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Abstract. Lenses acting on the Cosmic Microwave Background can potentially be a very ef-
ficient and robust probe of the large-scale matter distribution in the Universe. Their most
immediate signature is the way they affect the statistical properties of both the temperature
and the polarization fields, in particular they both induce non-Gaussian properties that can be
explicitly computed.

Investigations of those effects led to the elaboration of specific reconstruction procedures that
aim at mapping the projected mass responsible of the lens effects. These techniques are now on
solid ground and are remarkably efficient. However it is likely that our best chance to detect a
lensing signal in CMB data in the coming years will be through the cross-correlation patterns
they induce between CMB data and tracers of the large-scale structure. Clearly the detection
of such an effect would be very fruitful in scrutinizing the gravitational instability picture.

1. Introduction
Effects of gravitational lenses on background objects are very general and with the ad-

vent of deep imaging possibilities are now almost common place in observational cosmol-
ogy. Their effects on CMB anisotropies are however specific because they make intervene
quite a specific source plane. Compared to a galaxy source plane the former has the dou-
ble advantage of being at a well defined redshift, of being rather thin and having specific
patterns, e.g. patterns with well defined statistical properties. For these reasons it clearly
makes the phenomenology of gravitational lenses on CMB worth detailed investigations.

From a point of view of the physics of the Cosmic Microwave Background (CMB),
lensing effect is one of many secondary effects that can alter the temperature anisotropies
of the CMB sky. Among others one could mention effects like the Sunyaev Zel’dovich effect
(secondary scattering of photons on hot plasma in galaxy cluster potential wells) or the
integrated Sachs Wolfe effect (the observed temperature can be changed if photons travel
in time dependent potential wells because of gravitational Doppler effects). Lensing effects
have however been recognized as one of the dominant secondary effects (at subdegree
scales) because of the large lever arm it takes advantage of (Seljak 1996, Bernardeau
1997, Zaldarriaga and Seljak 1998).

Different aspects of CMB lenses can be investigated. One is obviously the elabora-
tion of best suited strategies for its detection in CMB observations whether it is on
CMB temperature maps or on polarization maps. More ambitious is the development
of reconstruction methods that would allow the construction of convergence maps out
of CMB data. The first generation of CMB data is however more likely to be better
suited for detection of lens effects through CMB–LSS correlations, that is the search of a
cross-correlation signal between CMB data and local cosmic shear surveys, the two being
likely to share a fair amount of lenses.
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Figure 1. Lens effect on the temperature field. The displacement field has been multiplied by
a factor about 5 to make the effects of mode couplings visible.

In this paper these different aspects are reviewed. Section 2 is devoted to the presen-
tation of the basics of CMB lensing. Phenomenological consequences are then explored
in Section 3 for the Non-Gaussian properties they induce on CMB temperature maps,
in Section 4 for the presentation of reconstruction methods. Finally Section 5 is devoted
to the searches that have been undertaken for characterizing the CMB–LSS correlation
signals.

2. Lensing effects on temperature and polarization components
Gravitational lenses induce bending of the light path, thus moving the apparent posi-

tion of a sky patch on the last scattering surface by a given angle. The temperature of
this patch is not affected itself, i.e. lenses do not created new structures, and a perfectly
isotropic sky would remain so. The temperature observed �γobs. is thus actually that of
position �γprim. with,

�γprim.(�γ) − �γobs.(�γ) =
2
c2

∫ χCMB

0

dχ
D0(χCMB, χ)
D0(χCMB)

∇⊥φ(χ), (2.1)

where φ of the gravitational potential, D0 is the angular distance, χ is the distance of
the lenses along the line of sight and χCMB is the distance of the last scattering surface
(see Mellier 1999).

The displacement affects in a similar manner the temperature and the polarization
components. In the following we investigate the consequences of such transforms applied
to the CMB observations.

2.1. On the temperature field
The local observed temperature field can be expanded in terms of the displacement field
which, except for very small scales, is much smaller than the sizes of the temperature
patches. It then gives,

T̂ (�γ) = T (�γ) + T,i(�γ) ξi +
1
2
T,ij(�γ) ξi ξj + . . . (2.2)
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Figure 2. Lens effect on the temperature power spectrum. The insert in the diagram shows the
details of the effect of lenses on the temperature power spectrum for the amplitude of the third
and fourth peaks.

where T̂ is the observed temperature field, T,i, its gradient in the direction i (small
angle approximation is assumed throughout the paper) and ξi is the displacement field.
This leads to a transform of the different modes of the temperature field. For a full sky
survey those modes correspond to the coefficients of the spherical harmonics appearing in
such a decomposition. In the CMB literature they are usually denoted alm. In the small
angle approximation however, the alm are simply the Fourier modes of the temperature
field T (l). The Fourier modes of the displacement field can be expressed in those of
the convergence field κ. They read ξi(l) = −ili/l2κ(l). The relation (2.2) can be easily
transposed in Fourier space in,

T̂ (l) = T (l) − l1.l2
l22

T (l1) ∗ κ(l2) +
1
2

(l1.l2)(l1.l3)
l22 l23

T (l1) ∗ ξi(l2) ∗ ξj(l3) + . . . (2.3)

where the second and third terms of the r.h.s. of this equation should be understood
as integrals over the modes li with the constraint

∑
i li = l. The most immediate con-

sequence of this expansion is a change of the power spectrum of the temperature field.
Indeed when one computes the ensemble average of T̂ (l)T̂ (l′) one has,〈

T̂ (l)T̂ (l′)
〉

= δDirac(l + l′)C T̂ (l). (2.4)

The relation (2.3) leads to the relation,

CT̂ (l) = CT (l)
(

1 − l2

2
σ2

ξ

)
+

(l1.l2)2

l42
CT (l1) ∗ Pκ(l2) (2.5)

where σ2
ξ is the variance of the displacement field, Pκ(l) is the power spectrum of the

convergence field and again the second term of the r.h.s. should be understood as a
convolution: the power spectrum of the observed temperature field is then a convolution
of the one of the primordial anisotropies with the one of the displacement field. It is
eventually not dramatically changed. A detailed examination of the results shows that
its oscillatory features appear to be slightly damped (see Fig. 2 taken from Seljak 1996).

