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Abstract

We prove an upper bound on the log canonical threshold of a hypersurface that satisfies a certain
power condition and use it to prove several generalizations of Igusa’s conjecture on exponential
sums, with the log canonical threshold in the exponent of the estimates. We show that this covers
optimally all situations of the conjectures for nonrational singularities by comparing the log
canonical threshold with a local notion of the motivic oscillation index.

2010 Mathematics Subject Classification: 11L07, 11S40 (primary); 11L05, 14E30 (secondary)

1. Introduction

Igusa’s conjecture on exponential sums predicts upper bounds for |S f (a)| in
terms of a, where f is a nonconstant polynomial over Z in n variables, a runs
over the positive integers, and S f (a) is the finite exponential sum

S f (a) :=
1
an

∑
x∈(Z/aZ)n

exp
(

2π i f (x)
a

)
. (1.1)
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If a runs only over the positive powers pm of a fixed prime number p, these
bounds are well known and proved by Igusa; the key point of his conjecture is
about varying the prime p, as follows. Suppose that for some real σ > 0 and for
each prime p, there exists a constant cp > 0 such that

|S f (pm)| < cp p−mσ for each integer m > 2. (1.2)

Then the question is generally whether one can take cp independently of the
prime p (but still depending on σ and f ). In a more explicit form, Igusa puts
forward precise values for σ , the infimum of which relates to the log canonical
threshold of f in the case of nonrational singularities and, more generally, to
the motivic oscillation index (see below). Conditions on f that were originally
imposed by Igusa [26, pages 2 and 170] (like the homogeneity of f and bounds
on σ ) have been relaxed in several later variants of his question [4, 8, 10, 15].

In this paper, we prove these later variants with the log canonical threshold
playing a key role both in the exponent of the upper bounds and in the proofs. The
appearance of the log canonical threshold in the exponent of the upper bounds
is optimal in many cases: it is only when the hypersurfaces defined by f − c,
for c ∈ C, have at worst rational singularities that there is room for an improved
exponent; see Section 3.4.

We derive the bounds for the exponential sums from an upper bound on the
log canonical threshold of the hypersurface defined by f in the presence of a
certain power condition. This is described in terms of a log resolution for the
hypersurface. We prove this upper bound by making use of a finiteness result
concerning certain divisorial valuations, a result which follows from the recent
progress in the Minimal Model Program [2]. Deriving Igusa’s conjecture from
the log canonical threshold bound relies on several subtle results on Igusa’s local
zeta functions, most of which can be found in the overview paper [13] by Denef.
These allow us to reduce to finite field exponential sums with multiplicative
characters that can be bounded in a way matching our bounds on the log
canonical threshold.

We mention that while Igusa’s conjectured upper bounds are very natural,
his motivation came from their role in obtaining adèlic integrability properties,
which in turn were crucial for proving Poisson summation formulas throughout
his work [19, 20, 22–26]. These Poisson summation formulas are a step in
Igusa’s program toward new local–global principles; see [24, page 240].

1.1. The log canonical threshold bound. We begin by stating our result
on log canonical thresholds. Let X be a smooth complex algebraic variety and
D a nonempty hypersurface in X defined by f ∈ OX (X). We consider a log
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resolution h : Y → X of the pair (X, D), which is an isomorphism over X r D.
Therefore, h is a projective morphism, Y is smooth, and h∗(D) is a divisor with
simple normal crossings. Note that by our assumption on h, the relative canonical
divisor KY/X is supported on h∗(D)red.

We write

h∗(D) =
N∑

i=1

Ni Ei and KY/X =

N∑
i=1

(νi − 1)Ei ,

for positive integers Ni , νi , and prime divisors Ei so that the log canonical
threshold lct( f ) of f is given by

lct( f ) = min
i

νi

Ni

(see, for example, [35] for an introduction to log canonical thresholds). For every
subset I ⊆ {1, . . . , N }, we put

E I =
⋂
i∈I

Ei and E◦I = E I r
⋃
i 6∈I

Ei ,

where E∅ = Y . By construction, given a (possibly nonclosed) point P ∈ Y , there
is a unique I ⊆ {1, . . . , N } such that P ∈ E◦I ; moreover, there is an algebraic
system of coordinates x1, . . . , xn in a neighborhood X0 of P such that after
relabeling so that I = {1, . . . ,m}, we have Ei ∩ X0 = V (xi) if and only if
i 6 m, and we can write

f ◦ h|X0 = u ·
m∏

i=1

x Ni
i , (1.3)

where u ∈ OY (X0) is an invertible regular function on X0.
For a closed subset (or closed subscheme) Z of X , having nonempty

intersection with D, we denote by lctZ ( f ) the largest log canonical threshold
lct( f |V ), where V is an open neighborhood of Z . Note that we have
lctZ ( f ) = minx∈Z∩D lctx( f ).

THEOREM 1.1. Suppose that there is a nonempty subset I ⊆ {1, . . . , N } and an
open subset X0 as above such that X0 ∩ E◦I is nonempty and

u|X0∩E◦I = gd (1.4)

for some integer d > 1 with d|Ni for all i ∈ I and some g ∈ O(X0 ∩ E◦I ). In this
case, we have the following upper bound for the log canonical threshold of f :

lct( f ) 6
1
d
+

∑
i∈I

Ni

(
νi

Ni
− lct( f )

)
. (1.5)
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More generally, if h(X0 ∩ E◦I ) ∩ Z 6= ∅, then we have

lctZ ( f ) 6
1
d
+

∑
i∈I

Ni

(
νi

Ni
− lctZ ( f )

)
. (1.6)

REMARK 1.2. A slightly more restrictive form of the condition in (1.4) of
Theorem 1.1 is formalized and coined as ‘power condition’ in Section 2.1. Note
that the requirement d|Ni for all i ∈ I in the theorem makes the condition (1.4)
independent of the choice of local coordinates x1, . . . , xn .

1.2. Estimates for exponential sums. Let us now formulate our main results
on exponential sums. We work over a ring of integers O instead of over Z.

Let f be a nonconstant polynomial in O[x] in n variables x = (x1, . . . , xn).
Let Z be a closed subscheme of An

O. Let L be a local field over the ring O, that
is, a finite field extension of Qp or of Fp((t)) for some prime number p such that,
moreover, there is a unit-preserving ring homomorphism O→ L . We denote by
OL the valuation ring of L and by |dx | the Haar measure on Ln , normalized so
that On

L has measure 1. The number of elements in the residue field kL of L is
qL and equals a power of a prime number pL . Let ψ : L → C× be a nontrivial
additive character on L , that is, a (nontrivial) continuous group homomorphism
from the additive group of L to C×. For such data, consider the integral

E Z
f,L ,ψ :=

∫
{x∈On

L |x∈Z(kL )}

ψ( f (x))|dx |, (1.7)

where x stands for the image of x under the natural projection On
L → kn

L . We
write E f,L ,ψ for E Z

f,L ,ψ when Z = An
O. Note that the integrals E Z

f,L ,ψ are in fact
finite exponential sums which include the above sums S f (pm), with p a prime
number, as special cases. Moreover, estimating S f (pm) is the key to estimating
S f (a) for general a by the Chinese remainder theorem. In what follows, we write
lctZ ( f ) for lctZC( f ).

DEFINITION 1.3. For a nontrivial additive character ψ on L , let mψ be the
unique integer m such that ψ is trivial on $m

L OL and nontrivial on $m−1
L OL ,

where $L is a uniformizer of OL .

