A CLASS OF MULTIPLIERS

R E EDWARDS

(Received 5 January 1967)

1. The problem and notation

Throughout this paper G denotes an infinite compact connected Hausdorff Abelian group with character group X. Given a map α of X into itself, we are concerned with the set of $a \in G$ such that the function $\varphi_a \in l^{\infty}(X)$ defined by

$$\varphi_a(\chi) = (a, \alpha(\chi))$$
 for $\chi \in X$

is a multiplier of type (p, p), where it can be assumed without loss of generality that $1 \leq p < \infty$.

In approaching this question we shall use the following notation. $L^{p}(G)$ denotes the usual Lebesgue space built over G, T(G) the space of trigonometric polynomials on G, A(G) the space of continuous functions f on G such that the Fourier transform $\hat{f} \in l^{1}(X)$, and P(G) the space of pseudomeasures on G. For $f \in T(G)$ and $a \in G$,

(1.1)
$$U_a f = \sum_{\chi \in X} \varphi_a(\chi) \hat{f}(\chi) \chi,$$

itself a trigonometric polynomial on G, and

(1.2)
$$N_p(a) = \sup \{ ||U_a f||_p : f \in T(G), ||f||_p \leq 1 \} \leq \infty.$$

It is almost evident that $U_{a+b} = U_a U_b$, $U_0 = I$ (the identity operator), that N_p is a lower semicontinuous function on G, and that for $a, b \in G$

(1.3)
$$N_{p}(a+b) \leq N_{p}(a)N_{p}(b), N_{p}(-a) = N_{p}(a),$$

provided one defines $\infty \cdot \infty = \infty$, $k \cdot \infty = \infty \cdot k = \infty$ if k is real and positive, and $0 \cdot \infty = \infty \cdot 0 = 0$, and agrees that $k < \infty$ for any real k.

It is also simple to verify that the following three statements are equivalent:

(a) $\varphi_a \in (p, p)$ (the set of multiplier functions on X of type (p, p));

(b) there exists a number $B = B(p, a) < \infty$ such that $||U_a f||_p \leq B ||f||_p$ for $f \in T(G)$;

(c) $N_p(a) < \infty$;

in this connection it is to be noticed that T(G) is dense in $L^{p}(G)$ whenever $1 \leq p < \infty$.

Write

$$A_p = \{a \in G : N_p(a) < \infty\} = \bigcup \{A_{p,k} : k = 1, 2, \cdots\},\$$

where

$$A_{p,k} = \{a \in G : N_p(a) \le k\}.$$

The lower semicontinuity of N_p shows that $A_{p,k}$ is closed in G, and (1.3) that $A_{p,k}$ is symmetric. Therefore A_p is an \dot{F}_{σ} -subgroup of G, by (1.3) again.

2. The first theorem

THEOREM 1. Suppose that either

(i) A_{v} is nonnull (relative to Haar measure)

or

(ii) A_p is nonmeagre.

Then

(iii) N_p is bounded on G;

(iv) $\hat{\mu} \circ \alpha \in (p, p)$ for all $\mu \in M(G)$.

PROOF. If (i) holds, $A_{p,k}$ is nonnull for some k. By Steinhaus' theorem, the difference set $A_{p,k} - A_{p,k}$ is a neighbourhood V of 0 in G. By (1.3), $N_p(a) \leq k^2$ for $a \in V$. Since G is compact and connected, a second appeal to (1.3) yields (iii).

If (ii) holds, $A_{p,k}$ has interior points for some k, which entails that the difference set $A_{p,k} - A_{p,k}$ is a neighbourhood of 0 in G. Whence, as before, N_p is bounded on G.

Given (iii), (iv) is derived in the following fashion. Suppose first that $p \neq 1$, so that $1 . For fixed <math>f \in L^{p}(G)$ consider the linear functional

(2.1)
$$g \to \int_G \langle U_{-a}f, g \rangle d\mu(a)$$

on $L^{p'}(G)$, where 1/p+1/p'=1 and where \langle , \rangle denotes the usual coupling between $L^{p}(G)$ and $L^{p'}(G) : \langle u, v \rangle = \int_{G} u(x)v(-x)dx$. Thanks to (iii), U_{-a} is continuously extendible from T(G) to $L^{p}(G)$ so as to map the latter continuously and linearly into $L^{p}(G)$, whence it follows that the linear functional (2.1) is continuous on $L^{p'}(G)$. Since $p' \neq \infty$, there exists a uniquely determined element U_{f} of $L^{p}(G)$ such that

(2.2)
$$\langle Uf,g\rangle = \int_{\mathcal{B}} \langle U_{-a}f,g\rangle d\mu(a)$$

for all $g \in L^{p'}(G)$. The map $U: f \to Uf$ is linear and continuous from $L^{p}(G)$ into itself.

If p = 1, so that $p' = \infty$, the last stage of the preceding argument breaks down (since $L^1(G)$ is not the dual of $L^{\infty}(G)$); however, one-may replace $L^{\infty}(G)$ by its subspace C(G) composed of the continuous functions and so conclude that U maps $L^1(G)$ linearly and continuously into M(G).

In either case, the defining equation (2.2) shows that

$$(Uf)^{\wedge} = (\hat{\mu} \circ \alpha) \cdot \hat{f} \text{ for } f \in L^{p}(G),$$

so that U is a multiplier operator of type (p, p); in particular, U commutes with translations. In case p = 1, it follows that U, which is known to map into M(G), actually maps into $L^1(G)$; see [2], § 3. Consequently (2.3) shows that in all cases $\hat{\mu} \circ \alpha \in (p, p)$ and the proof is complete.