If the effect of lenses are not dramatic for the power spectrum, they are important
in changing the statistical properties of the temperature field. They induce in particular
mode couplings effects (they are somewhat visible on the numerical experiment shown
on Fig. 1) that induce non-Gaussian properties in the temperature field. This will be
explored in the next section.

2.2. On the polarization field
The lens effect affects the local polarization just by moving the apparent direction of
the line of sight as shown by Faraoni (1993). Thus, if we use the Stokes parameters Q
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Figure 3. Lens effect induced by a large isothermal sphere with finite core radius. The κ map
of the lens is shown on left panel. The primordial E sky is presented in the middle left panel.
It has been generated for a Ω0 = 0.3, Λ = 0.7 model, without tensor modes. The right panel

displays the true reconstructed ∆B̂ field in a 4.5 × 4.5 degree map (from Benabed et al. 2001.

and U to describe the local polarization vector, we can relate the observed polarization
components Q̂ and Û to the primordial one by the relation

Q̂(�α) = Q(�α + �ξ), Û(�α) = U(�α + �ξ). (2.6)

It is very important at this point to note that the lensing effect does not produce any
polarization nor rotate the Stokes parameter. In this regime its effect reduces to a simple
deformation of the polarization patterns, similar to the temperature maps. This is the
mechanism by which the geometrical properties of the polarization field are changed.

To see that we have to consider the electric (E) and magnetic (B) components instead
of the Stokes parameters. The E component is the scalar part (similar to the convergence
field) and B is the pseudo scalar part. This decomposition is common place in CMB
physics because the scalar perturbations, which give the dominant contributions to the
temperature anisotropies, cannot induce B type polarization. Only tensor modes (e.g.
gravity waves) can do it. In inflationary mechanisms one expects those modes to be
present but subdominant, specially at small scales.

In the small angle limit, when the perturbations can be approximated as plane waves,
we can write a perturbation description of the lensing effect on electric and magnetic
components of the polarization. At leading order one obtains (Benabed et al. 2001):

∆Ê = ∆E + ξi∂i∆E − 2κ∆E − 2δK
ij

(
γi∆P j + γi

,kP j,k
)

+ O(γ2) (2.7)

∆B̂ = ∆B + ξi∂i∆B − 2κ∆B − 2εij

(
γi∆P j + γi

,kP j,k
)

+ O(γ2), (2.8)

where P i are the components of the polarization field, γ and κ are respectively the
shear and convergence field, deltaK

ij is the Kronecker symbol and εij is the totally anti-
symmetric tensor. As a result one expects the E power spectrum to be transformed in a
manner roughly similar to that of the temperature field. More importantly it also implies
that B modes can be created out of E modes (Zaldarriaga and Seljak 1998, Benabed &
Bernardeau 2000, Benabed et al. 2001).

The consequence is that there is now a significant B mode power spectrum even if it
was not present in the primordial polarization field. The phenomenological consequences
are depicted on Fig. 4 which shows the induced B power spectrum compared to one
that would be expected in inflation (note that the relative amplitude of the primordial B
modes to the anisotropies is model dependent. It depends in particular on the slow-roll
parameters of the inflationary scenario. This is not the case for the amplitude of the
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Figure 4. The B-mode power spectrum (dotted line) as induced by the lenses (from
Zaldarriaga and Seljak 1998).

E modes that are essentially determined by the scattering processes at recombination
time.)

3. Mode coupling effects in temperature maps
Compared to detections on background galaxies, the analysis of the lens effects on tem-

perature filed requires sophisticated tools because the number of background structure is
much smaller though they have much better defined statistical properties. The primor-
dial temperature patches on the CMB sky are indeed known only statistically and have
a large angular correlation length. In which way, then, can the lens effects be revealed?
Actually lensed CMB maps can be seen as collections of temperature patches of different
sizes and shapes which, or only a fraction of which, are displaced or deformed. Although
this is slightly arbitrary, two effects can be distinguished in the way sizes and shapes of
patches are affected,
• the shear effect that deforms, stretches out temperature patches in the shear direc-

tion,
• the magnification effect that globally enlarges or shrinks those patches.

The local deformations of the temperature patches are however a priori difficult to dis-
entangle from the actual primordial intrinsic temperature fluctuations. What will make
then the effects detectable is the fact that close patches will be deformed in a similar way
(when they are seen through a unique lens), and the excess of these close rare features
cannot be accounted from a Gaussian field. It is thus possible to quantify their presence
by statistical indicators. The power spectrum is of course not adapted to take into account
the apparition of such non-Gaussian features. For that matter the high-order correlation
functions, that are all identically zero for pure Gaussian fields, are extremely precious.
Indeed these higher-order correlation functions contain information about shapes, and
their derivations can be pursued completely with Perturbation Theory techniques. In the
following the focus of the analysis will be on the first non vanishing correlation function,
the four-point one.