Note that for any additive character ψ on L with mψ = 0 and any z ∈ L×, the
character ψz sending x ∈ L to ψ(zx) satisfies

mψz = −ord(z),
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and that all nontrivial additive characters on L are of the form ψz for varying z;
see, for example, [27].

DEFINITION 1.4. For a nonconstant polynomial f with coefficients in C and
any subset Z of Cn , let

σZ ( f ) = min{lctx( f − b) | x ∈ Z , b = f (x)}.

If Z = Cn , then we simply write σ( f ) for σZ ( f ). Given a closed subscheme Y
of An

O or of An
C, we write σY ( f ) for σY (C)( f ).

THEOREM 1.5 (Exponential sums around Z ). If f ∈ O[x1, . . . , xn] is a
nonconstant polynomial and Z is any closed subscheme of An

O, then there exist
c > 0 and M > 0 such that

|E Z
f,L ,ψ | < cmn−1

ψ q−σZ ( f )mψ

L (1.8)

for all local fields L over O whose residue field characteristic is at least M and
for all nontrivial additive characters ψ on L satisfying mψ > 2.

The variant of Theorem 1.5 with Z = {0} is the Denef–Sperber conjecture
from [15], with the log canonical threshold in the exponent. Theorem 1.5 with
Z = An

O covers the variant [10, Conjecture 1.2 (1.2.1)] of Igusa’s conjecture. At
the end of Section 3, we will state and prove a version of Theorem 1.5 which is
moreover uniform in the choice of Z , thus solving and generalizing the complete
[10, Conjecture 1.2]. We moreover show the optimality of these estimates in
the case of nonrational singularities by providing lower bounds in Section 3.4,
where we also formulate the remaining part of Igusa’s conjecture with precise
and optimal estimates with the so-called motivic oscillation index of f around
Z in the exponent. We also give an application of Theorem 1.1 about poles of
maximal possible order of Igusa’s local zeta functions in the twisted case; see
Section 3.3.

1.3. Remarks on Igusa’s conjecture. Igusa [26, pages 2 and 170] originally
imposed two extra conditions in his conjecture: he focused on the case of
homogeneous f (mainly because in that case, 0 is the unique critical value),
and he assumed σ > 1 in (1.2), since he wanted to derive adèlic L1-integrability
of an adèlic variant of E f,L ,ψ from his conjectural bounds on exponential sums.
In Igusa’s situation, lower values of σ in (1.2) yield only adèlic Lq-integrability
for higher q .

The exponent σZ ( f ) in Theorem 1.5 is not always optimal. However, it is
optimal in the case that the hypersurface given by f −b for some b ∈ C has some
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nonrational singularities on each open V containing ZC. We show this optimality
in two steps: we introduce the notion of motivic oscillation index of f around
Z , denoted by moiZ ( f ) (as a variant of a notion of [7], in particular, with a
different sign), we show lower bounds of |E Z

f,L ,ψ | with moiZ ( f ) in the exponent
instead of σZ ( f ), and we compare the values of moiZ ( f ) with σZ ( f ) in the case
of nonrational singularities. It may be interesting to study a relation between
the motivic oscillation index and the notion of minimal exponents introduced in
[39, page 52]. In the nonhomogeneous case, the case mψ = 1 can be problematic
if one uses the motivic oscillation index in the exponent, as witnessed by f (x,
y) = x2 y− x ; see [7, Example 7.2]. However, the case mψ = 1 still makes sense
by [7] for weighted homogeneous f (and even possibly more generally, see the
discussion following [4, Conjecture 1.2.2]). For general f , it is more sensible to
restrict to mψ > 2, as observed in [10], where, moreover, the case mψ 6 4 is
proved.

Let us now discuss some previously proved cases of Igusa’s conjecture on
exponential sums and its variants. The case of the above theorems where
σZ ( f ) 6 1/2 has been recently obtained in [5]. Igusa treated (optimally) the
case of homogeneous polynomials f having an isolated singularity at 0; see
[26, Section 5.3]. For polynomials f that are nondegenerate with respect to their
Newton polyhedron at the origin, the exponential sums E f,L ,ψ and E {0}f,L ,ψ are
well understood; see [15], [6], [8], and [4]. Moreover, in the nondegenerate
case, it is expected that the bounds from [4, 6, 8, 15] are optimal; see the
questions about optimality and a certain vertex condition from [14, Theorems
5.17–5.19] and [18]. For homogeneous polynomials in three variables and for
weighted homogeneous polynomials in two variables, see [32, 33, 42]. It is
most likely that Lichtin’s method based on good wedge decomposition from
[32, 33], in combination with Corollary 2.10 and with Cochrane’s bounds from
[11, Theorem 1], can also be used to yield Theorem 1.5, and a similar remark
holds for the method of [5] based on arc spaces; both these approaches can
probably avoid the use of multiplicative characters.

2. Proof of Theorem 1.1

2.1. Log resolutions. We first fix some terminology for log resolutions based
on [17]. Let K be a subfield of C and X K a smooth, geometrically connected
variety over K . In the applications to Igusa’s conjectures, we will take X K = An

K ,
but in this section, it is convenient to set up the notation in a more general setting.
For a field extension K ′ of K , we put X K ′ = X K ×Spec(K ) Spec(K ′). Given a
nonzero, noninvertible f ∈ OX K (X K ), we denote by DK the closed subscheme
of X K defined by f and put D = DC. Let h : Y → X K be a log resolution of
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the pair (X K , DK ) (the existence of such h follows from [17, page 142, Main
Theorem II]).

More precisely, we have the following:

• Y is a smooth closed subscheme of Pk
X K

, for some k > 0.

• h is a proper birational morphism which is an isomorphism over the
complement of the support of DK .

• The divisor h∗(DK ) on Y equals
∑

j∈TK
N j E j for a finite set TK and some

positive integers N j , where each E j is a prime divisor.

• The divisor h∗(DK ) has simple normal crossings, that is, if I ⊆ TK is such
that i ∈ I if and only if a ∈ Ei and if we write in some neighborhood V of a

f ◦ h|V = u
∏
i∈I

yNi
i , (2.1)

with yi ∈ OY (V ) an equation of Ei in V and u ∈ OY (V ) invertible, then
the images of (yi)i∈I in the stalk OY,a at a are part of a regular system of
parameters.

• The relative canonical divisor KY/X K , which is locally defined by the
determinant of the Jacobian matrix of h, is written as

∑
j∈TK

(ν j − 1)E j

for some positive integers ν j .

For any subset I ⊆ TK , we put E I :=
⋂

i∈I Ei if I is nonempty and E I = Y if I
is the empty set. Further, we write

E◦I := E I r
⋃
i 6∈I

Ei .

By the functoriality of log resolutions for extensions of the base field, for any
field K ′ containing K , h induces a log resolution hK ′ : YK ′ → X K ′ of the pair
(X K ′, DK ′). We note that each irreducible component Ei for i ∈ TK splits into
a disjoint union of finitely many irreducible components Ei j over K ′ with (i,
j) ∈ TK ′ for a corresponding finite set TK ′ , and where we always have Ni = Ni j

and νi = νi j .
When K ′ = C, we write J for TK ′ . We say that I ′ ⊆ J corresponds to I ⊆ TK

if I ′ ranges over the irreducible components (over C) of the Ei for i ∈ I .

