {f ∈ H◦ : f (A+H) = 0}. Since A+H is a Hopf ideal of H, it is clear that T is
a Hopf subalgebra of H◦ which is isomorphic as a Hopf algebra to H

∗, via the map π ◦ : H
∗ −→ H◦ : β �→

β ◦ π .
Since HA+ = A+H by Theorem 2.2(2), it is very easy to check that

T = {f ∈ H◦ : f (ah) = ε(a)f (h) = f (ha), ∀a ∈ A, ∀h ∈ H}. (3.6)
To deduce normality of T , let f ∈ H

∗ and ϕ ∈ H◦. For any a ∈ A+, h ∈ H,

(adrϕ)(f )(ah) =
[∑

S◦(ϕ1)f ϕ2

]
(ah) =

∑
S◦(ϕ1)(a1h1)f (a2h2)ϕ2(a3h3)

=
∑

ϕ1(S(h1)S(a1))ε(a2)f (h2)ϕ2(a3h3) =
∑

ϕ(S(h1)S(a1)a2h3)f (h2)

= ε(a)
∑

ϕ(S(h1)h3)f (h2) = 0.

Similarly, one shows that (ad�ϕ)(ha) = 0 for h ∈ H and a ∈ A, and hence T is normal by (3.6).
(3) Since H

∗ is a finite-dimensional and normal Hopf subalgebra of H◦, H◦ is a free H
∗-module by

[31, Theorem 2.1(2)].
(4),(5) Clearly, the restriction map ι◦ : f �→ f ◦ ι is a Hopf algebra map whose image lies in A◦.
Let f ∈ A◦, so f (J) = 0 for an ideal J of A of finite codimension. Thanks to Theorem 2.2(7) H = A ⊕ X

for a right A-submodule X of H, so the left ideal HJ of H decomposes as a right A-module,
HJ = J ⊕ XJ ⊆ A ⊕ X = H. (3.7)

In view of (3.7), we can define f̂ ∈ H∗ by f̂ (X) = 0 and f̂|A = f . Since f̂ (HJ) = 0 and dimk(H/HJ) < ∞,
f̂ ∈ H◦ by [26, Lemma 9.1.1]. By construction, f ◦ � = f̂ ; that is, �◦(f ) = f̂ . It is clear that ι◦ ◦ �◦ = idA◦ ,
so �◦ is injective and ι◦ surjective.

It remains to prove that �◦ is a map of right A◦-comodules. The right A◦-comodule structure of H◦

is given by ρ := (id ⊗ ι◦)�. Let f ∈ A◦. Then for all a ∈ A, h ∈ H we have

((ρ ◦ �◦)(f )) (h ⊗ a) = (ρ(f ◦ �)) (h ⊗ a) =
[∑

(f ◦ �)1 ⊗ (f ◦ �)2 ◦ ι
]

(h ⊗ a)

=
∑

(f ◦ �)1(h)(f ◦ �)2(a) = (f ◦ �)(ha) = f (�(h)a).

On the other hand,

((�◦ ⊗ id)�(f )) (h ⊗ a) =
[∑

(�◦ ◦ f1) ⊗ f2

]
(h ⊗ a) =

∑
f1(�(h))f2(a) = f (�(h)a),

so (4) is proved.
(6) H◦ is canonically a right and left A◦-comodule algebra, the right comodule map being ρ := (id ⊗

ι◦) ◦ �. The right coinvariants are the maps f such that

ρ(f ) =
∑

f1 ⊗ (f2 ◦ ι) = f ⊗ εA,

so that f (ha) = f (h)ε(a) for all h ∈ H, a ∈ A. By (3.6), these are precisely the maps in H
∗. The left case

is analogous.
(7) First, (H

∗
)+H◦ is a Hopf ideal of H◦ since, by (2), H

∗ is a normal Hopf subalgebra of H◦, so [26,
Section 3.4] applies. Let f ∈ (H

∗
)+. Then f (A+H) = 0 by definition of H

∗, and εH◦(f ) = f (1) = 0. Thus
f (A) = 0, so that f ∈ ker ι◦. Hence (H

∗
)+H◦ ⊆ ker ι◦, and the inclusion in (3.5) follows. For the equality

in (3.5), first observe that the sums are direct by part (5). Let f ∈ H◦. Then (�◦ ◦ ι◦)(f ) ∈ �◦(A◦), and
ι◦(f − (�◦ ◦ ι◦)(f )) = 0,

so that H◦ = ker ι◦ + �◦(A◦), as required.

3.3 Decomposition of H◦

Our first main result is the following. For the definition of a cleaving map, see Remark 2.3(2). Recall
that Theorem 2.2(8) guarantees that under the hypotheses of the theorem below H = A ⊕ X for a right
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A-submodule X of H, and, as discussed in Section 1.1, A ⊆ H satisfies (CoSplit) if X can be chosen to
be a coideal of H.

Theorem 3.2. Let A ⊆ H be an affine commutative-by-finite Hopf k-algebra with A semiprime or central,
or H pointed.

(1) Suppose that H satisfies (CoSplit). Then H◦ decomposes as a smash product

H◦ ∼= H
∗
#A◦, (3.8)

the isomorphism (3.8) being as left H
∗-modules and right A◦-comodules as well as of algebras.

(2) Suppose that as an algebra H = A#σ H is a crossed product whose cleaving map γ : H → H is
a coalgebra map. (For example, this is the case if H decomposes as a smash product H ∼= A#H
with H a Hopf subalgebra of H.) Then (1) applies and the action of A◦ on H

∗ is trivial, so that

H◦ ∼= H
∗ ⊗ A◦ (3.9)

as left H
∗-modules, right A◦-comodules and algebras.

Proof.

(1) Since X = ker � is a coideal of H, � is a coalgebra map, and so the right A◦-comodule map
�◦ of Lemma 3.1(4) is an algebra map. In particular, it is a cleaving map with convolution
inverse �◦ ◦ SA◦ . By Remark 2.3(3), H◦ is isomorphic to H

∗
#σ A◦ for some action of A◦ on H

∗

and cocycle σ . Since the cleaving map �◦ is an algebra map, the cocycle σ is trivial. By [26,
Proposition 7.2.3], the isomorphism carries the structures as stated.

(2) Since γ is a coalgebra map, H = A ⊕ Aγ (H
+

) and Aγ (H
+

) is a coideal of H, so (1) applies. It
remains to prove the action is trivial, that is �◦(f ′)π ◦(f ) = π ◦(f )�◦(f ′), for all f ∈ H

∗
, f ′ ∈ A◦.

Let f ∈ H
∗
, f ′ ∈ A◦, a ∈ A, h̄ ∈ H. We have

π ◦(f )�◦(f ′)(aγ (h̄)) =
∑

π ◦(f )(a1γ (h̄1))�
◦(f ′)(a2γ (h̄2))

=
∑

f π (a1γ (h̄1))f ′�(a2γ (h̄2))

=
∑

ε(a1)f πγ (h̄1)f ′(a2)ε(γ (h̄2))

=
∑

ε(a1)f (h̄1)f ′(a2)ε(h̄2)

= f (h̄)f ′(a),

since π ◦ γ = id, which follows from γ being a right H-comodule coalgebra map. The proof for
�◦(f ′)π ◦(f ) is completely analogous.

Remark 3.3.

(1) In general the decompositions (3.8) and (3.9) are not isomorphisms of coalgebras. For instance,
consider the group algebra H = kD of the infinite dihedral group D := 〈a, b : a2 = 1, aba =
b−1〉, with k of characteristic 0. It decomposes into A ⊕ X with A = k〈b〉 and X = A(a − 1), so
X is a coideal A-module and (3.8) applies. Here,

A◦ ∼= k[f ] ⊗ k(k×, ·),
where the algebra homomorphism indexed by λ ∈ k× is χλ, with χλ(b) = λ. Embedding A◦ into
H◦ using the algebra homomorphism �◦, (3.8) yields the algebra structure

H◦ = kC2 ⊗ k[�◦(f )] ⊗ k{�◦(χλ) : λ ∈ k×}.
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However, the functional �◦(f ) is not primitive and the functionals �◦(χλ) are not group-like
(although they are units in H◦). Namely, one calculates:

�(�◦(f )) = �◦(f ) ⊗ 1 + α ⊗ �◦(f );

and

�(�◦(χλ)) = 1

2
(�◦(χλ) ⊗ �◦(χλ)) ((1 + α) ⊗ 1 + (1 − α) ⊗ �◦(χλ−2 )) ,

where the group-like involution α is the generator of H
∗ = kC2. For details, see [19, Corollary

6.7, Remark 6.8] or [11, Corollary 4.4.6(II) and Appendix A.2]; there is also an extensive
analysis of kD◦, arriving at the same formulae, in [16].

(2) Note that the action of the smash product in (3.8) is given by

f · ϕ =
∑

�◦(f1)ϕ�◦(SA◦ f2),

for any f ∈ A◦, ϕ ∈ H
∗. In particular, when k has characteristic 0, using the notation (3.1) and

(3.2), �◦(g) ∼= g and, if f ∈ g, then it acts as a derivation on H
∗ (that is, f · ϕ = �◦(f )ϕ −

ϕ�◦(f )), even though in general �◦(f ) won’t be a primitive element of H◦. Similarly, if χg ∈ A◦

denotes the algebra homomorphism corresponding to g ∈ GH , then χg acts by conjugation over
H

∗ (i.e. χg · ϕ = �◦(χg)ϕ�◦(χg−1 )), despite in general �◦(χg) not being a grouplike in H◦.
(3) The following question seems on the face of it to be rather optimistic, but we currently do not

know any example of an affine commutative-by-finite Hopf algebra H for which there is no
choice of the subalgebra A such that the answer is positive for A ⊆ H.