It is quite easy to see that the weak-lensing effects do not introduce a three-point
correlation function. The lens effect is indeed symmetric in terms of positive or negative
temperature fluctuations†.

† As mentioned in the following a non-zero three point function can however be induced
through other secondary effects such as the integrated Sachs-Wolfe effects or Sunyaev-Seldovich
effects.
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The first non trivial high order correlation function is thus the four-point correlation
function. At this stage it is important to have in mind that the observable quantity is the
connected part,

〈
T (�γ1)T (�γ2)T (�γ3)T (�γ4)

〉
c
, of the ensemble average,

〈
T (�γ1) T (�γ2) T (�γ3)

T (�γ4)
〉
, that is the part which is obtained when the products of two point correlation

functions that can be built have been subtracted out,〈
T (�γ1)T (�γ2)T (�γ3)T (�γ4)

〉
c
≡

〈
T (�γ1)T (�γ2)T (�γ3)T (�γ4)

〉
−[〈

T (�γ1)T (�γ2)
〉 〈

T (�γ3)T (�γ4)
〉

+ perm. (2 other terms)
]
. (3.1)

The connected part is obviously zero for the primordial field: it is a direct consequence
of its Gaussian nature. The dominant term, in terms of weak lensing effects, is thus given
by, 〈

T (�γ1)T (�γ2)T (�γ3)T (�γ4)
〉

c
≡

〈
T (�γ1) T,i(�γ2)

〉〈
ξi(�γ2) ξj(�γ3)

〉 〈
T,j(�γ3) T (�γ4)

〉
+perm. (11 other terms). (3.2)

Roughly speaking it means that the four-point correlation function, in units of the square
of the second, is proportional to the weak lensing angular correlation function.

The effects of lenses can be much more easily handled in Fourier space. The existence
of a non-vanishing four point function in real space means that there is a tri-spectrum
for the temperature field T (l1, l2, l3, l4) defined as,〈

T (l1)T (l2)T (l3)T (l4)
〉

= δDirac(l1 + l2 + l3 + l4)T (l1, l2, l3, l4) (3.3)

The expression of the tri-spectrum can be easily obtained at leading order in the
convergence field from the relation (2.3). It reads,

T (l1, l2, l3, l4) =
(l1.l3)(l2.l3)

l23
CT (l1)CT (l2)Pκ(l3) + sym. (3.4)

It exhibits a specific geometrical dependence which is obviously expected to be visible at
the level of the four-point function of the temperature field. The latter can be expressed in
terms of the angular derivative of the two-point temperature correlation function which
reads,

d
dθ

CT (θ) = −
∫

l2dl

2π
CT (l)J1(lθ), (3.5)

and with the angular correlation of the displacement field Cd(θ),

Cd(θ) =
∫

ldl

2π
J0 (lθ) Pκ(l) (3.6)

and with the related quantity,

C̃d(θ) =
∫

ldl

2π
J2 (lθ) Pκ(l). (3.7)

It leads to,

〈
T (�γ1)T (�γ2)T (�γ3)T (�γ4)

〉
c

=
1
2

d
dθ

CT (γ12)
d
dθ

CT (γ34)×[
Cd(γ23) cos(ϕ12 − ϕ34) − C̃d(γ23) cos(ϕ12 + ϕ34)

]
+ perm. (11 other terms), (3.8)

where ϕ12 is the angle between �γ12 and �γ23 and ϕ34 is the angle between �γ43 and �γ32

(see Fig. 1). Two terms are thus involved. The a priori dominant term is the one in D0,
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Figure 5. Description of the angles intervening in the expression (3.8) of the four-point cor-
relation function. The thick solid line materializes the d CT (θ)/d θ factor, whereas the hatched
lines represents the correlation functions of the displacement field.

and it is weighted by the cosine of the angle ϕ12 −ϕ34 ≡ ψ (see Fig. 1), that is the angle
between the directions �γ12 and �γ34 on the sky. It gives a clear geometrical dependence
for the four point-correlation function. However, one should have in mind that 11 other
terms have to be taken into account in this calculation. This signal may therefore be
masked by other geometric dependencies.

Quantitative calculations can be done for specific cosmological models (see next sub-
section). However, one obvious problem for a practical determination of this correlation
function is that it depends on 5 different variables. It is therefore interesting to reduce
the number of variables while by considering simplified geometries that still preserve the
geometrical signature of the lens effects.

3.1. A peculiar case: when two directions coincide
One example is when two points coincide, that is the expression of

〈
T (�γ1) [T (�γ2)]

2
T (�γ3)

〉
c
.

This notation is actually a bit oversimplified since the local temperature fluctuations are
filtered by the used apparatus. One should thus have in mind that the two directions
denoted �γ2 are actually close random directions in a beam centered on �γ2.

Of course, once again, many terms are contributing to this ensemble average but let
us first concentrate on the case where the connection between the two T (�γ2) is made by
the lens coupling term. In such a case one can see that ψ is given by the angle between
�γ2 − �γ1 and �γ3 − �γ2 and is not affected by the smoothing. This is not the case for the
term in cos(ϕ12 + ϕ34) which is expected to almost vanish because it is averaged to zero
and is indeed found to give a negligible contribution. This peculiar correlation function
is therefore proportional to the cosine of the angle, and to the autocorrelation function
of the displacement field.