DEFINITION 2.1 (Power condition for ( f, h, Z)). Suppose now that K = C and
let f and h : Y → X be as above with X = XC. Let Z be a closed subvariety
of X such that f vanishes on Z(C). Consider a nonempty open subset W of an
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irreducible component of E I for some I ⊆ J , let g be in OW (W ) and d > 1
be an integer. We say that ( f, h, Z) satisfies the power condition, witnessed by
(I,W, g, d), if the following conditions hold:

h(W ) ⊆ Z , (2.2)

d|Ni for all i ∈ I, (2.3)

and
u|W = gd, (2.4)

where u comes from writing f ◦ h = u
∏

i∈I yNi
i as in (2.1) on an open subset

V ⊆ Y with W = E I ∩ V . We simply say that the power condition holds for ( f,
h, Z) if there exists (I,W, g, d) witnessing the power condition for ( f, h, Z).

2.2. The proof of the log canonical threshold bound. Before giving the
proof of Theorem 1.1, we make a few preliminary remarks using the notation in
Section 1.1.

REMARK 2.2. In order to prove the inequality (1.5) in Theorem 1.1, it is enough
to consider the case when I has only one element. Indeed, given an arbitrary
subset I as in the theorem, let Z be a connected component of E I that meets X0

and let h′ : Y ′ → Y be the blow-up of Y along Z , with exceptional divisor F .
Note that in this case, we have

N = ordF( f ) =
m∑

i=1

Ni and ν = ordF(KY ′/X )+ 1 =
m∑

i=1

νi .

Consider the chart X ′0 ⊆ h′−1
(X0) on Y ′ with coordinates y1, . . . , yn such that

x1 = y1, xi = y1 yi for 2 6 i 6 m and xi = yi for i > m. In this case, we have

f ◦ h ◦ h′|X ′0 = yN
1 ·

m∏
i=2

yNi
i · (u ◦ h′).

If g′ = g ◦ h′ ∈ O(X ′0 ∩ F), then u ◦ h′|X ′0∩F = g′d and clearly d divides N . If
we know (1.5) in the case of one divisor, we obtain

lct( f ) 6
1
d
+

m∑
i=1

νi − lct( f ) ·
m∑

i=1

Ni =
1
d
+

m∑
i=1

Ni

(
νi

Ni
− lct( f )

)
;

hence, (1.5) holds.
From now on, we will thus assume that I contains only one element,

corresponding to the divisor E on Y , and denote by N and ν the corresponding
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invariants. Note that in this case, the inequality in (1.5) is equivalent to

lct( f ) 6
dν + 1

d(N + 1)
. (2.5)

REMARK 2.3. It is interesting to note that in the case of one divisor E , the
hypothesis on f is independent of the log resolution h and only depends on
the valuation v = ordE corresponding to E . Indeed, if Ov is the corresponding
discrete valuation ring (DVR), with residue field kv, and if we write f = π N u,
where π is a uniformizer of Ov, N = v( f ), and u ∈ Ov is invertible, then the
condition on f is that the class u ∈ k×v lies in (k×v )

d for some d > 1 with d|N ,
where (k×v )

d is the set of dth powers in k×v .

REMARK 2.4. It is enough to prove (1.5) since it implies (1.6) for any Z that
satisfies the conditions in the theorem. Indeed, arguing as in Remark 2.2, we
see that it is enough to consider the case when I consists of only one element,
corresponding to the divisor E , in which case the condition is that h(E)∩ Z 6= ∅.
If V is an open neighborhood of Z such that lctZ ( f ) = lct( f |V ), then E ∩
h−1(V ) 6= ∅, and we may apply the theorem for the restriction of h over V to
obtain our assertion.

REMARK 2.5. We may and will assume that E is an exceptional divisor. Indeed,
otherwise we have ν = 1 and

lct( f ) 6
1
N

6
d + 1

d(N + 1)
,

where the second inequality follows from the fact that by assumption, we have
d 6 N .

REMARK 2.6. The inequality (2.5) clearly holds if the right-hand side is > 1.
We, thus, may and will assume that (dν + 1)/(d N + d) < 1; hence, ν < N +
(d − 1)/d . Since both ν and N are integers, this implies ν 6 N .

REMARK 2.7. Furthermore, we may also assume that there is a rational number
c, with 0 < c < lct( f ), such that

ν − c · N < 1. (2.6)

The existence of such c is clear if (ν − 1)/N < lct( f ). On the other hand, if
lct( f ) 6 (ν − 1)/N , then we are done since it is easy to check that we have

ν − 1
N

<
dν + 1
d N + d

when ν 6 N .

https://doi.org/10.1017/fmp.2019.3 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2019.3


R. Cluckers, M. Mustaţă and K. H. Nguyen 10

The existence of such c as above is useful since it implies that there is
a projective, birational morphism π : W → X , with W normal, such that
E appears as a prime Q-Cartier divisor EW on W and such that EW is the
unique exceptional divisor of π . This is a well-known consequence of the
Minimal Model Program: note that the pair (X, cD) is klt and we can apply
[2, Corollary 1.4.3] or [3, Propositions 3.2 and 4.1]. Furthermore, since X is
smooth, hence Q-factorial, the exceptional locus of π has pure codimension 1;
hence, it is equal to EW . Note that while W is not a log resolution of (X, D), the
hypothesis in the theorem is birational with respect to the divisor; hence, it also
holds for EW (see Remark 2.3).

The assertion in the following lemma is well known, but we include a proof
for the sake of completeness.

LEMMA 2.8. If X is a normal, Q-Gorenstein variety and Z ⊆ X is a
codimension 2 irreducible closed subset, such that X is not smooth at the generic
point of Z, then there is a projective, birational morphism π : X̃ → X, with X̃
smooth, and a prime divisor F on X̃ such that π(F) = Z and the coefficient of
F in K X̃/X is 6 0.

Proof. Let π : X̃ → X be a log resolution, with exceptional divisor F1+· · ·+Fr .
It follows from [30, Corollary 2.32] that if Y is the union of those π(Fi) such that
Fi has coefficient 6 0 in K X̃/X and U = X rY , then U has terminal singularities.
In particular, U is smooth in codimension 2 (see [30, Corollary 5.18]); hence,
our assumption implies that Z ⊆ Y . Therefore, Z is an irreducible component of
Y ; hence, it is equal to π(Fi) for some divisor Fi whose coefficient in K X̃/X is
6 0.

Finally, we will need the following bound for the intersection multiplicity of
two curves.

LEMMA 2.9. Let (R,mR) be a local, excellent domain, with dim(R) = 2.
Suppose that g ∈ mR is a nonzero element that generates a prime ideal and
h ∈ mR is such that its image h in A = R/(g) is nonzero and can be written as
ud , for some u in the fraction field of A. In this case, we have

`R(R/(g, h)) > d.

Proof. Let B be the integral closure of A in its fraction field. Since R is excellent,
B is a finitely generated A-module. For a finitely generated A-module M and an
ideal q in A, with radical equal to the maximal ideal, we write eA(q,M) for the
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Samuel multiplicity of M with respect to q. Since rankA(B) = 1, it follows from
[34, Theorem 14.8] that

eA((h), B) = eA((h), A).