Question 3.4. When A ⊆ H is affine commutative-by-finite with A semiprime or central, or H pointed,
is H◦ always a smash product of H

∗ by A◦ for a suitable choice of A?

In Section 7, it is shown that Question 3.4 has a positive answer for many classes of commutative-
by-finite Hopf algebras.

4. The tangential component W(H◦)

4.1 Definition and basic properties

Throughout this section, the hypotheses and notation of Section 2.2 remain in force. We define an
analogue for the finite dual of a commutative-by-finite Hopf algebra of the irreducible component A′

appearing in (3.1), as follows.

Definition 4.1. Let A ⊆ H be an affine commutative-by-finite Hopf k-algebra. The tangential component
of H◦ is

W(H◦) := {f ∈ H◦ : f ((A+H)n) = 0, for some n > 0}.

Lemma 4.2. Retain the notation and hypotheses of Definition 4.1.

(1) W(H◦) is a normal Hopf subalgebra of H◦.
(2) H

∗ is a normal Hopf subalgebra of W(H◦).

Proof. First, W(H◦) is a Hopf subalgebra because A+H is a Hopf ideal of H and, for any Hopf ideal
I of H,

{f ∈ H◦ : f (In) = 0 for some n > 0}
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is a Hopf subalgebra of H◦ by [26, Lemma 9.2.1]. Clearly, W(H◦) contains H
∗, by the definition of the

latter subalgebra in Lemma 3.1(1). Since H
∗ is normal in H◦ by Lemma 3.1(2), it is a fortiori normal in

the Hopf subalgebra W(H◦).
To prove normality of W(H◦) let ϕ ∈ H◦ and f ∈ W(H◦), so f vanishes at (A+H)n = (A+)nH for some

positive integer n. Take a1, . . . , an ∈ A+ and h ∈ H. Then[∑
S◦(ϕ1)f ϕ2

]
(a1 . . . anh)

=
∑

S◦(ϕ1)(a1,1 . . . an,1h1)f (a1,2 . . . an,2h2)ϕ2(a1,3 . . . an,3h3)

=
∑

ϕ1(S(h1)S(an,1) . . . S(a1,1))f (a1,2 . . . an,2h2)ϕ2(a1,3 . . . an,3h3)

=
∑

ϕ(S(h1)S(an,1) . . . S(a1,1)a1,3 . . . an,3h3)f (a1,2 . . . an,2h2)

=
∑

ϕ(S(h1)S(an,1)an,3 . . . S(a1,1)a1,3h3)f (a1,2 . . . an,2h2),

since A is commutative. For each i, we write ai,2 = ε(ai,2)1 + a′
i,2, where a′

i,2 ∈ A+. Writing [1, n] for
{1, 2, . . . , n}, we now have

f (a1,2 . . . an,2h2) =
∑

P⊆[1,n]

∏
i∈P

ε(ai,2)f

( ∏
i∈[1,n]\P

a′
i,2h2

)
.

Therefore, [∑
S◦(ϕ1)f ϕ2

]
(a1 . . . anh)

=
∑ ∑

P⊆[1,n]

ϕ(S(h1)S(an,1)an,3 . . . S(a1,1)a1,3h3)
∏
i∈P

ε(ai,2)f

( ∏
i∈[1,n]\P

a′
i,2 h2

)

=
∑ ∑

P⊆[1,n]

ϕ

(
S(h1)

∏
i∈P

S(ai,1)ε(ai,2)ai,3

∏
i∈[1,n]\P

S(ai,1)ai,3 h3

)
f

( ∏
i∈[1,n]\P

a′
i,2h2

)

=
∑ ∑

P⊆[1,n]

∏
i∈P

ε(ai) ϕ

(
S(h1)

∏
i∈[1,n]\P

S(ai,1)ai,3 h3

)
f

( ∏
i∈[1,n]\P

a′
i,2h2

)
.

The summands where P �= ∅ vanish due to ε(ai) = 0 for all i ∈ [1, n] and the summands where P = ∅
vanish because f is zero on (A+H)n = A+nH. The proof for the left adjoint action is similar, so normality
of W(H◦) in H◦ is proved.

4.2 Decomposition of W(H◦)

To analyse the structure of W(H◦), we use the Hopf algebra surjection ι◦ from H◦ to A◦ of Lemma 3.1(5),
given by restriction of functionals from H to A. In the following result, we decompose W(H◦) into the
crossed product H

∗
#σ A′. Notice that the isomorphism (4.1) below does not require hypothesis (CoSplit),

in contrast to Theorem 3.2.

Theorem 4.3. Let A ⊆ H be an affine commutative-by-finite Hopf algebra with A semiprime or central,
or H pointed. Recall that A◦ decomposes as A′#kGH as in (3.1).

(1) ι◦(W(H◦)) = A′.
(2) W(H◦) decomposes as a crossed product for a cocycle σ and an action of A′ on H

∗. That is, as
algebras, left H

∗-modules and right A′-comodules,
W(H◦) ∼= H

∗
#σ A′. (4.1)

(3) W(H◦)
co ι◦|W(H◦ ) = H

∗
.
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(4) Suppose that k has characteristic 0. Then ker ι◦|W(H◦)
= (H

∗
)+W(H◦).

(5) Suppose that A ⊆ H satisfies (CoSplit). Then σ is trivial—that is, (4.1) is a decomposition of
W(H◦) as a smash product. When k has characteristic 0, so that A′ = U(g), the action of U(g)
on H

∗ is given by

f · ϕ = �◦(f )ϕ − ϕ�◦(f ),

for f ∈ g, ϕ ∈ H
∗. That is, W(H◦) is a differential operator ring over H

∗.

Proof. (1) Since ι◦ is just restriction of functionals to the subdomain A, it is clear that ι◦(W(H◦)) ⊆ A′.
To see that im ι◦|W(H◦)

= A′, note the definition (3.2) of A′, and then observe that, in the proof of Lemma
3.1(4), if f ∈ A′ ⊆ A◦, then the map f̂ ∈ H◦ constructed there, with �◦(f ) = f̂ , is actually in W(H◦). Since
ι◦ ◦ �◦ = idA◦ by Lemma 3.1(5), ι◦ (̂f ) = f and the result follows.

(2),(3): By Lemma 3.1(6), H◦ is a right A◦-comodule algebra with ρ = (id ⊗ ι◦)�. In particular, since
W(H◦) is a Hopf subalgebra of H◦ by Lemma 4.2(2), and using (1) of the present theorem,

ρ(W(H◦)) ⊆ W(H◦) ⊗ ι◦(W(H◦)) = W(H◦) ⊗ A′. (4.2)

That is, the structure of right A◦-comodule of H◦ restricts to a structure of right A′-comodule on W(H◦).
We have noted in the proof of (1) that the right A◦-comodule map �◦ : A◦ −→ H◦ maps A′ into W(H◦).

Thus, in light of (4.2), �◦
|
A
′ : A′ −→ W(H◦) is an injection of right A′-comodules.

A linear map from a coalgebra to an algebra is convolution invertible if and only if its restriction to
the coradical is convolution invertible, see [35, Lemma 14] or [26, Lemma 5.2.10]. But A′ is connected
by its definition as the irreducible component of the coalgebra A◦ containing ε, [26, p. 78]; that is, its
coradical is k. Therefore, in the language of Remark 2.3(3), �◦

|
A
′ is a cleaving map and by the result of

Doi and Takeuchi recalled in Remark 2.3(3),

W(H◦) ∼= W(H◦)
co ι◦|W(H◦ ) #σ A′.

Since the A′-comodule structure of W(H◦) is the restriction of the A◦-comodule structure of H◦, it
follows from Lemma 3.1(6) that

W(H◦)
co ι◦|W(H◦ ) = W(H◦) ∩ (H◦)co ι◦ = W(H◦) ∩ H

∗ = H
∗
.

(4) Since chark = 0, A′ = U(g) by (3.2). It is clear from (4.1) that

W(H◦)/(H
∗
)+W(H◦) ∼= U(g).

Moreover, we know from Lemma 3.1(7) that

(H
∗
)+W(H◦) ⊆ ker ι◦|W(H◦)

. (4.3)

By (1), im ι◦|W(H◦ )
= U(g). Since A is affine, g is finite dimensional, and hence U(g) is a noetherian algebra.

In particular, U(g) cannot be isomorphic to a proper factor of itself, and hence (4.3) must be an equality,
proving (4).

(5) This follows from (2) and Theorem 3.2(1), since the cocycle σ in (2) is in this case trivial by the
latter result. The last part is a special case of Remark 3.3(2).

Recall that, in characteristic 0, a finite dimensional Hopf algebra is semisimple if and only if
cosemisimple [21], so the following improvement of Theorem 4.3(5) applies when H is semisimple
if k has characteristic 0.