It is then interesting to define the function,

κ4(�γ12, �γ23) =

〈
T (�γ1) [T (�γ2)]

2
T (�γ3)

〉
c〈

T (�γ1)T (�γ2)
〉 〈

T (�γ2)T (�γ3)
〉 , (3.9)

which is a dimensionless quantity. It is directly proportional to the large-scale structure
power spectrum, with a known dependence on the shape of the anisotropy power spec-
trum. This quantity would thus be a measure the weak lensing effects in CMB maps.
According to the previous considerations, the leading contribution of this term is,

κ4(�γ12, �γ23) =
d
dθ

log[C(γ12)]
d
dθ

log[C(γ23)] cos(ψ) ×[
D0(θ0) + D0(γ13) − D0(γ12) − D0(γ23)

]
. (3.10)
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Figure 6. Contour plot of the function κ4(�γ12, �γ23) (eq. 3.9) as a function of the relative position
(in degrees) of �γ3 when �γ2 is the central point of the graph and �γ1 is at the coordinates x = 0,
y = +0.63 deg. The value of κ4 has been multiplied by 1000.

where D0 is the averaged displacement field over the scale θ0. A 2D contour plot of the
function κ4(�γ12, �γ23) is presented on Fig. 6 for a peculiar cosmological case (standard
CDM).

If the four-point function is the most immediate signature of the lens effects, clearly
as soon as the temperature field is not Gaussian, many other signatures of these non-
Gaussian properties can be considered. In the literature, people have examined the hot (or
cold) spot correlation function (Takada et al. 2000), the ellipticity statistics (Bernardeau
(1998)), the genus and Minkowski functional (Schmalzing et al. 2000, Takada 2001)
the cumulant properties of temperature probability distribution functions (Kesden et
al. 2002). None of these signatures however can provide for a large signal to noise detec-
tion (even for a Planck size experiment). The reasons is that the number of structures
available on the CMB sky is intrinsically limited.

What the result on the four point function shows however is that in principle one
should have access to the convergence power spectrum. What it does not, is to take into
account the full richness of the CMB sky, e.g. its polarization patterns.

4. Reconstruction methods from temperature and polarization maps
In spirit the development of methods for the reconstruction of mass maps from CMB

observations is based on the ideas that the CMB patterns can be averaged out to reveal
the lensing signal. In some sense what is looked for is an optimal way of stacking the
four-point functions to reveal the lensing signal. The method is finally not so different
from what is done for galaxy shear measurements ; the difference being that one cannot
rely here on a large number of background sources but on subtle changes in the shape
correlations.

Two criteria should used to gauge the efficiency of such methods: their ability to
provide us with unbiased estimators of the convergence field and how the signal compares
to the “CMB noise” level. The latter is obviously dependent on the number of observed
structures which is directly related to the angular resolution of the surveys.
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xx′ Kxx′(l1, l2)

ΘΘ C̃ΘΘ
l1 (L · l1) + C̃ΘΘ

l2 (L · l2)
ΘE C̃ΘE

l1 cos ϕl1l2 (L · l1) + C̃ΘE
l2 (L · l2)

ΘB C̃ΘE
l1 sin 2ϕl1l2 (L · l1)

EE [C̃EE
l1 (L · l1) + C̃EE

l2 (L · l2)] cos 2ϕl1l2

EB [C̃EE
l1 (L · l1) − C̃BB

l2 (L · l2)] sin 2ϕl1l2

BB [C̃BB
l1 (L · l1) + C̃BB

l2 (L · l2)] cos 2ϕl1l2

Table 1. Expression of the function Kxx′ appearing in Eq. (4.1) as a function of the field

nature. C̃xx′
l is the power xx′-spectrum of the unlensed fields.

The most simple estimators are based on quadratic quantities. This reflects the fact
that the first non vanishing high order correlation functions is the fourth point one. A
general framework for building such estimators has been presented by Hu & Okamoto
(2002).

4.1. Minimum Variance Estimators

As it clearly appears in Eq. (2.3), lensing effects mix and therefore correlate Fourier
modes across a range defined by the strength in the deflection field φ (Hu 2000). If it were
possible to average over an ensemble of realizations of the temperature and polarization
fields but with a fixed lensing field one would obtain correlation functions of the form,

〈x(l)x′(l′)〉CMB = Kxx′(l, l′)φ(L) , (4.1)

where x and x′ are either T,E or B fields, L = l + l′ and Kxx′(l, l′) is a kernel function
that encodes the lensing effects depending on the fields. The expressions of the functions
Kxx′ is recalled in table 1. Clearly if such averages were possible they would provide us
with estimates of the deflecting potential.

However the two-point correlations of the CMB Fourier modes themselves cannot be
used to reconstruct the deflection potential: φ being also statistically isotropic a complete
ensemble average 〈φ(L)〉 obviously vanishes. The Eq. (4.1) does suggest however that an
appropriate average over pairs of multipole moments can be used to estimate the Fourier
modes of the deflection field d(L).