Note also that we have

eA((h), A) = `A(A/(h)) = `R(R/(g, h)),

where the first equality follows from the fact that h is a nonzero divisor in the
one-dimensional local ring A (see [34, Theorem 14.11]). Using the fact that h
and u are nonzero divisors in B, we also have

eA((h), B) = `A(B/h B) = d · `A(B/u B) > d.

This completes the proof of the lemma.

We can now give the proof of the bound for the log canonical threshold.

Proof of Theorem 1.1. We may and will assume that we are in the situation
described in Remark 2.7, with a morphism π : W → X whose exceptional locus
is equal to EW , the prime divisor on W corresponding to E . By hypothesis, h
is an isomorphism over X r D; hence, π(EW ) ⊆ D. For every y ∈ π(EW ), the
fiber π−1(y) is contained in the exceptional locus. Since π is proper, it follows
that π−1(y) ∩ D̃ 6= ∅, where D̃ is the strict transform of D on W . In particular,
EW ∩ D̃ is nonempty. Note that we have π∗(D) = D̃ + N EW and EW is Q-
Cartier; hence, the divisor D̃ is Q-Cartier. Similarly, since KW/X = (ν − 1)EW ,
it follows that KW/X is Q-Cartier.

Let c = lct( f ) so that (X, cD) is log canonical. This implies that also the pair

(W, c · π∗(D)− KW/X ) = (W, c1 D̃ + c2 EW )

is log canonical, where c1 = c and c2 = cN − ν + 1. Arguing by contradiction,
we may assume that c > (dν + 1)/(d N + d). In this case, we have

c1 + c2 = c + (cN − ν + 1) = c(N + 1)− ν + 1 >
dν + 1

d
− ν + 1 = 1+

1
d
.

In particular, this gives c2 > 1/d > 0.
We now consider a suitable cyclic cover. Let s be a positive integer such that

s EW is Cartier and choose an open subset V of W meeting D̃ ∩ EW such that
we have an isomorphism OV (s EV ) ' OV , where EV = EW |V . After possibly
replacing s by a divisor and V by a smaller open subset, we may assume that
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s ′EV is not Cartier for any divisor s ′ of s different from s. Consider the OV -
algebra

A = OV ⊕OV (EV )⊕ · · · ⊕OV ((s − 1)EV ),

where multiplication is defined using the fact that for 0 6 i, j 6 s − 1 with
i + j > s, we have

OV (i EV )⊗OV ( j EV )→ OV ((i + j)EV ) ' O((i + j − s)EV ).

Note that we have a finite surjective morphism ϕ : U = Spec(A) → V . It is
well known and straightforward to check that U is normal and ϕ is étale in
codimension 1; in particular, we have KU/V = 0. Moreover, the section 1 of
OV (EV ) defines an effective Cartier divisor EU on U such that ϕ∗(EV ) = EU .
We also put DU = ϕ

∗(D̃). Note that since D̃+ N EW is Cartier and EU is Cartier,
it follows that DU is Cartier as well. Furthermore, since D̃∩EV 6= ∅, we conclude
that DU ∩ EU 6= ∅. Let Z be an irreducible component of DU ∩ EU so that Z has
codimension 2 in U .

We first show that U is smooth at the generic point of Z . Indeed, since Z has
codimension 2 in X , if U is not smooth at the generic point of Z , it follows from
Lemma 2.8 that there is a prime divisor F on some smooth variety Ũ , with a
birational morphism Ũ → U , such that F dominates Z and ordF(KŨ/U ) 6 0.
Since KU/V = 0 and the pair (W, c1 D̃ + c2 EW ) is log canonical, it follows that
the pair (U, c1 DU + c2 EU ) is log canonical, and, thus,

1 > 1+ ordF(KŨ/U ) > c1 · ordF(DU )+ c2 · ordF(EU ) > c1 + c2 > 1+
1
d
,

a contradiction. Therefore, U is smooth at the generic point of Z .
Note that since ϕ is étale in codimension 1, the divisor EU is reduced. Let E1

U ,

. . . , E r
U be the prime divisors containing Z that appear in EU . If R = OU,Z , then

the image of f in R factors as h ·
∏r

i=1 gN
i , where h ∈ R is a local equation of

DU and g1, . . . , gr ∈ R are local equations of E1
U , . . . , E r

U . By considering the
local homomorphism OV,EV ↪→ OU,E1

U
, we deduce from the hypothesis in the

theorem that the class of h ·
∏r

i=2 gN
i in k(E1

U ) is the dth power of some element
of k(E1

U ); therefore, the same holds for the class of h in k(E1
U ). We may thus

apply Lemma 2.9 to conclude that

`R(R/(g1, h)) > d. (2.7)

On the other hand, since U is smooth at the generic point of Z , we have
the divisorial valuation ordZ of the function field of U (this corresponds to
the exceptional divisor on the blow-up along Z of a smooth open subset of U
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meeting Z). Since the pair (U, c1 DU + c2 EU ) is log canonical, we have

2 > c1 · ordZ (DU )+ c2 · ordZ (EU ).

Since c1 + c2 > 1, we conclude that either ordZ (EU ) = 1 or ordZ (DU ) = 1. We
treat these two cases separately.

Case 1. Suppose that ordZ (EU ) = 1, that is, EU is smooth at the generic point
of Z . In particular, we have r = 1. In this case, there is a regular system of
parameters of R given by g1 and some x ∈ R. Let v be the monomial valuation
(with respect to this coordinate system) of the fraction field of R such that
v(g1) = d and v(x) = 1. Condition (2.7) implies that h ∈ (g1, xd); hence,
v(h) > d . It is a standard fact that the log discrepancy of v is d + 1; hence,
the fact that (U, c1 DU + c2 EU ) is log canonical implies

d + 1 > c · v(h)+ (cN − ν + 1) · v(g1) > d(c + cN − ν + 1).

A straightforward computation then gives

c 6
dν + 1
d N + d

,

completing the proof of this case.

Case 2. If ordZ (DU ) = 1, we proceed similarly. Consider a regular system of
parameters of R given by h and y and consider the monomial valuation w (in
this system of coordinates) of the fraction field of R such that w(h) = d and
w(y) = 1. It follows from (2.7) that g1 ∈ (h, yd); hence, w(g1) > d . Since the
log discrepancy of w is d + 1, using the fact that the pair (U, c1 DU + c2 EU ) is
log canonical, we obtain

d + 1 > c · w(h)+ (cN − ν + 1) · w(g1) > dc + d(cN − ν + 1),

which again implies c 6 (dν + 1)/(d N + d), completing the proof of the
theorem.

2.3. A special case. For our applications, we will use the following corollary
of Theorem 1.1, with notation as above and with X = An

C.

COROLLARY 2.10. Let f be a nonconstant polynomial in C[x], h : Y → An
C

a log resolution of the pair (An
C, D) with D given by f and let Z be a closed

subvariety of An
C such that f vanishes on Z(C). If the power condition holds for

( f, h, Z), witnessed by some (I,W, g, d), then the following inequality holds:

lctZ ( f ) 6
1
d
+

∑
i∈I

(νi − Ni · lctZ ( f )). (2.8)
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Note that the weaker inequality

lctZ ( f ) 6
1
2
+

∑
i∈I

(νi − Ni · lctZ ( f )), (2.9)

with 1/2 instead of the term 1/d in (2.8), would already suffice to prove our
results on exponential sums but not for our application on poles with largest
possible multiplicity in Section 3.3.