Corollary 4.4. Let A ⊆ H be an affine commutative-by-finite Hopf k-algebra with A semiprime or cen-
tral, or H pointed. Retain the additional notation of Theorem 4.3. Assume that A ⊆ H satisfies hypothesis
(CoSplit), and that H is cosemisimple. Then the action of U(g) on H

∗ is inner, so that, as algebras,

W(H◦) ∼= H
∗ ⊗ U(g).
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Proof. By Theorem 4.3(5) W(H∗) is a smash product of algebras,

H
∗
#U(g). (4.4)

By our hypothesis, H
∗ is semisimple, and so by Jacobson’s theorem, (see for example [26, Example 6.1.6,

Proposition 6.2.1 and discussion following]), since k is algebraically closed, g acts by inner derivations
on H

∗. That is, there is a copy u(g) of g contained in H
∗, (where we view H

∗ as a Lie algebra via the
commutator bracket), such that for all x ∈ g and h ∈ H

∗,

x · h = [u(x), h].

Replacing the copy of g appearing in (4.4) with the isomorphic Lie algebra

ĝ :=
∑

i

k(xi − u(xi)),

where {xi} is a k-basis of g, we see that

W(H◦) = H
∗ ⊗ U(̂g),

as claimed.

5. The subcoalgebra ̂kGH

5.1 Orbits in Maxspec(A)

Recall the description (3.3) in Section 3.1 of the Hopf subalgebra kG of A◦. In this section, we extend this
viewpoint to H, defining a subcoalgebra k̂GH of H◦ which is a Hopf subalgebra under mild additional
hypotheses and which reduces to kGH when H = A. We saw in Theorem 2.2(3) that the left adjoint action
of H on A factors over the ideal A+H, so that A is a left H-module algebra. An ideal I of A is said to be
H-stable if

(ad�h)(a) ∈ I, for all h ∈ H, a ∈ I.

Since the extension A ⊆ H is faithfully flat by Theorem 2.2(4), I is H-stable if and only if HI = IH.

Definition 5.1. Let T be a Hopf algebra and R a left T-module algebra, with V a subspace of R. The
T-core of V is the subspace

V (T) = {v ∈ V : t · v ∈ V , ∀t ∈ T}.
Note that if V is a right or left ideal of R in Definition 5.1 then so is V (T). The crucial parts (2) and

(3) of the following result are essentially due to Skryabin [33, Theorems 1.1, 1.3]. For the proofs of
Proposition 5.2 and Corollary 5.4, see [3, Proposition 4.4].

Proposition 5.2. Let A ⊆ H be an affine commutative-by-finite Hopf algebra and let m ∈ Maxspec(A).

(1) m(H) is the largest H-stable ideal of A contained in m.
(2) A/m(H) is an H-simple algebra - that is, the H-core of each of its proper ideals is {0}.
(3) A/m(H) is a Frobenius algebra. In particular, A/m(H) is finite dimensional.

Following still Skryabin, we can use Proposition 5.2(2) to extend the fundamental idea that a group
of automorphisms of the algebra A defines orbits in Maxspec(A), to the present setting where the group
is replaced by a Hopf algebra.

Definition 5.3. Let A ⊆ H be an affine commutative-by-finite Hopf algebra.
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(1) For each m ∈ Maxspec(A), its H-orbit is the set of maximal ideals with the same H-core,

Om = {m′ ∈ Maxspec(A) : m′(H) =m(H)}.

(2) Define an equivalence relation ∼(H) on GH = Maxspec(A) as follows: for g, h ∈ GH , g ∼(H) h if
and only if m(H)

g =m(H)
h .

It’s clear that ∼(H) is an equivalence relation; but it is far from obvious, although it follows easily
from Proposition 5.2(2), that the H-orbits have the following simple description.

Corollary 5.4. Let A ⊆ H be an affine commutative-by-finite Hopf algebra.

(1) Om = {m′ ∈ Maxspec(A) : m(H) ⊆m′}.
(2) Om is finite.

5.2 Orbital semisimplicity

The results in Section 5.1 lead naturally to:

Definition 5.5. Let A ⊆ H be an affine commutative-by-finite Hopf algebra. Then A ⊆ H is called
orbitally semisimple if A/m(H) is semisimple for all m ∈ Maxspec(A). In this case we write that A ⊆ H
satisfies (OrbSemi).

Note that, in view of Corollary 5.4(1), A ⊆ H is orbitally semisimple if and only if

m(H) =
⋂

m
′∈Om

m′. (5.1)

Since we have used the left adjoint action in Definition 5.5, one might choose to call the above
property left orbital semisimplicity; but in fact it is shown in [3, Lemma 4.10(2)] that A ⊆ H is left
orbitally semisimple if and only if it is right orbitally semisimple.

We know no examples of affine commutative-by-finite Hopf algebras that are not orbitally semisim-
ple. When A is central in H orbital semsimplicity is trivial; the next result lists other positive cases. In
characteristic 0, there are overlaps between these, thanks to the result of Etingof and Walton [15] imply-
ing that the action of H factors through a group algebra when H is semisimple and cosemisimple and A
is a domain.

Theorem 5.6 ([3, Theorem 4.8]). The affine commutative-by-finite Hopf algebra A ⊆ H satisfies
(OrbSemi) in the following cases.

(1) The adjoint action of H on Maxspec(A) factors through a group.
(2) H is cosemisimple.
(3) H is involutory and either char k = 0 or char k > dimk(A/m(H)) for all m ∈ Maxspec(A).

We discuss particular families of examples of affine commutative-by-finite Hopf algebras, and their
status with respect to orbital semisimplicity, in Section 7.

5.3 The character component of H◦

Here is the definition, we have been working towards:
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Definition 5.7. Let H be an affine commutative-by-finite Hopf algebra, finite over the normal commuta-
tive Hopf subalgebra A. Recall from Section 2.2 that GH denotes the affine algebraic k-group such that
A/N(A) ∼=O(GH).

(1) The character component of H◦ is

k̂GH =
{

f ∈ H◦ : f
(

Hm(H)
g1

∩ . . . ∩ Hm(H)
gr

)
= 0, for some g1, . . . , gr ∈ GH/ ∼(H)

}
.

(2) For g ∈ GH , write ĝ to denote the subspace (H/Hm(H)
g )∗ of k̂GH .

Here are some basic properties of these spaces.

Lemma 5.8. Let A ⊆ H be an affine commutative-by-finite Hopf k-algebra. Retain the notation of
Section 2.2 and Definition 5.7.

(1) If g, h ∈ GH with g ∼(H) h, then ĝ = ĥ.
(2) k̂GH =⊕

g∈GH/∼(H) ĝ.
(3) k̂GH is a subcoalgebra of H◦.
(4) For all g ∈ GH , ĝ is a subcoalgebra of k̂GH .
(5) For all g ∈ GH ,

ĝ ⊇
⊕

h∼(H)g

(H/Hmh)
∗ ,

and (
H/Hmg

)∗ ⊇ H
∗
�◦(χg) + �◦(χg)H

∗
.

(6) For g ∈ GH , S◦ (̂g) = ĝ−1.
(7) k̂GH ∩ W(H◦) = H

∗ = 1̂G.
(8) Assume that A is a domain and let dA(H) be the minimal number of generators of H as a right

or left A-module. For g ∈ GH ,

dimk(H/Hmg) = dimk(H/mgH) = dimk(H), (5.2)

and

dimk (̂g) = dimk(A/m(H)
g )dimk(H) ≤ dA(H)dimk(H). (5.3)

If H is prime (which implies that A is a domain), then

dimk (̂g) ≤ (
dimk(H)

)2
. (5.4)

Proof. (1) This follows from the definition of ∼(H).
(2) If g, h ∈ GH with Omg �=Omh , then the ideals m(H)

g and m(H)
h of A are comaximal, by Corollary

5.4(1). The same is thus true of the ideals Hm(H)
g and Hm(H)

h of H. Therefore, if g1, . . . , gr ∈ GH are
representatives of distinct ∼(H)-orbits, the Chinese Remainder Theorem shows that

H

/
r⋂

i=1

Hm(H)
gi

∼=
r⊕

i=1

H/Hm(H)
gi

.

Taking duals on both sides proves (2).
(3),(4): Let g ∈ GH . That ĝ is a subcoalgebra of H◦ is simply a special case of the elementary fact

that, for an ideal I of finite codimension in an algebra R, (R/I)∗ is a subcoalgebra of R◦. So (3) and (4)
follow from this observation together with (2).
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(5) The first inclusion is clear. For the second, note first that

�(Hmg) = �(H)�(mg) ⊆ Hm1GH
⊗ H + H ⊗ Hmg, (5.5)

by the definition of the coproduct in A/N(A) =O(GH), combined with the fact that N(A) is a Hopf ideal
of A, [3, Lemma 5.2(1)]. Let f ∈ H

∗. Then, using (5.5),

(f �◦(χg))(Hmg) ⊆ f (Hm1GH
)�◦(χg)(H) + f (H)�◦(χg)(Hmg) = 0.

So H
∗
�◦(χg) ⊆ (H/Hmg)∗. The proof of the remaining inclusion is similar.

(6) Let g ∈ GH . To prove that S◦ (̂g) = ĝ−1 it suffices to show that S(m(H)
g ) =m(H)

g−1 . It is easy to see that

m(H)
g = r-AnnA(H/mgH) = l-AnnA(H/Hmg).