As shown in Hu & Okamoto (2002) this can be achieved by defining a proper weighting
of the moments that takes the form

dxx′(L) =
Axx′(L)

L

∫
d2l1
(2π)2

x(l1)x′(l2)Fxx′(l1, l2) , (4.2)

where l2 = l − l1 and the normalization factor Axx′ is chosen so that

〈dα(L)〉CMB = d(L) ≡ Lφ(L) . (4.3)

Each combination for x and x′ provides with an estimate of d(L). Each of which ought to
be the most likely deflection mode that can be inferred from the x or x′ measurements.
The whole game is then to choose the filter F in a way that optimizes the signal that is
that minimizes the intrinsic variance

〈
d∗xx′(L)dxx′(L)

〉
of the estimated deflection mode,

subject to the normalization constraint. This is a mathematically well defined problem
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Figure 7. Deflection signal (dd) and noise power spectra of the quadratic estimators and their
minimum variance (mv) combination: (a) Planck experiment (b) reference experiment. As the
sensitivity of the experiment improves the best quadratic estimator switches from ΘΘ to EB.
Only the EB-estimator can reconstruct the mass distribution at L � 200.

the solution of which reads,

Fxx′(l1, l2) =
Cx′x′

l1
Cxx

l2
Kxx′(l1, l2) − Cxx′

l1
Cxx′

l2
Kxx′(l2, l1)

Cxx
l1

Cx′x′
l2

Cx′x′
l1

Cxx
l2

− (Cxx′
l1

Cxx′
l2

)2
. (4.4)

The expected signal is then to be compared to the noise properties of these estimators.
They follow from the expression of the deflection correlators that take into account both
the cosmic variance of the fields and the noise variance of the experiment,

〈d∗xx′(L)dyy′(L′)〉 = (2π)2δ(L − L′)[Cdd
L + N(xx′)(yy′)(L)] , (4.5)

where

N(xx′)(yy′)(L) =
1
L2

Axx′(L)Ayy′(L)
∫

d2l1
(2π)2

Fxx′(l1, l2)

×
(
Fyy′(l1, l2)C

xy
l1

Cx′y′

l2
+ Fyy′(l2, l1)C

xy′

l1
Cx′y

l2

)
. (4.6)

Notice that for the minimum variance filter

Nαα(L) = Aα(L) . (4.7)

In Fig. 7, we compare the signal and noise power spectra for the Planck experiment and
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Figure 8. Statistical errors achievable on the deflection power spectrum with the Planck
(fsky = 0.65) and reference experiments (fsky = 1). Boxes represent band averaging width
and 1σ errors. The polarization information in the reference experiment allows for a cosmic
variance limited measurement of the projected power spectrum out to L ∼ 1000. In this regime,
the fluctuations are almost completely linear (dashed lines), from Hu & Okamoto (2002).

the reference experiment. The latter is such that ∆T = ∆P /
√

2 = 1µK-arcmin and with
an angular resolution of 4′.

The reconstruction that can potentially be achieved are presented on Fig. 8 for Planck
and for the reference experiment.

4.2. Maximum likelihood methods

Although efficient the previous method has its own intrinsic limitation. In particular it
does not take into account the higher order couplings that the lens effects induce. If it is
not a critical issue at angular scales of interest (say l � 3500) for the temperature field,
the issue is more subtle for the polarization field. In particular the argument for optimal-
ity of the quadratic estimator presented by Hirata & Seljak (2003a) does not apply to
polarization since the B-mode power is dramatically increased by lensing. The aim of this
section is to underline that likelihood-based estimators for lensing using the CMB po-
larization can significantly improve on the quadratic estimator (Hirata & Seljak 2003b).
Indeed, as noise is decreased the accuracy of CMB lensing reconstruction continues to
improve without bound. Conceptually this is because if the lensed polarization is mea-
sured with zero noise, then the equation Bunlensed = 0 can be solved (except possibly for
some degenerate modes, Benabed et al. 2001) for the projected matter density with zero
noise. The equation Bunlensed = 0 is however ill-behaved in the presence of instrument
noise and cannot be inverted; fortunately, the likelihood formalism easily incorporates
noise and in practice regularizes the problem.

It goes beyond the scope of these notes to present in details the formalism of such a
method. The performance of this method is however illustrated on Fig. 9. It shows that
the small scale modes can be recovered much more accurately with maximum likelihood
methods.
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Figure 9. A simulated reconstruction of the lensing convergence using polarization and a refer-
ence experiment (µK arcmin=1.41, θF W HM = 4′, lmax = 2020). In the left panel, we display the
realization of the convergence field κ used to produce the simulated CMB. The reconstructions
using the Wiener-filtered quadratic estimator and the iterative estimator are shown in the center
and right panels, respectively. These frames are each 8◦32′ in angular width (From Hirata &
Seljak 2003b).

5. Lens induced CMB-large scale structure correlations
5.1. Motivations

Even with the most precise experiments it is clear that clean detections of B component
will be difficult to obtain. The magnetic polarization amplitude induced with such a
mechanism is expected to be one order of magnitude below the electric one. Besides even
if we knew that there is a window in angular scale where the other secondary effects will
not interfere too much with the detection of the lens-induced B, few is still known about
removing the foregrounds to obtain clean maps reconstruction algorithms would require.

These considerations call for complementary data sets to compare B and generally
CMB lenses with. Although the source plane for galaxy lensing surveys is much closer
than for the lensed CMB fluctuations, we expect to have a significant overlapping region
in the two redshift lens distributions, so that weak lensing surveys can map a fair frac-
tion of the line-of-sight CMB lenses. Consequently, weak lensing surveys can potentially
provide us with shear maps correlated with for instance CMB B maps, but with have
different geometrical degeneracy, noise sources and systematics.

The correlation strength between the lensing effects at two different redshifts can easily
be evaluated. We define r as the cross-correlation coefficient between two lens planes:

r(z
gal

) =
〈κκ

gal
〉√

〈κ2〉 〈κ2
gal
〉
. (5.1)

In a broad range of realistic cases (see tab. 2), r ∼ 40%. To take advantage of this large
overlapping we will consider quantity that cross correlates the CMB B field and galaxy
surveys. Moreover, cross-correlation observations are expected to be insensitive to noises
in weak lensing surveys and in CMB polarization maps. This idea can be explored for
temperature maps (in van Waerbeke et al. 2000) as well as for polarization maps (in
Benabed et al. 2001) taking advantage of the specific geometrical dependences uncovered
in the previous section.