3. Igusa’s local zeta function and exponential sums

3.1. Preliminaries on exponential sums. Let f , Z , and O be as in Theorem
1.5. Consider a local field L over O and let χ : O×L → C× be a multiplicative
character, that is, a continuous group homomorphism on the group of units, O×L ,
of OL . Note that any such χ has a finite image. The order of χ is the number of
elements in its image. The conductor c(χ) of χ is the smallest c > 1 for which
χ is trivial on 1+Mc

L , with ML the maximal ideal of OL . We put χ(0) = 0. Let
s be a complex number with real part at least 0. With a fixed uniformizer $L of
OL , we consider the map ac : L → OL that sends a nonzero x to x$− ord x

L and 0
to 0. Further, write ac(x) in kL for the reduction of ac(x) modulo ML . We now
associate to this data Igusa’s local zeta function

Z Z
f,L ,χ,s :=

∫
{x∈On

L |x∈Z(kL )}

χ(ac( f (x)))| f (x)|s |dx |. (3.1)

Igusa showed in [21] that Z Z
f,L ,χ,s is a rational function in t = q−s

L when L has
characteristic zero (and, when L has positive, large enough characteristic, given
f ), thus starting the study of a now vast subject.

We begin by recalling a result relating exponential sums to Igusa’s local zeta
functions (see [13, Proposition 1.4.4]).

PROPOSITION 3.1. Let f , O, and Z be as in Theorem 1.5, L be a local field over
O, and ψ be a nontrivial additive character on L. If we put m = mψ , q = qL ,
and t = q−s , then E Z

f,L ,ψ is equal to

Z Z
f,L ,1,0 + Coefftm−1

(
(t − q)Z Z

f,L ,1,s

(q − 1)(1− t)

)
+

∑
χ 6=1

gχ−1,ψCoefftm−c(χ)(Z Z
f,L ,χ,s), (3.2)

where 1 stands for the trivial character on O×L , the summation index χ runs
over all nontrivial multiplicative characters on O×L , gχ,ψ is a complex number
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depending only on χ and ψ , and Coefft`S(t) for any ` > 0 and any power series
S in t stands for the coefficient of t`. Moreover, if c(χ) = 1, then

|gχ,ψ | =
q1/2

q − 1
. (3.3)

For an explicit description of the gχ,ψ in (3.2), see [13, Proposition 1.4.4],
whose proof applies to local fields of any characteristic.

We recall a variant of the Lang–Weil estimates and a corollary.

PROPOSITION 3.2 (Lang–Weil estimates). Let k = Fq be a finite field and X ⊆
Pn

k be a closed subvariety of dimension r. If X is geometrically irreducible, then
there is a positive constant cX such that for every ` > 1, we have

|#X (Fq`)− q`r | 6 cX q`(r−1/2).

Moreover, cX can be taken independently from X and from q as long as n, r , and
the number and degrees of the equations defining X remain bounded.

Proof. The existence of cX comes from the usual Lang–Weil estimates. The
independence of cX from X and from q (as long as the complexity of X stays
bounded) follows from [28, Theorem 12], which gives furthermore explicit upper
bounds for cX in terms of the complexity of X (see also [38, Theorem 3.1]).

COROLLARY 3.3. Let O be a ring of integers and let d > 1 be an integer. Let
X ⊆ An

O be a closed subscheme such that XC is an irreducible closed subvariety
of An

C of dimension r, and let F : X → A1
O be a regular morphism such that F is

nonvanishing on X (C). Suppose that there does not exist e > 1 dividing d and a
regular morphism g : V ⊂ XC→ A1

C on a nonempty open V of XC such that ge

equals F |V . Then there exist constants c and M such that for all finite fields Fq

of characteristic at least M with Fq an algebra over O, and for any character χ
of F×q of order d, we have∣∣∣∣ ∑

x∈X (Fq )

χ(F(x))
∣∣∣∣ 6 cqr−1/2. (3.4)

Moreover, c can be taken independently from X and F as long as n, r , d, and the
number and degrees of the equations defining X and F remain bounded.

Proof. Let U be the Kummer cover of X given by F(x) = yd for x ∈ X . By our
assumptions, we have that UC is irreducible, and, thus, there exist M and c such
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that for each finite field Fq , which is an algebra over O and whose characteristic
is at least M , we have that UFq is geometrically irreducible (for example, by
model theoretic compactness) and, by Proposition 3.2, that

|#U (Fq)− qdim X
| 6 cqdim X−1/2.

Write F×,dq for the set of dth powers in F×q and dq for the index of F×,dq in F×q .
Clearly, we also have

#U (Fq)

dq
= #{x ∈ X (Fq) | F(x) is a dth power in F×q }.

Similarly, for each such q and for each λ ∈ F×q , we consider Uλ given by F(x) =
λyd . By the uniformity of the constant in Proposition 3.2, we can choose M and
c as above and such that, in addition, if the characteristic of Fq is at least M (and
if Fq is an algebra over O), then for each λ ∈ F×q we have that Uλ is geometrically
irreducible (again, by model theoretic compactness) and

|#
{

x ∈ X (Fq) |
F(x)
λ

is a dth power in F×q
}
−

qdim X

dq

∣∣∣∣6 c
dq

qdim X−1/2.

By orthogonality of characters, for any character χ of F×q of order d, we have∑
λ∈F×q /F×,dq

χ(λ) = 0,

from which the corollary follows. Indeed, the required uniformity of c comes
from the uniformity in Proposition 3.2 and the fact that the complexity of the
covers Uλ is clearly bounded when n, r , d , and the number and degrees of the
equations defining X and F are bounded.

We next give a combination of Denef’s formula for Igusa’s local zeta function,
the Lang–Weil estimates, and Corollary 3.3. Possibly, one may use the more
advanced estimates of [38, Theorem 1.1] on finite field exponential sums with
multiplicative characters instead of Corollary 3.3. Let K be the field of fractions
of O. With the notation in Section 2.1, with X = An

K and f ∈ K [x] = K [x1,

. . . , xn] nonconstant, we consider DK and fix a log resolution h : Y → An
K of the

pair (An
K , DK ).

PROPOSITION 3.4. Let f , Z , O, and h be as above. Assume, moreover, that f
vanishes on Z(C). Then there exist constants C and M so that the following
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formula holds for every local field L over O with residue field characteristic at
least M and every multiplicative character χ on O×L :

Z Z
f,L ,χ,s =

∑
I⊆TK

cI,Z ,L ,χ ·
∏
i∈I

q−Ni s−νi
L

1− q−Ni s−νi
L

, (3.5)

where the complex numbers cI,Z ,L ,χ are independent of s and satisfy

|cI,Z ,L ,χ | 6 C. (3.6)

Moreover, for such L, we further have

cI,Z ,L ,χ = 0 (3.7)

if c(χ) > 1 or if the order of χ does not divide Ni for some i ∈ I . Furthermore,
if χ is nontrivial and for I ′ ⊆ J corresponding to I , there exist no W, g, d with
( f, h,An) satisfying the power condition witnessed by (I ′,W, g, d), then

|cI,Z ,L ,χ | 6 Cq−1/2
L . (3.8)

Finally, given f and h, the constants C and M can be taken independently from
Z and O, as long as the number of equations defining Z and their degrees remain
bounded.