Since S is an algebra anti-isomorphism of H with S(A) = A, it follows that

S(m(H)
g ) = l-AnnA(H/HS(mg)) = l-AnnA(H/Hmg−1 ).

This proves (6).
(7) The final equality is clear from the definitions, and this also shows that H

∗ ⊆ k̂GH . Thus, by
Lemma 4.2(2), H

∗ ⊆ W(H◦) ∩ k̂GH .
For the reverse inclusion, suppose f ∈ H◦ with f vanishing on (A+H)n = A+nH and also on I :=⋂r

i=1 m
(H)
gi

H, for some n, r ≥ 1 and distinct g1, . . . , gr ∈ GH/ ∼(H). We claim that

A+H ⊆ I + A+nH. (5.6)

If gi �= 1GH for all i = 1, . . . , r, then I and A+nH are comaximal by the discussion in the proof of (2),
so that (5.6) is clear. Suppose on the other hand that, say, g1 = 1GH . Then I + A+nH ⊆ A+H, and the
left A-module A+H/(I + A+nH) is annihilated by both of the comaximal ideals A+n−1 and by

⋂r
i=2 m

(H)
gi

.
Hence A+H/(I + A+nH) = {0} and again (5.6) is proved. Thus (5.6) holds in all cases and so f ∈ H

∗, as
required.

(8) Assume that A is a domain. Localise A at the maximal ideal mg, and consider the left Amg-module
Hmg := Amg ⊗A H. Since H is a finitely generated projective A-module by Theorem 2.2(6), and Amg is
local, Hmg is a free Amg-module of finite rank r. Let Q denote the quotient field of A. Since H is a torsion
free A-module,

r = dimQ(Q ⊗Amg
Hmg ) = dimQ(Q ⊗A H),

so r is constant as g varies through GH . Taking g = 1GH and applying Nakayama’s lemma,

r = dimk(H/m1GH
H) = dimk(H), (5.7)

proving the second equality in (5.2). The first equality is a consequence of the second, using the antipode.
Since the algebra H/m(H)

g H is artinian, it is isomorphic as an A/m(H)
g -module to the factor Hmg/m

(H)
g Hmg

of Hmg . But the latter is a free A/m(H)
g -module of rank r. Combining this with (5.7) proves the equality

in (5.3), and the inequality is then given by [3, Theorem 6.1(2)]. If H is prime then A is a domain and
the inequality (5.4) follows from [3, Corollary 6.2 and its proof].

5.4 Subalgebras and subcoalgebras of ̂kGH

In order to better control the structure of k̂GH , we need to impose on the inclusion A ⊆ H one or
both of the additional hypotheses (CoSplit) and (OrbSemi) defined respectively in Section 1.1 and
Definition 5.5. First we assume (CoSplit) in Proposition 5.9, then (OrbSemi) in Proposition 5.10, before
combining these in Theorem 5.13.

Proposition 5.9. Let A ⊆ H be an affine commutative-by-finite Hopf k-algebra satisfying (CoSplit).
Assume also that A is semiprime or central, or that H is pointed. Keep the notation introduced in Sections
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5.3 and 2.2 and in Lemma 3.1. Define
G̃H = {�◦(χg) : g ∈ GH} ⊆ H◦.

(1) G̃H is a subgroup of the group of units of H◦, and the algebra injection �◦ : A◦ → H◦ restricts
to an isomorphism of groups from the group-likes GH of A◦ to G̃H .

(2) The subalgebra of H◦ generated by G̃H is the group algebra kG̃H , and �◦ restricts to an algebra
isomorphism from kGH to kG̃H .

(3) For all g ∈ GH , H
∗
�◦(χg) = �◦(χg)H

∗ is free of rank 1 as an H
∗-bimodule. Hence 〈H∗

, G̃H〉 is
a skew group algebra H

∗
#G̃H; that is,

〈H∗
, G̃H〉 = H

∗
#G̃H = ⊕g∈GH H

∗
�◦(χg)

is a subalgebra of H◦ contained in the subcoalgebra k̂GH .
(4) There are inclusions

k̂GH =
⊕

g∈GH/∼(H)

ĝ ⊇
⊕

g∈GH/∼(H)

⎛⎝⊕
h∼(H)g

(H/Hmh)∗

⎞⎠⊇
⊕

g∈GH/∼(H)

⎛⎝⊕
h∼(H)g

H
∗
�◦(χh)

⎞⎠= H
∗
#G̃H .

If A is a domain then the second inclusion is an equality.

Proof. (1),(2) The (CoSplit) hypothesis ensures that � is a coalgebra map, so �◦ is an algebra homo-
morphism, and is an injection by Lemma 3.1(5). Thus �◦ maps GH isomorphically to a subgroup G̃H of
the group of units of H◦, and

kG̃H = �◦(kGH) ∼= kGH .

(3) By Remark 3.3(2), the action of kGH ⊂ A◦ on H
∗ is

χg · f = �◦(χg)f �
◦(χg−1 ) ∈ H

∗
,

for any f ∈ H
∗
, g ∈ GH , hence �◦(χg)f ∈ H

∗
�◦(χg), proving �◦(χg)H

∗ ⊆ H
∗
�◦(χg) and the converse is

proved similarly. Both these H
∗-modules are free of rank 1 since �◦(GH) consists of units of H◦. From

Theorem 3.2(1) and its proof, we know that H◦ is a free left and right H
∗-module with any vector space

basis of �◦(A◦) as free basis. In particular, {�◦(χg) : g ∈ GH} spans a free left and right H
◦-submodule

of k̂GH .
(4) The first equality and first inclusion are immediate from Definition 5.7 and Lemma 5.8(5). The

second inclusion follows from Lemma 5.8(5) and the third equality is part (3) of the present lemma. If A
is a domain the second inclusion is seen to be an equality by comparing vector space dimensions using
Lemma 5.8(8).

We examine next the effect of the (OrbSemi) hypothesis on k̂GH .

Proposition 5.10. Let A ⊆ H be an affine commutative-by-finite Hopf algebra satisfying (OrbSemi).

(1) The subcoalgebra k̂GH of H◦ is a Hopf subalgebra.
(2) For g, h ∈ GH ,

ĝ̂h ⊆
∑

g
′∼(H)g,h

′∼(H)h

ĝ′h′. (5.8)

(3) For g ∈ GH , ĝ is a left and right H
∗-module. Assume further that A is a domain. Then, for any

g ∈ GH:
(4) dimk (̂g) = ∣∣Omg

∣∣ dimk(H).
(5)

ĝ =
⊕

h∼(H)g

(H/Hmh)
∗ =

⊕
h∼(H)g

(H/mhH)
∗ .
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Proof. Note that (3) is a special case of (2), since H
∗ = 1̂GH . By Lemma 5.8(3),(6), (1) will follow

if k̂GH is closed under multiplication. Moreover, by Lemma 5.8(2), closure under multiplication will
follow at once from (2). We claim that to prove (5.8) amounts to showing that

�

⎛⎝ ⋂
g
′∼(H)g,h

′∼(H)h

mg
′
h
′

⎞⎠⊆m(H)
g ⊗ A + A ⊗m(H)

h = : J. (5.9)

For, the flatness of H over A together with the Chinese remainder theorem implies that
⋂

g
′
,h

′ (Hm(H)

g
′
h
′ ) =

H
(⋂

g
′
,h

′ m(H)

g
′
h
′
)
. Hence, given (5.9),

�

⎛⎝ ⋂
g
′∼(H)g,h

′∼(H)h

Hm(H)

g
′
h
′

⎞⎠⊆ Hm(H)
g ⊗ H + H ⊗ Hm(H)

h . (5.10)

Consider now βγ for β ∈ ĝ and γ ∈ ĥ. It follows from (5.10) that

βγ

⎛⎝ ⋂
g
′∼(H)g,h

′∼(H)h

Hm(H)

g
′
h
′

⎞⎠⊆ β(Hm(H)
g )γ (H) + β(H)γ (Hm(H)

h ) = 0,

proving part (2) of the proposition.
Let us prove (5.9). By the definition of the coproduct of A,

�

⎛⎝ ⋂
g
′∼(H)g,h

′∼(H)h

mg
′
h
′

⎞⎠ ⊆
⋂

g
′∼(H)g,h

′∼(H)h

�
(
mg

′
h
′
)

⊆
⋂

g
′∼(H)g,h

′∼(H)h

(mg
′ ⊗ A + A ⊗mh

′ ) = : I.

Thus (5.9) will follow if it can be shown that I = J. It is clear that J ⊆ I. To prove equality, let r = |Omg |
and s = |Omh |. Then it follows from (OrbSemi) that

dimk((A ⊗ A)/J) = rs = dimk((A ⊗ A)/I).

This completes the proof of (5.9).
(4) Since H is orbitally semisimple,

∣∣Omg

∣∣= dimk(A/m(H)
g ) by (5.1), hence (4) is (5.3).

(5) Since H is orbitally semisimple, H/Hm(H)
g =⊕

h∼(H)g H/Hmh, so this follows from the definition
of ĝ.