5.2. From the temperature field alone
Such correlations have to rely on subtle differences in the shape patterns of the CMB tem-
perature maps. More specifically Bernardeau (1998) investigated the effect of lensing by
the large-scale structures on the distribution of the CMB ellipticities. The consequences
are the same as for the lensed distant galaxies: the gravitational distortion induces
an excess of elongated structures of CMB ellipticities. The intrinsic CMB ellipticity
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r coefficient zgal = 1 zgal = 2

EdS, Linear 0.42 0.60

Ω = 0.3, Λ = 0.7, Linear 0.31 0.50

Ω = 0.3, Λ = 0.7, Non Linear 0.40 0.59

Table 2. values of r, the cross-correlation between two source planes (zgal and zcmb = 1100)
for different models. For the non-linear scale the adopted filter scale is 2 arcmin for both weak
lensing survey and Cosmic Microwave Background observations and the non-linear P (k) has
been computed using Peacock and Dodds method (Peaock & Dodds 1996).

distribution being known for a Gaussian field (e.g. Bond & Efstathiou 1987) it is then pos-
sible to compute the lensed distribution. The lensed distribution is unfortunately rather
close to the unlensed one, in particular because the smoothing caused by the CMB beam
tends to circularizes the local structures. The orientation of the local ellipticity is how-
ever expected to be much more robust against the smoothing effects and therefore more
efficient in tracing the lens effects. Due to the low number density of structures on CMB
maps such effects can be hardly detected in CMB maps alone, so in this section the possi-
ble cross-correlation of CMB ellipticities with the distant galaxy ellipticities is reviewed.

This paragraph is devoted to the description of the expected correlation between the
CMB ellipticities and those of distant galaxies. We indeed expect their relative angle to
be not-uniformly distributed unlike what would happen if there were no lensing effects.
We examine here the amplitude and the observability of this effect.

At any position on the CMB temperature map, we can define an ellipticity e from the
curvature of the temperature field δT :

e =

(
∂2

xδT − ∂2
yδT

∂2
xδT + ∂2

yδT
;

2∂xyδT

∂2
xδT + ∂2

yδT

)
. (5.2)

This relation is similar to the ellipticity of a galaxy defined from its second order moments.
A peak of temperature with the same curvature on both axis has a zero ellipticity, but
in opposition with the galaxies, the CMB ellipticity can take any value between zero
(circular peaks) and infinity (symmetric saddle points). However, it is always meaningful
to define the orientation of the CMB ellipticity θe = arctan(e2/e1), which runs from
0 to 2π. The gravitational lensing effect tends to stretch the structures and therefore
to produce an excess of elongated structures relative to the number of rather round
objects as shown in Bernardeau (1998). The lenses tend also to align the CMB ellipticity
with the shear �γ(θ) acting on the CMB at the angular position θ. This is similar to the
effect which occurs on the ellipticity of distant galaxies, although the corresponding shear
�γ

gal
(θ) cannot be identified with �γ(θ) since the galaxies are at much lower redshift. In

the following, we will label local lensing quantities, such as what one can obtain from
lensing reconstruction on galaxy surveys, with a gal index. The variables �γ(θ) and �γ

gal
(θ)

are correlated because the light coming from either the CMB or the distant galaxies are
passing through the same portion of low-redshift Universe, and consequently, for a given
line-of-sight θ, the CMB ellipticities are preferentially aligned with the distant galaxies.

The relative angle between the two direction was found to be given by

P(θ
gal

)dθ
gal

=
dθ

gal

2π

(
1 + 3

√
π

2
〈κκ

gal
〉

〈κ2
gal
〉 cos(θ

gal
)
)

. (5.3)

Fig. 10 shows the amplitude of this effect for different cosmological models and different
smoothing scales. We assumed a CDM power spectrum taking into account its non-linear
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Figure 10. Probability distribution function of the relative orientation θgal between the CMB
ellipticity and the sheared distant galaxies (Eq.5.3). The beam size as well as the smoothing
length of the convergence κgal are θCMB

0 = 10′. The horizontal solid line represents the uniform
distribution of θgal in the un-lensed case. The dot-dashed line is for Ω0 = 0.3, ΩΛ = 0, σ8 = 1,
the triple dot-dashed line for Ω0 = 0.3, ΩΛ = 0.7, σ8 = 1 and the dashed line for Ω0 = 1,
ΩΛ = 0, σ8 = 0.6 (from van Waerbeke et al. 2000).

Model 〈cos(θgal)〉 S/N for θ0 = 5′ S/N for θ0 = 10′

standard-CDM (900 deg2) 0.057 (θ0 = 5′) 5.4 3.3

Λ-CDM (900 deg2) 0.054 (θ0 = 5′) 6.7 3.9

Open-CDM (900 deg2) 0.040 (θ0 = 5′) 4.4 2.3

Table 3. Values of 〈cos(θgal)〉 and its signal-to-noise estimation.

evolution (using the formula given in Peaock & Dodds 1996). The deviation from a
uniform distribution can be as large as 10%, and the effect seems mostly sensitive to the
curvature of the Universe rather than ΩM or ΩΛ. A possible observable is the average of
cos(θ

gal
) over the total survey area:

〈cos(θ
gal

)〉 =
3
2

√
π

2
〈κκ

gal
〉

〈κ2
gal
〉 . (5.4)

If the CMB ellipticities are significantly aligned with the distant galaxies, then 〈cos(θ
gal

)〉
should be significantly larger than zero. Some values of 〈cos(θ

gal
)〉 are given in Table 3

for various cosmological models and smoothing schemes.
This table also shows the estimates of the cosmic variance of such detection and it is

found to be rather modest. Even with a full sky cosmic survey, that would be the case. A
detection might be possible but the amplitude will be poorly determined. Clearly these
results call for a search of such effects in the polarization field.