Proof. By [12, Theorem 2.1] (or, equivalently, [13, Theorem 3.3]), if c(χ) > 1,
and since f vanishes on Z(C), we have cI,Z ,L ,χ = 0 for all I and all Z (as
soon as the residue field characteristic is large enough) and we are done for such
χ . Let us thus take χ with c(χ) = 1. The existence of the complex numbers
cI,Z ,L ,χ such that (3.5) holds as well as their independence of s follow from
Denef’s formula [12, Theorem 2.2] (or, equivalently, [13, Theorem 3.4]), where
also explicit descriptions of the cI,Z ,L ,χ are given as finite exponential sums (as
soon as the residue field characteristic is large enough). Precisely, the explicit
description of the cI,Z ,L ,χ given in [12, Theorem 2.1] (or [13, Theorem 3.3]) is
as follows:

cI,Z ,L ,χ =
(qL − 1)#I

qn
L

∑
a∈E◦I (kL ), h(a)∈Z(kL )

χ(u(a)) (3.9)

if the order of χ divides Ni for each i ∈ I and if the characteristic of kL is
sufficiently large (depending only on f and h), where we take natural reductions
modulo the maximal ideal ML of OL when we write u(a), h(a), and E◦I (kL).
The bound (3.6) now follows from the Lang–Weil estimates for bounding
the number of elements in E◦I (kL). Further, if I is such that the order of χ
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does not divide Ni for some i ∈ I , then cI,Z ,L ,χ = 0 by [12, Theorem 2.2]
(or [13, Theorem 3.4]), still assuming that the residue field characteristic is large
enough. This proves (3.7).

We still need to show (3.8). Suppose, thus, that χ is nontrivial and, given I ,
that there does not exist W, g, d such that ( f, h,An) satisfies the power condition
witnessed by (I ′,W, g, d), with I ′ corresponding to I . For those L such that
the reduction of E I modulo ML has no irreducible component (defined over
kL) which is moreover geometrically irreducible, we reason as follows. By the
smoothness of E I , we have that the reduction of E I modulo ML is also smooth
as soon as pL is large. Hence, if no irreducible component of the reduction of E I

modulo ML is moreover geometrically irreducible, then there are no kL-rational
points on the reduction of E I by its smoothness, and (3.8) is clear. Suppose now
that there is an irreducible component of E I,kL (the reduction of E I modulo ML)
which is geometrically irreducible. By working separately for each component
of E I,kL and using the Lang–Weil estimates in order to see that we can ignore
algebraic subsets of codimension at least 1, we can choose an affine open V of
E◦I and restrict the summation index in (3.9) by imposing both a ∈ V (kL) and
h(a) ∈ Z(kL). Furthermore, since the power condition for ( f, h,An) does not
hold for any witnesses of the form (I ′,W, g, d), with I ′ corresponding to I and
any integer d > 1, we may apply Corollary 3.3 to the sum in (3.9) restricted
to a ∈ V (kL) to find the bound from (3.8) in the case that VkL ∩ h−1(ZkL ) has
dimension equal to dim E I and Proposition 3.2 in the case that its dimension is
less than dim E I , with VkL and ZkL denoting the reductions. The proposition is
proved: note that the uniformity of C and M for varying Z and O follows from
the uniformity of Proposition 3.2 and Corollary 3.3.

3.2. Proofs of the estimates for exponential sums. Our strategy for proving
Theorem 1.5 is to first reduce to the case when f vanishes on Z(C). Next, we
relate the exponential sums to Igusa’s local zeta functions using Proposition
3.1, and finally, we estimate the different parts in (3.2) of Proposition 3.1
using Proposition 3.4, Corollary 2.10, and the following two propositions. Let
f ∈ O[x] and Z be as in Theorem 1.5 and let K be the number field which is
the field of fractions of O. We fix a log resolution h : Y → An

K of DK . In order
to estimate the first term in (3.2), we use the following result from [5].

PROPOSITION 3.5 [5, Lemma 4.1]. Given f and h as above, there exist positive
constants C and M such that, for any integer m > 2, any ring of integers O1

containing O, any closed subscheme Z of An
O1

such that f vanishes on Z(C),
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and any local field L over O1 with pL larger than M, we have∣∣∣∣Z Z
f,L ,1,0 + Coefftm−1

(t − q)Z Z
f,L ,1,s

(q − 1)(1− t)

∣∣∣∣ 6 Cmn−1q−m·lctZ ( f ),

where q = qL and t = q−s .

Proof. Lemma 4.1 of [5] states and proves this for Z = {0}, but in its proof, one
can replace this {0} by any choice of Z such that f vanishes on Z(C) and lct0( f )
by lctZ ( f ). Indeed, the estimates (4.7) and (4.9) of [5] are valid for any Z such
that f vanishes on Z(C) instead of {0} and with lctZ ( f ) instead of lct0( f ).

We now estimate the remaining parts in (3.2) of Proposition 3.1.

PROPOSITION 3.6. Let f , O, and Z be as in Theorem 1.5. If I ⊆ TK is such that
h(E I (C)) ∩ Z(C) is nonempty, then for every q > 1 and every m > 2, we have∣∣∣∣Coefftm−1

(∏
i∈I

t Ni q−νi

1− t Ni q−νi

)∣∣∣∣ 6 q−(m−1) lctZ ( f )+σI m#(I )−1, (3.10)

where
σI = −

∑
i∈I

(νi − Ni lctZ ( f )). (3.11)

Proof. Since h(E I (C)) ∩ Z(C) is nonempty, it follows that νi/Ni > lctZ ( f ) for
all i ∈ I . We have

Coefftm−1

∏
i∈I

t Ni q−νi

1− t Ni q−νi
=

∑
(ai )i∈I∈AI,m

q−
∑

i∈I νi (ai+1),

where

A I,m =

{
(ai)i∈I ∈ N#I

|

∑
i∈I

Ni(ai + 1) = m − 1
}
.

For each (ai)i∈I ∈ A I,m , we have

−

∑
i∈I

νi(ai + 1) = −(m − 1) lctZ ( f )−
∑
i∈I

(ai + 1)(νi − Ni lctZ ( f ))

6 −(m − 1) lctZ ( f )−
∑
i∈I

(νi − Ni lctZ ( f )),

where the inequality follows from the fact that νi/Ni > lctZ ( f ). Since #(A I,m) 6
m#(I )−1, we obtain the assertion in the proposition.
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R. Cluckers, M. Mustaţă and K. H. Nguyen 20

We can now prove our main results on exponential sums.

Proof of Theorem 1.5. Let f , O, and Z be as in Theorem 1.5. Let V f = {z1, . . . ,

ze} be the set of critical values of f over C. Note that the zi are algebraic over Q;
hence, we can choose a nonzero integer N such that the N zi lie in the integral
closure of Z inside C. Write Ozi for the integral closure of O[N zi ] inside its
fraction field. Let Z i be the intersection of Z with the closed subvariety of An

Ozi

given by N f (x) = N zi . By [13, Remark 4.5.3] and [5, Lemma 5.1], there is M
such that for any local field L over O of residue field characteristic at least M
and any nontrivial additive character ψ on L with mψ > 2, we have

E Z
f,L ,ψ =

∑
i

E Zi
f,L ,ψ , (3.12)

where the sum is over those i such that L admits a unit-preserving ring
homomorphism Ozi → L . (Here, we use the fact that mψ > 2.) Up to working
with each Z i separately, with f replaced by N ( f − zi), it follows from (3.12)
that it is enough to only consider Z such that f vanishes on Z(C). But this
case follows by combining the estimates and equalities from Propositions 3.1,
3.4, 3.5, 3.6, and Corollary 2.10. Indeed, there clearly exists a uniform bound
on the number of characters of O×L with order dividing

∏
i∈TK

Ni , and, by
Propositions 3.1 and 3.4, these characters are the only ones that can contribute
to the exponential sums E Z

f,L ,ψ .