Remark 5.11. The formula (5.8) cannot be further simplified. To see this, consider the group algebra
H := kD of the dihedral group as in Remark 3.3(1). Recall that A = k[b±1] = O(k×), so, GH = k×. Now
H = k〈a〉, so the H-orbits in Maxspec(A) are

{mg, mg−1 : g ∈ k×}, (5.11)

and H
∗ ∼= H. Clearly H satisfies both (CoSplit) with X := (a − 1)kA, and (OrbSemi), since H is a group

algebra. Therefore, by Propositions 5.9(4) and 5.10(5), and using (5.11),

ĝ = (k�◦(χg) + k�◦(χg−1 )) ⊗ kC2, (5.12)

and 1̂ = 1 ⊗ kC2 and −̂1 = k�◦(χ−1) ⊗ kC2. Hence, for g, h ∈ k× \ {±1},
ĝ̂h = [

k�◦(χgh) + k�◦(χg−1h) + k�◦(χgh−1 ) + k�◦(χg−1h−1 )
]⊗ kC2 = ĝh + ĝ−1h.

Thus the inclusion of (5.8) is an equality in this instance.
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5.5 Decomposition of ̂kGH

Before uniting the conclusions of Propositions 5.9 and 5.10 in Theorem 5.13, we need one more lemma.
Recall from Section 2.2 and Lemma 3.1 the Hopf surjection ι◦ : H◦ −→ A◦, so that H◦ is a right A◦-
comodule algebra via the map ρ : = (id ⊗ ι◦) ◦ �.

Lemma 5.12. Let A ⊆ H be an affine commutative-by-finite Hopf algebra satisfying (OrbSemi). Assume
that A is semiprime or central, or that H is pointed. In the notation of Sections 2.2, 5.1, Definition 5.7
and Lemma 3.1, the following hold for each g ∈ GH:

(1) ι◦(̂g) =⊕
h∼(H)g kχh.

(2) ĝ ⊇ {f ∈ H◦ : ρ(f ) ∈ f ⊗∑
h∼(H)g kχh}.

(3) 1̂GH = H
∗ = {f ∈ H◦ : ρ(f ) = f ⊗ 1}.

Proof.

(1) Let g ∈ GH and take f ∈ ĝ, so that f |A (m(H)
g ) = 0. Since A ⊆ H satisfies (OrbSemi) the Chinese

remainder theorem implies that

ι◦(f ) = f |A ∈
(

A/m(H)
g

)∗ ∼=
⊕

h∼(H)g

(A/mh)
∗ =

⊕
h∼(H)g

kχh.

Conversely, let α =∑
h∼(H)g λhχh ∈ A◦ for some λh ∈ k. Then α = ι◦(�◦(α)) by Lemma 3.1(5).

Recall that H = A ⊕ X as right A-modules by (1.1) in Section 1.2. Thus

�◦(α)(Hm(H)
g ) = �◦(α)(m(H)

g ⊕ Xm(H)
g )) = α(m(H)

g ) =
∑

h∼(H)g

λhχh(m(H)
g ) = 0,

as m(H)
g ⊆mh for every h ∼(H) g. Thus �◦(α) ∈ ĝ and α ∈ ι◦ (̂g), proving (1).

(2) Let f ∈ H◦ and suppose ρ(f ) = f ⊗∑
h∼(H)g λhχh for some λh ∈ k. Then

f (Hm(H)
g ) =

∑
f1(H)f2(m

(H)
g ) =

∑
f1(H) f2|A (m(H)

g )

= ρ(f )(H ⊗m(H)
g ) = f (H)

⎛⎝∑
h∼(H)g

λhχh(m
(H)
g )

⎞⎠= 0,

as m(H)
g ⊆mh for every h ∼(H) g. Hence f ∈ ĝ.

(3) That the left side contains the right is a special case of (2). For the reverse inclusion, let f ∈
H

∗ = 1̂G. By part (1)

ρ(f ) ∈ (id ⊗ ι◦)(H
∗ ⊗ H

∗
) = H

∗ ⊗ kεA,

say ρ(f ) = f ′ ⊗ εA for some f ′ ∈ H
∗. By the counit axiom of right comodules, f = εA(1A)f ′ = f ′,

hence ρ(f ) = f ⊗ 1A◦ , proving (3).

We can now show that when A ⊆ H satisfies (OrbSemi) k̂GH decomposes as a crossed or smash prod-
uct whenever H◦ does, generalising the presence of the group algebra kGH in the dual of a commutative
semiprime Hopf algebra.

Theorem 5.13. Let A ⊆ H be an affine commutative-by-finite Hopf algebra satisfying (OrbSemi), and
assume that A is semiprime or central, or that H is pointed.
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(1) Suppose that H◦ ∼= H
∗
#σ A◦ decomposes as a crossed product for some cocycle σ and action of

A◦ on H
∗. Then

k̂GH
∼= H

∗
# σ |kGH⊗kGH

kGH (5.13)

as algebras, left H
∗-modules and right kGH-comodules.

(2) Suppose A ⊆ H satisfies (CoSplit). Then, in (5.13), σ is trivial, so k̂GH is a smash product of
H

∗ by G̃H ,

k̂GH = H
∗
#kG̃H , (5.14)

with action given, for g ∈ GH , ϕ ∈ H
∗, by

�◦(χg) · ϕ = �◦(χg)ϕ�◦(χg−1 ).

Proof.

(1) Suppose that H◦ ∼= H
∗
#σ A◦. By [14] (see Remark 2.3(4)), there exists a convolution invertible

right A◦-comodule map γ :A◦ → H◦ such that the isomorphism is given by f #ϕ �→ f γ (ϕ). The
core of this proof is showing that

ĝ =
⊕

h∼(H)g

H
∗
γ (χh). (5.15)

We first claim that γ (χh) ∈ ĝ. Since γ :A◦ → H◦ is a right A◦-comodule map and χh is a grouplike
element of A◦, then

ργ (χh) = (γ ⊗ id)�A(χh) = γ (χh) ⊗ χh

and the claim follows from Lemma 5.12(2). Therefore, by Proposition 5.10(3)

H
∗
γ (χh) ⊆ H

∗
ĝ ⊆ ĝ,

proving the inclusion of the right of (5.15) in the left.
For the reverse inclusion, let f ∈ ĝ. By the second sentence of the proof, f =∑n

i=1 fiγ (ui#χgi ),
where fi ∈ H

∗
, ui ∈ U(g), gi ∈ GH . Since ρ is an algebra homomorphism and γ :A◦ → H◦ is a

right A◦-comodule map, and since χgi ∈ A◦ is grouplike and ρ(fi) = fi ⊗ 1 by Lemma 5.12(2)
we have

ρ(f ) =
n∑

i=1

ρ(fi)ργ (ui#χgi ) =
n∑

i=1

ρ(fi)(γ ⊗ id)�(ui#χgi )

=
n∑

i=1

∑
(ui)

fiγ (ui,1#χgi ) ⊗ (ui,2#χgi ).

But by Lemma 5.12(1)

ρ(f ) ∈ ĝ ⊗ ι◦(̂g) =
⊕

h∼(H)g

ĝ ⊗ χh.

Moreover, since each ui is a polynomial on primitive elements, we must have gi ∼(H) g for every
i, and each ui = 1. Hence f has the required form, and (5.15) follows. Therefore,

k̂GH = H
∗
γ (kGH) ∼= H

∗ ⊗ kGH

as vector spaces, left H
∗-modules and right kGH-comodules, since by the calculations above

ρ(k̂GH) ⊆ k̂GH ⊗ kGH , that is the A◦-comodule structure of H◦ restricts to a kGH-comodule
structure for k̂GH . In particular, by Lemma 3.1

k̂GH
co kGH = k̂GH ∩ (H◦)co A◦ = k̂GH ∩ H

∗ = H
∗
.
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Also, since γ : A◦ → H◦ is convolution invertible, then so is its restriction to the coradical
γ |kGH

: kGH → k̂GH , [35, Lemma 14]. Therefore,

k̂GH
∼= H

∗
#τ kGH

and by inspecting the formulae for the cocyles σ and τ one easily sees that τ = σ |kGH⊗kGH
.

(2) If X can be chosen to be a coideal, then H◦ ∼= H
∗
#A◦ by Theorem 3.2(1), hence the cocycle σ

is trivial and k̂GH decomposes as a smash product. The action of kGH on H
∗ is a special case

of Remark 3.3(2).

6. H◦ under the auspices of (CoSplit) and (OrbSemi)

Let A ⊆ H be an affine commutative-by-finite Hopf algebra. Recall that the subspaces W(H◦) and k̂GH

of H◦ were introduced in Definitions 4.1 and 5.7. In the presence of (CoSplit) and (OrbSemi), one has
for H◦ the following generalisation of the description of the Hopf dual of a commutative Hopf algebra
via the Cartier–Gabriel–Kostant theorem.

Theorem 6.1. Let A ⊆ H be an affine commutative-by-finite Hopf algebra and assume that A is
semiprime or central, or that H is pointed. Suppose that A ⊆ H satisfies (CoSplit) and (OrbSemi).
Retain the notation of Sections 2.2, 3.1 and of Definitions 4.1 and 5.7.

(1) H◦ is a smash product

H◦ ∼= H
∗
# A◦ ∼= (H

∗
# A′)#kGH , (6.1)

where A/N(A) =O(GH), where N(A) is the nilradical of A. If chark = 0 then A′ = U(g), where
g is the Lie algebra of GH .