5.3. From the polarization field

The magnetic component of the polarization in eq. (2.8) appears to be built from a pure
CMB part, which comes from the primordial polarization, and a gravitational lensing
part. It is natural to define b, in such a way that mimics the ∆B̂ function dependence,
by replacing the CMB shear field by the galaxy one.

b
gal

= εij

(
γi

gal
∆P̂ j + γi

gal,kP̂ j,k
)

= εij

(
γi

gal
∆P j + γi

gal,kP j,k
)

+ O(κ2). (5.5)
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Cosmic V ariance (X1) Cosmic V ariance (X2)

Ω0 = 0.3 Ω0 = 1 Ω0 = 0.3 Ω0 = 1

θ = 5′, θgal = 2.5′ 6.44% 4.77% 6.06% 4.72%

θ = 5′, θgal = 5′ 6.58% 4.79% 4.99% 4.23%

θ = 10′, θgal = 5′ 8.71% 6.73% 9.49% 7.62%

Table 4. Values of the cosmic variance of X (the two columns correspond to the two terms
that appear in 5.5) for a survey size of 100 deg2.

This new quantity can be viewed as a guess for the CMB polarization B component if
lensing was turned on only in a redshift range matching the depth of galaxy surveys. The
correlation coefficient of this guess with the true ∆B field, that is

〈
∆B̂ b

gal

〉
, is expected

to be quadratic both in P and in γ and to be proportional to the cross-coefficient r.
The key issue of this construction is not so much to show that b

gal
and B are indeed

cross-correlated (which by construction is bound to happen) but that the cosmic variance
of the cross-correlation signal is large enough. Actually the cosmic variance of such a
quantity can be investigated in a large part analytically. This has been done in Benabed
et al. (2001).

The biggest source of error is the measure of
〈
∆B̂ b

gal

〉
. It is given by,

C
gal

=

√〈(
∆B̂ b

gal
− ∆B̂ b

gal

)2
〉
−

〈
∆B̂ b

gal
− ∆B̂ b

gal

〉2

(5.6)

where overlined quantities stand for geometrical averages (e.g. average over the survey in
which the measurement is made). Indeed we can neglect the errors on

〈
∆Ê2

〉
,
〈
(∇Ê)2

〉
,〈

(∇κ
gal

)2
〉
and

〈
κ2

gal

〉
; those may not be the dominant source of discrepancy and can

even be measured on wider and independent samples. The terms that appear in such
expressions can be estimated one by one if we assume that all the involved fields follow
Gaussian statistics, which is reasonable for the scales we are working on. In that case
indeed, we can take advantage of the Wick theorem to contract each of the 8 fields
correlators in products of 2 points correlation functions. By definition, (5.6) contains only
connected correlators, moreover the ensemble averages 〈∆B̂〉 and 〈b�〉 vanish, therefore
only a small fraction of correlators among all the possible combination of the 8 fields
survive. We can use a simple diagrammatic representations to describe their geometrical
shape, Fig. 11. Obviously if the survey is large enough and since the lens effect is only
a small perturbation effect, the n-points correlation functions naturally dominates over
the n + 1-points correlation function. This is true as long as the local variance is much
bigger than the autocorrelation at survey scale and we assume the surveys are still large
enough to be in this case. Then the A terms n Fig. 11 dominate over the others.

Eventually the resulting cosmic variance can be estimated from semi-analytic method.
The results are presented in Table 4.

Clearly, and contrary to what is obtained when the temperature maps is used alone,
such a correlation can potentially be measured with a rather high signal to noise ratio
even in surveys of rather modest size and resolution. Anticipating data sets that should
be available in the near future, (100 deg2 survey, with 5′ resolution for galaxy survey
and 10′ Gaussian beam size for CMB polarization detection), we have obtained a cosmic
variance around 8%. Needless is to say that this estimation does not take into account
systematics and possible foreground contaminations.
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Figure 11. Diagrammatic representation of the terms contributing to the cosmic variance of

the correlation coefficients. In this representation the vertex ×• represents ∆B̂; the cross stands
for the ∆P part, the dot for γcmb. The other vertex ×o represents any one of the two terms in
bgal; the open dot stands for γgal. The solid lines connect ∆P terms and the dashed ones the γ-s

5.4. Further consequences

The detection of cross-correlation effects between CMB observations and large-scale
structure observations is a very attractive domain of research. It is natural to try to
correlate cosmic shear survey with CMB data because the former is a direct tracer of the
potential wells that are responsible for the CMB lens effects. However any tracer of the
large-scale structure is bound to be correlated with CMB anisotropies and polarization!

For instance it has been noticed that correlation with ISW or SZ induces 3-pt cor-
relation functions ( Goldberg & Spergel 1999, Cooray & Hu 2000) in the temperature
maps.

Largescale structure is also traced by dusty starforming galaxies, that induce anisotropies
in the farinfrared background (FIRB) (Song et al. 02).

https://doi.org/10.1017/S1743921305001857 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921305001857


Lensing on CMB 103

10 100 1000

10–6

10–7

1<zs<1.5
Reference
PlanckL

(L
+

1)
C

L
/2

π
εd

L

Figure 12. Statistical errors on the cross correlation of CMB deflections and cosmic shear in
three source redshift bands on a 1000 deg2 patch of sky for the Planck and reference experiment.