By the uniformity in Z in the results used in the proof of Theorem 1.5,
we can show a uniform variant, where both constants C and M can be taken
independently from Z . For simplicity of notation, we focus on the case that f
vanishes on Z(C), leaving to the reader the task of formulating and proving the
variant of Theorem 3.7 without the condition f (Z(C)) = 0. Consider a ring of
integers O1 containing O and a closed subscheme Z of An

O1
with f (Z(C)) = 0.

For such data and any finite field Fq of large enough characteristic (depending
only on f and h) allowing a ring morphism O1 → Fq , define

τZ ,Fq ( f ) = min
i

νi

Ni
,

where the minimum is taken over those i ∈ TK such that h(Ei)(Fq) has nonempty
intersection with Z(Fq) and using notation for the reduction of h(Ei) as before.

THEOREM 3.7 (Uniformity in Z ). Let N > 0 and n > 0 be integers and let
f ∈ O[x1, . . . , xn] be a nonconstant polynomial over a ring of integers O. Then
there exist C > 0 and M > 0 such that for each ring of integers O1 containing O,
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for each closed subscheme Z of An
O1

with f (Z(C)) = 0 and such that Z is
defined by at most N equations, each of degree at most N , for each local field
L over O1 with residue field characteristic at least M, and for each nontrivial
additive character ψ on L with mψ > 2, we have

|E Z
f,L ,ψ | < Cmn−1

ψ q
−τZ ,kL ( f )mψ

L . (3.13)

The case of Theorem 3.7 with the extra assumption that Z is a point in On was
predicted in [10, Conjecture 1.2 (1.2.2)].

Proof of Theorem 3.7. The proof follows closely the proof of Theorem 1.5 by
exploiting in addition the uniformity assertions in Propositions 3.1, 3.4, 3.5,
and 3.6.

Note that, given any O1 and Z as in Theorem 3.7, there is MZ such that
τZ ,kL ( f ) equals σZ ( f ) for all L over O1 with pL > MZ . However, in Theorem
3.7, we can take M independent of Z .

3.3. Poles of largest possible order. We formulate a consequence of our
work to poles of maximal possible order for Igusa’s local zeta functions in the
twisted case. Recall that Veys’ 1999 conjecture from [31], solved by Nicaise
and Xu in [37], says that any pole of maximal possible order for Igusa’s local
zeta function associated with f is of the form −1/N , for a positive integer N ;
moreover, in this case, the log canonical threshold of f is equal to 1/N . Recall
that for any polynomial f in n variables over O, and closed subscheme Z of
An

O, any local field L over O of characteristic zero, and any character χ of O×L ,
the maximal possible order of any pole of Z Z

f,L ,χ,s is n. Nicaise and Xu treat the
nontwisted case of Igusa’s local zeta function with Z = {0}, namely, Z0

f,L ,χtriv,s ,
with χtriv being the trivial character.

Our work has consequences for poles of maximal possible order in the twisted
case of Igusa’s local zeta function around Z , namely, for Z Z

f,L ,χ,s with nontrivial
χ . It is easy to check that if s0 is a pole of maximal possible order of

Z Z
f,L ,χtriv,s

and if χ has order d , then s0/d is a pole of maximal possible order of

Z Z
f d ,L ,χ,s .

Motivated by this observation and by [31], [37], one may wonder whether s0

being a pole of maximal possible order of Z Z
f,L ,χ,s with χ a character of order

d > 1 implies that s0 = − lctZ ( f ) = −1/dk for a positive integer k. We obtain
the following result in this direction.
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PROPOSITION 3.8. Let f and Z be as above and let d > 1 be an integer. If
s0 = − lctZ ( f ) is a pole of maximal possible order of Z Z

f,L ,χ,s for infinitely many
L with arbitrarily large residue field characteristic and with χ a character of
order d on O×L , then

lctZ ( f ) 6
1
d
.

Proof. If s0 = − lctZ ( f ) is a pole of maximal possible order of Z Z
f,L ,χ,s for

infinitely many L with arbitrarily large residue field characteristic, then the
power condition holds for ( f, h, Z)witnessed by some (I,W, g, d)with |I | = n,
d|Ni and lctZ ( f ) = νi/Ni for all i ∈ I . Indeed, this follows from Proposition 3.4.
The proposition now follows by applying the bound (2.8) from Corollary 2.10
for this I and d .

3.4. Optimality of the bounds and the motivic oscillation index. In this
last section, we give lower bounds for |E Z

f,L ,ψ |, showing the optimality of the
exponent σZ ( f ) in the bounds of Theorem 1.5 when σZ ( f ) < 1 and, in some
cases, also when σZ ( f ) = 1. In fact, we refine the notion of motivic oscillation
index of f from [7] to a variant moiZ ( f ) around Z (with a sign change compared
to [7]) and show, on one hand, the optimality of bounds with moiZ ( f ) in the
exponent and, on the other hand, the equality moiZ ( f ) = σZ ( f ) in the case of
nonrational singularities. We will conclude by rephrasing the remaining part of
Igusa’s conjecture optimally in terms of moiZ ( f ).

We use the notation in Section 3.1. Thus, f is a nonconstant polynomial in n
variables with coefficients in O, Z is a closed subscheme of An

O, and h is a log
resolution of DK , with K the field of fractions of O. Also, in this section, we
only work with local fields L which are either of characteristic zero or of any
characteristic but with pL sufficiently large (depending on f and h).

With the notation from Section 3.1 for χ , recall that Z Z
f,L ,χ,s equals a rational

function R(t) in t = q−s
L , and denote by

NPZ
f,L ,χ

the set of complex numbers s0 such that t0 := q−s0
L is a pole of

(t − qL)
δR(t)

with δ = 1 if χ is trivial and with δ = 0 if χ is nontrivial. This is the set of
nontrivial poles of Z Z

f,L ,χ,s .
Define

LNPZ
f,L ,χ := sup{<(r) | r ∈ NPZ

f,L ,χ },
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where <(r) stands for the real part of r and where the supremum over the empty
set is taken to be −∞. This is the (real part of the) largest nontrivial pole of
Z Z

f,L ,χ,s .
If f vanishes on Z(C), then we define the motivic oscillation index of f along

Z as
moiZ ( f ) := − lim

M→+∞
sup

L , pL>M
sup
χ

(LNPZ
f,L ,χ ),

where L runs over the local fields over any ring of integers containing
the coefficients of f and over which Z can be defined, with residue field
characteristic pL larger than M and χ runs over all multiplicative characters
O×L → C×. Note that the limit of the suprema in the definition of moiZ ( f )
stabilizes; see [7, Corollary 3.4]. A definition of moiZ ( f ) for f and Z defined
over the algebraic closure of Q rather than over a ring of integers is given in [9],
where also some new inequalities are shown.

For general Z , for any critical value zi of f , let Z i be the intersection of Z
with the closed subvariety of An

Ozi
given by N f (x) = N zi for some nonzero

integer N such that the N zi lie in the integral closure of Z inside C and with Ozi

as in the proof of Theorem 1.5. We define moiZ ( f ) as the minimum over i of the
values moiZi (N ( f − zi)).