(2) H◦ contains three Hopf subalgebras: H
∗,

W(H◦) ∼= H
∗
# A′ (6.2)

and

k̂GH
∼= H

∗
# kGH , (6.3)

with A′ ∼= U(g) if k has characteristic 0.
(3) Suppose that H is semisimple and k has characteristic 0. Then the action of U(g) on H is inner,

so that

H◦ ∼= (H
∗ ⊗ U(g))#kGH , (6.4)

a skew group algebra with coefficient ring the Hopf subalgebra W(H◦).

Proof. (1),(2) By the isomorphism (3.1) in Section 3.1, there is a decomposition

A◦ = A′#kGH , (6.5)

with A′ and kGH Hopf subalgebras of A◦. Substituting (6.5) into the isomorphism (3.8) of Theorem 3.2(1)
shows that, as algebras,

H◦ ∼= H
∗
#A◦ = H

∗
#(A′#kGH). (6.6)

More precisely, the proof of Theorem 3.2(1), using the fact that �◦ is an algebra homomorphism, shows
that we can rewrite (6.6) as

H◦ = H
∗
#�◦(A′#kGH) = H

◦
#(�◦(A′)#�◦(kGH)) = (H

◦
#�◦(A′))#�◦(GH). (6.7)
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From (6.7), by Theorem 4.3(2),(5) and their proofs, H◦ contains as a normal Hopf subalgebra the smash
product

H
∗
#�◦(A′) = W(H◦).

Moreover, by Proposition 5.9(3), H◦ = H
∗
#�◦(A′#kGH) contains the skew group algebra

H
∗
#�◦(GH) = H

∗
#G̃H ,

and this equals the Hopf subalgebra k̂GH of H◦ thanks to the equality (5.14) of Theorem 5.13.
(3) This is Corollary 4.4 combined with parts (1) and (2).

Remark 6.2. (1) For the record, we state explicitly here the question about our standing hypotheses
already mentioned in Section 1.3.

Question 6.3. Let H be an affine commutative-by-finite Hopf algebra. Is there always a choice of normal
commutative Hopf subalgebra A of H such that A ⊆ H satisfies (CoSplit) and (OrbSemi)?

We review the status of this question for a large number of families of examples in Section 7.
(2) The smash product decompositions in Theorem 6.1 in general have nontrivial actions. For exam-

ple, the actions in (6.2) and (6.3) are nontrivial for H = B(n, w, q) defined in Section 7.5, see Proposition
7.2(IV) and Remarks 7.1(2), with the references given there; and the skew group action in (6.1) is in
general nontrivial even when H = A is commutative - for example, the algebra structure of O(G)◦ when
G is a semidirect product of (k, +) by k× is determined in [11, Appendix A.4].

7. Examples

We list here a number of classes of examples of affine commutative-by-finite Hopf algebras and discuss
in each case what our results tell us about their Hopf duals.

7.1 Enveloping algebras of Lie algebras in positive characteristic

Assume that k has positive characteristic p. Let g be a k-Lie algebra with basis {x1, . . . , xn}. Then H :=
U(g) is a free module of finite rank over a central polynomial Hopf subalgebra

A := k[y1, . . . , yn],

where each yi is a p-polynomial in xi and hence is primitive; see [18, Proposition 1]. When g is restricted,
with restriction map x �→ x[p], one takes yi := xp

i − x[p]
i for all i, and in this case the Hopf quotient H is

the restricted enveloping algebra of g, usually denoted by u[p](g), with dimk(u[p](g)) = pn. In the non-
restricted case, it is still the case by [18, Proposition 2] that U(g) is a free A-module, with basis

{xj1
1 · · · xjn

n : 0 ≤ ji < pdi}, (7.1)

where yi is a linear combination of xpj

i for j = 0, . . . , di. Thus, in the general non-restricted case,

dimk(H) = p
∑

i di .

Since A is central (OrbSemi) is trivially true for H = U(g). Moreover it is clear from (7.1) that, as
an A-module complement to A in H, we can choose

X :=
∑

Axj1
1 · · · xjn

n , 0 ≤ ji < pdi , not all ji = 0.

Thus X is a coideal of H and so (CoSplit) is also valid. We can therefore apply Theorem 6.1(1). Note
that

k[y1, . . . , yn] ∼= O((k, +)n),
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and that H◦ is commutative since H is cocommutative, so that the actions in the smash products
composing H◦ are all trivial. We conclude that, as algebras,

U(g)◦ ∼= A′ ⊗ H
∗ ⊗ k(k, +)n,

with H
∗, W(H◦) := A′ ⊗ H

∗ and ̂k(k, +)n := H
∗ ⊗ k(k, +)n each being a Hopf subalgebra of U(g)◦.

Here, as an algebra, A′ is a divided powers algebra in n variables,

A′ = k[f (m)
1 , . . . , f (m)

n : m ≥ 0],

as defined and discussed at [26, Examples 5.6.8 and 9.1.7]. Modulo the Hopf ideal (H
∗
)+A′ of W(H◦)

the coproducts of the elements of A′ take their classical cocommutative forms. Similarly, the elements
of (k, +)n are group-like modulo(H

∗
)+k(k, +)n.

7.2 Group algebras of finitely generated abelian-by-finite groups

Let G be a finitely generated group with an abelian normal subgroup N of finite index. For convenience,
we may as well choose N to be torsion free, and hence free abelian of rank n, say. With H := kG and
A := kN, H = k(G/N). Clearly H is a free A-module with basis a set of coset representatives of N in
G, and we can choose as a complement to A in H the free A-submodule X with basis the non-trivial
coset representatives. Thus X is a subcoalgebra of H, so (CoSplit) holds, and (OrbSemi) holds since
the adjoint action on A is by the group G/N. Thus once again Theorem 6.1(1) applies, and again the
smash products occurring are trivial because H◦ is commutative. We deduce that, as algebras,

kG◦ ∼= k[z1, . . . , zn] ⊗ H
∗ ⊗ k((k×)n),

with

H
∗ ∼= k⊕|G/N|

and H
∗, W(H◦) := k[z1, . . . , zn] ⊗ H

∗ and ̂k((k×)n) := H
∗ ⊗ k((k×)n) each being a Hopf subalgebra of

kG◦. As in Section 7.1, the elements zi are primitive modulo(H
∗
)+k[z1, . . . , zn] and the elements of (k×)n

are group-like modulo(H
∗
)+k((k×)n).

7.3 Quantized coordinate rings at a root of unity

In this subsection and the next, we assume that k =C and that � is an odd positive integer with � ≥ 3,
and prime to 3 if g contains a factor of type G2. The quantized coordinate ring Oq(G) of a connected,
simply connected, semisimple Lie group G is a noetherian Hopf algebra, [9, Sections 4.1 and 6.1]. If
q = ε is a primitive �th root of unity, Oε(G) is a finite module over a central Hopf subalgebra isomorphic
to O(G), [9, Proposition 6.4], [4, Theorem III.7.2]. Thus

A := O(G) ⊆ Oε(G) = : H

is an affine commutative-by-finite Hopf algebra which satisfies (OrbSemi) because of the centrality of
A. In fact, the extension O(G) ⊆Oε(G) is cleft in the sense of Remark 2.3(3), as is noted in [1, Remark
2.18(b)]), with a cleaving map which is a coalgebra map, as shown in the proof of [1, Proposition
2.8(c)]. Thus, (CoSplit) is satisfied. The finite-dimensional Hopf quotient H := Oε(G)/O(G)+Oε(G)
is the restricted quantized coordinate ring, sometimes denoted by oε(G); its vector space dimension is
�dim(G). Each of uε(g), (defined in Section 7.4), and oε(G) is the Hopf dual of the other by [4, Theorem
III.7.10]. Thus Theorem 3.2(2) applies, yielding the isomorphism of algebras, left uε(g)-modules and
right U(g)#kG-comodules

Oε(G)◦ ∼= uε(g) ⊗ (U(g)#kG), (7.2)
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where g= Lie G denotes the Lie algebra of G and uε(g) is Uε(g), as defined in Section 7.4. By Theorems
6.1(1), 4.3(5), and 5.13(2), Oε(G) contains the Hopf subalgebras uε(g),

W(H◦) = uε(g) ⊗ U(g)

and

k̂GH = uε(g) ⊗ kG,

and the tensorand U(g)#kG on the right of (7.2) is isomorphic to O(G)◦ as an algebra.

7.4 Quantized enveloping algebras at a root of unity

The quantized enveloping algebra Uq(g) of a semisimple finite-dimensional Lie algebra g is a noetherian
Hopf algebra [10, Section 9.1], [7, Section 9.1A]. When q = ε is a primitive �th root of unity Uε(g) is a
free module of rank �dimk (g) over a central Hopf domain A [10, Corollary and Theorem 19.1], [4, Theorem
III.6.2]. The Hopf subalgebra A is the coordinate ring of a certain solvable Poisson algebraic group T
with dimT = dimk(g); see [10] or [4, III.6.5]. The finite-dimensional Hopf quotient H = Uε(g)/A+Uε(g)
of Uε(g) is the restricted quantized enveloping algebra, denoted by uε(g).

Since A is central in Uε(g) (OrbSemi) holds, but we do not know whether (CoSplit) is valid. However,
for the two easiest cases—that is when g is sl2 or sl3 - (CoSplit) has been confirmed by hand, as follows.