It is to be noted however that other mechanisms might be responsible for other CMB-
LSS correlation patterns. They are the ISW effect at large scale due to the time variation
of the linear potentials in non EdS universe (large angular scales) an the thermal and
kinetic SZ effects from clusters. The latter is probably the main source of worries for
accurate reconstructions of the convergence maps Amblard, Vale & White 2004.

5.5. What would we learn?
Probably the best reason for which one wants to try to detect CMB lensing effects is
that it should be there if the gravitational instability picture, upon which our current
understanding of cosmology is based, is correct. Lensing effects, because it is totally
independent of further modelling, provides us with a very solid consistency check of the
theory.

Moreover, the detection of lens effects on the last scattering surface would provide
us with precious new constraints on the cosmological parameters. One comes from the
overall amplitude of the effect which is directly sensitive to the cosmological parameters:
e.g. the effect is all the more important that the optical bench in which it takes place is
deep.

Probably more interesting are the constraints that tomographic view of the dark matter
distribution can give. This possibility is illustrated on Fig. 12 which exhibits the expected
cross-spectra between galaxy lensing and CMB lensing observations. From such obser-
vations the growth rate history of the fluctuation should be accessible to observations
giving precious new constraints on the cosmological background and in particular on the
dark energy equation of state. With such observation one also could try to design tests
of the large-scale gravity laws. After all the Poisson equation has never been tested for
such cosmological scales!

6. Conclusions
CMB lensing has been examined extensively over the last few years. The signatures of

such effects are to be found in the non-Gaussian properties they induce. The computation
of the four-point functions has given birth to methods for measuring lens effects in CMB
maps. Reconstruction methods of the displacement field are now established on solid
grounds, at least from a theoretical point of view, although further numerical studies are
needed (see Amblard, Vale & White 2004 and this proceedings). So far no detection of
cross-correlation has been established. Attempts with the WMAP data have not produced
any significant results (see Hirata et al. 2004 and this proceedings.)
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It is also to be remarked that lens effects have specific correlation patterns that should
be clearly identified and not be misinterpreted as primordial Non-Gaussian effects.

Reconstruction methods of the lens field acting on the CMB, together with galaxy
lensing, open the way to tomographic exploration of the dark matter distribution of the
Universe. There are probably numerous data analysis issues to be solved to succeed in
doing so. The Planck satellite and the galaxy lensing surveys that are now in progress
should provide us with data sets large enough to experiment these methods. But space
imaging is probably what we need to get the scientific reward these phenomena promise.
This is indeed probably one of our best chances to uncover the nature of the dark energy,
at least to infer how close (or not) to a cosmological constant this mysterious component
of our universe is.

Acknowledgements

I would like to thank the organizers of the conference for inviting me to give this review
talk. It gave me the opportunity to appreciate how much this field has grown in the past
few years!

References
Amblard, A, Vale, C. & White, M. 2004, astro-ph/0403075
Benabed, K. & Bernardeau, F. 2000, Phys. Rev. D 61, 123510
Benabed, K., Bernardeau, F., van Waerbeke, L. 2001, Phys. Rev. D 63, 043501
Bernardeau, F. 1997, Astron. & Astrophys. 324, 15–26.
Bernardeau, F. 1998, Astron. & Astrophys. 338, 375–382
Bond, J.R. & Efstathiou, G. 1987, Month. Not. of the R.A.S. 226, 655–687.
Cooray, A. & Hu, W. 2000, Astrophys. J. 534, 533–550
Faraoni, V. 1993, Astron. & Astrophys. 272, 385–388
Goldberg, D. M. & Spergel, D.N. 1999, Phys. Rev. D 59, 103002
Hirata, C. M. & Seljak, U. 2003, Phys. Rev. D 67, 43001
Hirata, C. M. & Seljak, U. 2003, Phys. Rev. D 68, 83002
Hirata, C. M. Padmanabhan, N., Seljak, U., Schlegel, D., Brinkmann, J. 2004, submitted to

PRD, astro-ph/0406004
Hu, W. 2000 Phys. Rev. D 62043007
Hu, W. & Okamoto, T. 2002, Astrophys. J. 574, 566–574
Kesden, M., Cooray, A. & Kamionkowski, M. 2002, Phys. Rev. D 66, 083007
Kesden, M., Cooray, A., Kamionkowski, M. 2003, Phys. Rev. D 67, 123507
Mellier, Y. 1999, Annual Review of Astron. and Astrophys., 37, 127–189
Okamoto, T. & Hu, W. 2002, Phys. Rev. D 66, 063008
Peacock, J.A. & Dodds, S.J. 1996, MNRAS, 280, L19–L26
Seljak, U. 1996, Astrophys. J. 463 1–7
Schmalzing, J., Takada, M. & Futamase, T. 2000, Astrophys. J., 544, L83–L86
Song, Y.-S., Cooray, A., Knox, L. & Zaldarriaga, M. 2003, Astrophys. J. 590, 664–672
Takada, M. 2001, Astrophys. J., 558, 29–41
Takada, M., Komatsu, E. & Futamase, T. 2000, Astrophys. J., 533, L83–L87
Van Waerbeke, L., Bernardeau, F., Benabed, K. 2000 Astrophys. J. 540 14–19
Zaldarriaga, M. & Seljak, U. 1998, Phys.Rev. D58 023003

https://doi.org/10.1017/S1743921305001857 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921305001857