It is a result of Igusa (see [23, Theorem 2]) that LNPZ
f,L ,χ is a negative rational

number or −∞. Moreover, if f (Z(C)) = 0, then moiZ ( f ) is either +∞ or
a positive rational number equal to νi/Ni for some i ∈ J , where we use the
notation in Section 2.1.

The following result gives lower bounds for the exponential sums in terms
of moiZ ( f ) in the exponent. It follows directly from [23, Theorem 2] and the
observation at the start of [23, Section 4]. In combination with Proposition 3.10,
it shows optimality of our bounds in the case of nonrational singularities around
Z . Indeed, when f (Z(C)) = 0, Proposition 3.10 shows that lctZ ( f ) = moiZ ( f )
if and only if f has nonrational singularities on every open neighborhood V of
ZC in An

C.

PROPOSITION 3.9 [23]. Given f and Z as above, there exist infinitely many
local fields L over O (with arbitrarily large residue field characteristic),
constants cL > 0, and positive integers a, c, such that

cLq−moiZ ( f )m
L 6 |E Z

f,L ,ψ | (3.14)

for each m ∈ c + aN and some additive character ψ on L with mψ = m.

Proof. The assertion follows from [23, Theorem 2] (see also [13, Corollary 1.4.5]
and the comment to [13] at the end of [16]).
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PROPOSITION 3.10. Given f and Z as above, there exists an open neighborhood
V of ZC in An

C such that the following equivalences hold. All hypersurfaces
defined by f − b, for b ∈ C, have rational singularities on V if and only if
moiZ ( f ) > 1. If furthermore f vanishes on Z(C), then we have moiZ ( f ) 6 1 if
and only if moiZ ( f ) = lctZ ( f ).

Proof. The proof relies mainly on [23, Section 3], using the fact that the
observation at the beginning of [23, Section 4] removes the condition that 0 is the
only critical value. Clearly, it is enough to consider the case when f (Z(C)) = 0.
In what follows, we use the notation in Section 2.1 for a log resolution h. If f
has no singularities on some V containing Z , then moiZ ( f ) = +∞ since then
the sets NPZ

f,L ,χ are empty whenever pL is large.
Note that the hypersurface defined by f has rational singularities on some V

containing ZC if and only if for each i ∈ J with h(Ei) ∩ Z nonempty either
νi/Ni > 1 or (Ni , νi) = (1, 1) and for every other Ei ′ with (Ni ′, νi ′) = (1,
1), we have Ei ∩ Ei ′ ∩ h−1(Z) = ∅ (indeed, the latter condition is known as
the pair (An

C, D) having canonical singularities in a neighborhood of ZC; this
is equivalent with D having rational singularities in a neighborhood of ZC by
[29, Theorems 7.9 and 11.1]). If these properties on the numerical data hold,
then [23, Theorem 2] implies that LNPZ

f,L ,χ < −1 for all L and all χ whenever
pL is large and, hence, that moiZ ( f ) > 1.

Conversely, suppose that moiZ ( f ) > 1. We need to find an open neighborhood
V of ZC such that the hypersurface defined by f has rational singularities in
V . For this, we follow an argument already present in Igusa’s work. Since
moiZ ( f ) > 1, it follows from [23, Theorem 2] that for pL large, the function
L∨ → C sending a character ψ in the (topological) dual L∨ of (L ,+) to the
complex number E Z

f,L ,ψ is an L1-function (with respect to the Haar measure). By
[23, Theorem 2], for any L , this function ψ 7→ E Z

f,L ,ψ is L1 on L∨ if and only if
the limit of

F Z
L (k) :=

∫
{x∈On

L |x∈Z(kL ), f (x)=k}
|dx/d f |

exists for k → 0, where |dx/d f | stands for the volume associated with the
Gelfand–Leray differential form on f (x) = k for smooth values k ∈ L of f .
By [23, Lemma 4], we can find V as needed if and only if for all L with pL

sufficiently large and all real-valued, nonnegative Schwartz–Bruhat functions Φ
on Ln such that f (SuppΦ) contains no critical value of f other than 0, where
SuppΦ is the support of Φ, we have that the limit of

FΦ(k) :=
∫
{x∈Ln | f (x)=k}

Φ(x)|dx/d f |
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for k→ 0 exists. Note that FΦ is nonnegatively real-valued sinceΦ is. Moreover,
it follows from [23, Theorem 2] that if the limit of FΦ for k → 0 does not exist,
then for each C , there is k ∈ L× with

C < FΦ(k)

(that is, arbitrarily large values for FΦ occur in this situation). Note also that if
f (SuppΦ) contains no critical value of f , then FΦ is continuous on L . From
this discussion and the additivity of FΦ in nonnegative real-valued Φ, it follows
that we can find V as desired, namely, an open neighborhood of ZC in An

C such
that the hypersurface defined by f has rational singularities on V . (Alternatively,
one can use [1, Theorem 3.4] and the equivalence between its statements a and
c to shorten the above argument.)

Let us now prove that moiZ ( f ) 6 1 if and only if moiZ ( f ) = lctZ ( f ). This
follows again by an argument already present in Igusa’s work. The fact that if
moiZ ( f )= lctZ ( f ), then moiZ ( f )6 1 is clear since we always have lctZ ( f )6 1.
Suppose now that moiZ ( f ) 6 1. As soon as L contains a large enough finite field
extension of the field of fractions K of O, we have that s = − lctZ ( f ) is a pole
of Z Z

f,L ,χtriv,s , by the proof of [23, Lemma 4] (alternatively, and with more details,
by [41, Theorem 2.7]). We always have moiZ ( f ) > lctZ ( f ) since moiZ ( f ) is
either +∞ or νi/Ni for some i ∈ J . If lctZ ( f ) < 1, then we are done since
then clearly − lctZ ( f ) is also a pole of (t − qL)R(t), where R(q−s

L ) = Z Z
f,L ,χtriv,s .

On the other hand, if lctZ ( f ) = 1, then we are done since moiZ ( f ) 6 1 and
moiZ ( f ) > lctZ ( f ).

Note that moiZ ( f ) always gives upper bounds with constants cL depending
on L by Igusa’s work [21] and [23] (see also [13, Corollary 1.4.5] and [16]), as
follows.

PROPOSITION 3.11 (Igusa). Given f and Z, there exist M, and for each L
over O with pL > M, a constant cL > 0 such that for all nontrivial additive
characters ψ on L with mψ > 2, we have

|E Z
f,L ,ψ | 6 cLq−moiZ ( f )mψ

L mn−1
ψ . (3.15)

Note that the exponent n−1 of mψ in (3.15) is not always optimal and is related
to the order of the largest nontrivial pole of Igusa’s zeta functions; one can define
naturally a multiplicity of the motivic oscillation index capturing the optimal
exponent of mψ . Let us finally recall the strong form of Igusa’s conjecture with
the motivic oscillation index around Z , predicting that the constants cL in (3.15)
can be taken independently from L as soon as pL is large enough. By the work
of this paper, this remains open in general only if moiZ ( f ) > 1.
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Let us finally note that in the last chapter of Nguyen’s PhD thesis [36], it was
shown that the inequalities from (2.9) and Theorem 1.5 are equivalent (without
proving either in general). The results from the thesis also inspired W. Veys to
consider the inequality from (2.9) in the 2-variable case; see [40].
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