For Uε(sl2) with its standard generators {E, F, K±1}, A = k[E�, F�, K±�] and one may check that the
A-submodule X of Uε(sl2(k)) generated by

{FrKsEt : 0 ≤ r, s, t < l and r, t not both zero} ∪ {Ks − 1 : 1 ≤ s < l}
is a coideal of Uε(sl2(k)). When g is sl2, the group T is a semidirect product, T = (k, +)2 � k×; see e.g.
[4, Section III.6.5]. Let t denote its Lie algebra. Since uε(sl2)∗ = oε(SL(2)) by [4, Theorem III.7.10], we
deduce from Theorem 6.1 that

Uε(sl2)
◦ ∼= (oε(SL2)#U(t))#kT ,

with Hopf subalgebras oε(SL2), W(Uε(sl2)◦) := oε(SL2)#U(t) and k̂T := oε(SL2)#kT .
For Uε(sl3), the Hopf centre A is O(S) for a Poisson algebraic group S which, using [4, III.6.5],

is a semidirect product (k, +)6 � (k×)2, whose Lie algebra s has basis {e1, e2, e3, f1, f2, f3, k1, k2}, with
non-zero brackets

[e1, e2] = e3, [f1, f2] = −f3, [e1, k1] = −e1, [e2, k2] = −e2,

[e3, ki] = −e3, [f1, k1] = −f1, [f2, k2] = −f2, [f3, ki] = −f3.

An explicit coalgebra A-module complement to A in Uε(sl3) has been described as a result of exten-
sive calculations in [11, p. 131 and Appendix A.1], so that A ⊆ Uε(sl3) satisfies (CoSplit). Therefore,
applying Theorem 6.1, we obtain

Uε(sl3)◦ ∼= (oε(SL3)#U(s))#kS,

with Hopf subalgebras oε(SL3),

W(Uε(sl3)◦) ∼= oε(SL3)#U(s)

and

k̂S ∼= oε(SL3)#kS.

In view of these two cases, it seems reasonable to ask.

Question 7.1. Does Uε(g) satisfy (CoSplit) for all semisimple Lie algebras g?
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7.5 Prime regular affine Hopf algebras of Gelfand–Kirillov dimension 1

Here, “regular” means “having finite global dimension,” necessarily then equal to 1. These Hopf k-
algebras were classified when k is an algebraically closed field of characteristic 0 by Wu et al. in [12],
building on [5] and [24]; see also the survey article [6]. By a fundamental result of Small et al. [34],
a semiprime affine algebra of GK-dimension one is a finite module over its centre. But in fact more
is true for these Hopf algebras—they are all commutative-by-finite. This can be checked on a case-by-
case basis, as we now briefly outline. For k algebraically closed of characteristic 0, there are two finite
families and three infinite families, as follows.

(I) The commutative algebras k[x] and k[x±1].
(II) The unique noncommutative cocommutative example, the group algebra H = kD of the infinite

dihedral group D, defined and discussed in Remarks 3.3(1).
(III) The infinite dimensional Taft algebras

T(n, t, q) := k〈g, x : gn = 1, xg = qgx〉,
where n ∈Z≥2, 1 ≤ t ≤ n and q is a primitive nth root of 1 in k, with g group-like and �(x) =
x ⊗ 1 + gt ⊗ x. With n′ := n/ gcd (n, t), A := k[xn′

] is a commutative normal Hopf subalgebra.
(IV) The generalised Liu algebras B(n,w,q), where n and w are positive integers and q is a primitive

nth root of 1. Here,

B(n, w, q) := k〈x±1, g±1, y : x central, yg = qgy, gn = xw = 1 − yn〉,
with x and g group-like and �(y) = y ⊗ 1 + g ⊗ y. One can show that A := k[x±1] is a central
Hopf subalgebra over which B(n,w,q) is free of rank n2.

(V) Let m and d be positive integers with (1 + m)d even, and let q be a primitive 2mth root of 1 in
k. The Hopf algebras D(m,d,q) are defined in [12, Section 4.1]. D(m,d,q) is finitely generated
over the normal commutative Hopf subalgebra A := k[x±1], [12, (4.7)].

The above algebras are all free over the listed normal commutative Hopf subalgebras. Families (I)–
(IV) are pointed and decompose as crossed products

H ∼= A#σ H;

but D(m,d,q) is not pointed, [12, Proposition 4.9]. Applying Theorems 3.2, 4.3, and 5.13 to these families
yields the following information about their Hopf duals, (omitting the algebras in (I) and (II), which are
already covered by Sections 3.1 and 7.2). In the proposition, for coprime integers s and m with 1 ≤ s < m
and a primitive mth root of unity q ∈ k, Tf (m, s, q) denotes the finite dimensional Taft algebra in these
parameters; that is, Tf (m, s, q) := T(m, s, q)/〈xm〉. For a positive integer m, Cm denotes the cyclic group
of order m.

For reasons of space, we omit some details in the proofs for (III) and (IV), and omit the entire proof
of (V). Full proofs can be found in [11] and [19]; detailed references are listed in Remarks 7.1.

Proposition 7.2. Let k be an algebraically closed field of characteristic 0, and let H be an affine prime
regular Hopf k-algebra of Gelfand–Kirillov dimension one, as listed in cases (III), (IV) and (V) above.
Then (CoSplit and OrbSemi) hold in all cases, and the finite dual of H takes the following forms.

(III) Let d := gcd(n, t), n′ := n/d, t′ := t/d. Then, as algebras,

T(n, t, q)◦ ∼= kCd ⊗ Tf (n
′, t′, qd) ⊗ k[f ] ⊗ k(k, +),

with Hopf subalgebras kCd, H
∗ = kCd ⊗ Tf (n′, t′, qd),

W(H◦) = kCd ⊗ Tf (n
′, t′, qd) ⊗ k[f ]

and

k̂GH = kCd ⊗ Tf (n
′, t′, qd) ⊗ k(k, +).
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(IV) When H = B(n, w, q),

H◦ = Tf (n, 1, q)#(k[f ] ⊗ k(k×)),

with Hopf subalgebras H
∗ = Tf (n, 1, q), W(H◦) = Tf (n, 1, q)#k[f ] and

k̂GH = Tf (n, 1, q)#k(k, +).

(V) When H = D(m, d, q),

H◦ = (kC2#σ Tf (m, 1, q2))#(k[f ] ⊗ k(k×)),

with Hopf subalgebras H
∗ = kC2#σ Tf (m, 1, q2), W(H◦) = H

∗
#k[f ] and

k̂GH = H
∗
#k(k×).

Proof. (III) Let A = k[xn′
] as noted above. Thus

H := H/xn′
H = k〈x, g : gn = 1, xn′ = 0, xg = qgx〉.

Thus, as a right A-module H = A ⊕ X, where X is the free right A-module on basis P , where

P := {gixj : 0 ≤ i < n, 1 ≤ j < n′} ∪ {gi − 1 : 1 ≤ i < n}.
One checks that X is a coideal of H, so that H satisfies (CoSplit). Moreover, it is clear that, for 0 ≤ i <
n, 0 ≤ j < n′, the map

γ : H −→ H : gixj �→ gixj

is a cleaving map of coalgebras, so that Theorem 3.2(2) applies, yielding the isomorphism of algebras

H◦ ∼= H
∗ ⊗ A◦. (7.3)

It is now straightforward to calculate that, as an algebra,

H ∼= Tf (n
′, t′, qd)#τ kCd,

where τ is a cocycle, while as coalgebra

H ∼= Tf (n
′, t′, qd) ⊗ kCd.

Since gcd(n′, t′) = 1, Tf (n′, t′, qd) is self-dual by [28, Exercise 7.4.3], as also is kCd, so we deduce that,
as an algebra,

H
∗ ∼= kCd ⊗ Tf (n

′, t′, qd). (7.4)

Combining (7.3), (7.4) and the fact that A◦ = k[f ] ⊗ k(k, +), we deduce the algebra isomorphism in
(III), with H

∗ a Hopf subalgebra by Lemma 3.1(1). Moreover A ⊆ H also satisfies (OrbSemi) since the
action of H on A factors through the group algebra k〈g〉. Thus the claims regarding W(H◦) and k̂GH

follow, respectively, from Theorems 4.3(5) and 5.13(2)
(IV) Let H = B(n, w, q), so H =⊕

0≤i,j<n yigjA is a free A-module, and

H = H/A+H ∼= Tf (n, 1, q). (7.5)

As a complement X to A in H choose the A-module generated by

{giyj : 0 ≤ i < n, 1 ≤ j < n} ∪ {gi − 1 : 1 ≤ i < n}.
One checks routinely that X is a coideal of H. Therefore (CoSplit) holds, and Theorem 3.2(1) implies
that

H◦ ∼= H
∗
#A◦ ∼= Tf (n, 1, q)#(k[f ] ⊗ k(k×)),

by (7.5) and the fact that Tf (n, 1, q) is self-dual by [28, Exercise 7.3.4].
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Since A is central A ⊆ H satisfies (OrbSemi), so Theorem 6.1(2) confirms the claims regarding
W(H◦) and k̂GH .

(V) The fact that D(m,d,q) satisfies (CoSplit) and (OrbSemi) is proved in [11, Section 2.2.5, pp.
52–55 and Proposition 3.1.13], and the structure of its Hopf dual is described in [11, Corollary 4.4.6(V)
and Appendix A.2].

Remark 7.1.

(1) Precise formulae for the comultiplication for the duals of the Taft algebras (III) have been
obtained—for full details see [11, Corollary 4.4.6 and Appendix A.2].

(2) In (IV), the smash products in both W(H◦) and k̂(k×) are non-trivial, hence so is the smash
product in H◦ itself. Precise formulae are given in [11, Corollary 4.4.6(4) and Appendix A.2].
Formulae for the coproduct are given at the same reference—in particular, neither k[f] nor
k(k×) is a Hopf subalgebra of H◦.

(3) For completeness, we note some gaps in the above analysis. For the duals of the Taft algebras
(III), we only have precise formulae for the coproduct when gcd(n, t) = 1; see [19, Remark
6.12] for this case. For the duals D(m, d, q)◦ in (V), we do not have formulae for the actions of
k[f] and k(k×) on H

∗, nor do we know whether the cocycle σ is non-trivial.

7.6 Noetherian PI Hopf domains of Gelfand-Kirillov dimension two

Let k be algebraically closed of characteristic 0 and let H be a noetherian Hopf k-algebra domain
with GK dim(H) = 2. Such Hopf algebras were classified in [17] under the additional assumption
that H has an infinite dimensional commutative factor, or equivalently by [17, Proposition 3.8(c)] that
Ext1

H(Hk, Hk) �= 0.
The algebras in this classification which satisfy a polynomial identity (PI) are all easily seen to be

commutative-by-finite, as we now indicate. Omitting the 2 group algebras and the rank 2 polynomial
algebra, since these have already been discussed, the remaining PI families are as follows, using the
numbering scheme of [17]:

(III) Hopf algebras A(�, n, q), where � and n are integers with � > 1 and n > 0, and q is a primitive
�th root of 1 in k. As an algebra

A(�, n, q) := k〈x±1, y : xy = qyx〉,
the localised quantum plane, with x group-like and �(y) = y ⊗ 1 + xn ⊗ y. These algebras are free of
finite rank over the normal commutative Hopf subalgebra A := k[x±�, y�

′
], where �′ := �/ gcd (n, �).

(IV) Hopf algebras B(n, p0, . . . , ps, q), where s ≥ 2, n, p0, . . . , ps are positive integers with p0 | n and
{pi : i ≥ 1} strictly increasing and pairwise relatively prime, and q is a primitive �th root of 1 where
� := (n/p0)p1 . . . ps. Then B(n, p0, . . . , ps, q) is the subalgebra of the localised quantum plane from
(III) generated by {x±1, ymi : 1 ≤ i ≤ s}, where mi := �j �=ipj. This is a Hopf subalgebra of A(�, n, q), with
x group-like and �(ymi ) = y ⊗ 1 + xmin ⊗ y. One can easily check that A := k[yp1 ···ps , x±�] is a normal
commutative Hopf subalgebra over which B(n, p0, . . . , ps, q) is a finite module.

We proceed to describe the Hopf duals of these algebras. Once again we leave some calculations to
the reader in order to save space; details of the omitted arguments can be found in [19] or [11].

Proposition 7.3. Let k be an algebraically closed field of characteristic 0, and let H be a noetherian Hopf
k-algebra domain of GK-dimension 2 with ExtH(k, k) �= 0, as listed above. Then H satisfies (CoSplit) and
(OrbSemi), and so the Hopf dual H◦ of H has the following form.

(III) When H = A(�, n, q), let d := gcd(n, �), �′ := �/d, n′ := n/d. Then

H◦ ∼= (kCd ⊗ Tf (�′, n′, q−d))#(k[f , f ′] ⊗ k((k, +) × k×)),
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with Hopf subalgebras H ∼= kCd ⊗ Tf (�′, n′, q−d),

W(H◦) ∼= (kCd ⊗ Tf (�′, n′, q−d))#k[f , f ′]

and

k̂GH
∼= (kCd ⊗ Tf (�′, n′, q−d))#k((k, +) × k×).

(IV) When H = B(n, p0, . . . , ps, q), define ξi := q−(n/p0)mi , for i = 1, . . . , s, so ξ is a primitive pth
i root

of unity. Then

H◦ ∼= (kCn/p0 ⊗ Tf (p1, p0p2 . . . ps, ξ1) ⊗ . . . ⊗ Tf (ps, p0, ξs))#(k[f , f ′] ⊗ k((k, +) × k×)),

with Hopf subalgebras

H
∗ ∼= kCn/p0 ⊗ Tf (p1, p0p2 . . . ps, ξ1) ⊗ . . . ⊗ Tf (ps, p0, ξs),

W(H◦) ∼= (kCn/p0 ⊗ Tf (p1, p0p2 . . . ps, ξ1) ⊗ . . . ⊗ Tf (ps, p0, ξs))#k[f , f ′]

and

k̂GH
∼= (kCn/p0 ⊗ Tf (p1, p0p2 . . . ps, ξ1) ⊗ . . . ⊗ Tf (ps, p0, ξs))#k((k, +) × k×).

Proof. (III) As noted above, A := k[x±�, y�
′
] is a normal commutative Hopf subalgebra of H. It is clear

that H is a free right A-module on the basis {yixj : 0 ≤ i ≤ �′, 0 ≤ j < �}. By a straightforward analysis
detailed in [11, Example 1.1.21 and Section 2.2.6], as algebras

H := H/A+H ∼= Tf (�′, n′, q−d)#σ kCd,

for a cocycle σ which is in general non-trivial; and, as coalgebras,

H ∼= Tf (�′, n′, q−d) ⊗ kCd. (7.6)

Since gcd(n′, �′) = 1, both tensorands in (7.6) are self-dual (using [28, Exercise 7.3.4] for the left-hand
one), and hence

H
∗ ∼= kCd ⊗ Tf (�′, n′, q−d) (7.7)

as algebras. Moreover A ∼=O((k, +) × k×), so that, as Hopf algebras,

A◦ ∼= k[f , f ′] ⊗ k((k, +) × k×), (7.8)

as recalled in Section 3.1.
Let X be the right A-submodule of H generated by {yixj : 1 ≤ i < �′, 0 ≤ j < �} ∪ {xj − 1 : 1 ≤ j < �}.

Clearly H = A ⊕ X, and it is routine to check that X is a coideal of H. Therefore, A ⊆ H satisfies
(CoSplit).

Thus Theorem 3.2(1) applies, and with (7.7) and (7.8) it yields the isomorphism of algebras

H◦ ∼= H
∗
#A◦

∼= (kCd ⊗ Tf (�′, n′, q−d))#(k[f , f ′] ⊗ k((k, +) × k×)),

with Hopf subalgebra (kCd ⊗ Tf (�′, n′, q−d)).
It is routine to check that the adjoint action of H on A factors through the group algebra kC� = k〈x〉,

so that A ⊆ H satisfies (OrbSemi). Therefore, Theorem 6.1(2) yields the remaining parts of (III).
(IV) With A = k[yp1 ···ps , x±�], a commutative normal Hopf subalgebra of H, one can check that H is a

free right A-module on the basis {yi1
1 . . . yis

s xj : 0 ≤ j < �, 0 ≤ it < pt}. The structure of the quotient Hopf
algebra H := H/A+H has been analysed in [11, Lemma 2.2.5]. As an algebra it is an iterated crossed
product whose detailed description we do not need here; but as a coalgebra it decomposes as

H ∼= Tf (p1, p0, ξ1) ⊗ Tf (p2, p0p1, ξ2) ⊗ · · · ⊗ Tf (ps, p0p1 · · · ps−1, ξs) ⊗ kCn/p0 .
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Since the above tensorands are all self-dual because the pi are mutually coprime [28, Exercise 7.4.3],
we deduce that, as an algebra,

H
∗ ∼= Tf (p1, p0, ξ1) ⊗ Tf (p2, p0p1, ξ2) ⊗ · · · ⊗ Tf (ps, p0p1 · · · ps−1, ξs) ⊗ kCn/p0 . (7.9)

Just as in (III),

A◦ ∼= k[f , f ′] ⊗ k((k, +) × k×). (7.10)

Define X to be the right A-module generated by

B := {yi1
1 . . . yis

s xj : 0 ≤ j < �, 0 ≤ it < pt, some it ≥ 1} ∪ {xj − 1 : 1 ≤ j < �}.
Then X is a free A-module on the basis B with H = A ⊕ X. It is routine to confirm that X is a coideal of
H, so that A ⊆ H satisfies (CoSplit). Therefore, Theorem 3.2(1) applies implying that

H◦ ∼= H
∗
#A◦. (7.11)

Combining (7.9), (7.10) and (7.11) gives the first two isomorphisms in (IV).
Finally, note that the adjoint action of each of the elements yi on A is trivial. Therefore, the action

of H on A factors through the group algebra kC� = k〈x〉. Hence, A ⊆ H satisfies (OrbSemi), and so the
final two isomorphisms in (IV) follow from Theorem 6.1(2).

Remark 7.2. For the algebras in Proposition 7.3, further information on the definition of the generators
of H◦ is obtained in [11, Corollary 4.4.8 and Appendix A.3].
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