The converse result. Suppose (iv) to be true. On taking $\mu = \varepsilon_{-a}$ (the Dirac measure at -a), it is seen that $\varphi_a = \hat{\varepsilon}_{-a} \circ \alpha$ belongs to (\not{p}, \not{p}) , so that $A_p = G$ and both (i) and (ii) hold. Also, the argument used to show that (i) implies (iii) shows in this case that (iii) holds (whether or not G is connected, since now we know that $N_p(a) < \infty$ for all $a \in G$). Thus (iv) entails (i), (ii), and (iii).

3. The case p = 1

Since there are no handy criteria for membership of (p, p) unless p = 1 or 2, the latter case being trivial, the former is the one in which Theorem 1 is most easily interpreted.

(1) When p = 1, the multiplier functions are simply the Fourier-Stieltjes transforms of elements of M(G). The conclusion of Theorem 1 thus signifies in this case that one has a homomorphism Ψ of M(G) into itself such that $(\Psi\mu)^{\wedge} = \hat{\mu} \circ \alpha$ for $\mu \in M(G)$. It is known ([1], p. 78, Theorem 4.1.3) that this is the case if and only if α is a piecewise affine map of X into itself. When G is the circle group $R/2\pi Z$, so that X is the additive group Z of integers, this means (loc. cit., p. 95) that there exists a positive integer q and a map β of Z into itself having the form

$$\beta(kq+h) = u_h k + v_h$$

for $(k \ h) \in \mathbb{Z} \times \{0, 1, \dots, q-1\}$, where $u_h, v_h \in \mathbb{Z}$, such that β agrees with α except perhaps on a finite subset of \mathbb{Z} .

It thus appears, for example, that if $\alpha : Z \to Z$ is such that $\alpha(n) \neq O(|n|)$ as $|n| \to \infty$, then the set S, composed of all real numbers s such that $\phi'_s : n \to \exp(2\pi i s \alpha(n))$ is the Fourier (-Stieltjes) transform of a measure on the circle, is both null and meagre. Cf. Remark (ii) in § 5.

(2) A simple special case of the preceding remark is that in which $\alpha = P$ is a nonlinear polynomial function mapping Z into Z. In this case it is evident that S contains all rational numbers. The referee was kind

587

enough to point out and prove that in fact S contains only rational numbers. In fact, if $\phi'_s = \hat{\mu}$, where μ is a measure on the circle, Wiener's theorems ([3], pp. 107-108) give

(3.1)
$$(2N)^{-1} \sum_{|n| \leq N} \phi'_s(n) \to \mu(\{x\}) \text{ as } N \to \infty$$

and

(3.2)
$$1 = \lim_{N \to \infty} (2N)^{-1} \sum_{|n| \leq N} |\phi'_s(n)|^2 = \sum |\mu(\{x\})|^2.$$

On the other hand, if s is irrational, the numbers sP(n) are equiuniformly distributed modulo 1 ([5], Satz 12), whence it follows that the left hand side of (3.1) converges, as $N \to \infty$, to $\int_0^1 \exp(2\pi i t + inx) dt = 0$. Thus $\mu(\{x\}) = 0$ for all x, which contradicts (3.2) and so completes the proof.

4. The second theorem

It will now be shown that much stronger variants of Theorem 1 are valid if it be supposed that α has additional properties bearing mainly on its range.

To state this second result, denote by A the set of $a \in G$ such that $\varphi_a \in (p, p)$ for some (possibly *a*-dependent) p satisfying $1 \leq p \leq \infty$, $p \neq 2$; in other words, $A = \bigcup \{A_p : 1 \leq p \leq \infty, p \neq 2\}$. According to well-known results, $A = \bigcup \{A_p : p \in D\}$, where D is any subset of [1, 2) whose supremum is 2; D may obviously be chosen to be countable. Moreover, since $A_p \subset A_q$ for $1 \leq p < q \leq 2$, A is an F_{σ} -subgroup of G.

THEOREM 2. Suppose that

(v) $\alpha(X)$ is a Sidon subset of X

and

(vi) the set A is either nonnull or nonmeagre. Then

(vii) There exists $p \in (1, 2)$ such that $\psi \circ \alpha \in (p, p)$ for all $\psi \in l^{\infty}(X)$.

PROOF. Taking D to be a countable subset of (1,2) whose supremum is 2, (vi) ensures that there exists a $p \in (1, 2)$ such that A_p satisfies at least one of (i) and (ii) (see Theorem 1). Hence, by Theorem 1, N_p is bounded on G.

Take $f \in L^{p}(G)$ and $g \in L^{p'}(G)$, and write *h* for the function $a \to \langle U_{-a}f, g \rangle$ $(U_{-a}$ having been continuously extended into a linear map of $L^{p}(G)$ into itself). If (f_{i}) is a net of trigonometric polynomials converging in $L^{p}(G)$ to *f* one has, since the U_{-a} are equicontinuous as a consequence of the boundedness of N_{p} on G,

$$h(a) = \lim_{i} \langle U_{-a}f_{i}, g \rangle$$

= $\lim_{i} \sum_{\chi \in \mathcal{X}} \varphi_{-a}(\chi) \hat{f}_{i}(\chi) \hat{g}(\chi)$
= $\lim_{i} \sum_{\chi \in \mathcal{X}} \hat{f}_{i}(\chi) \hat{g}(\chi) \cdot (-a, \alpha(\chi))$

uniformly for $a \in G$. This shows that h is continuous and that \hat{h} vanishes off $-\alpha(X)$. In view of (v), $h \in A(G)$ ([1], Theorem 5.7.3). Furthermore, two applications of the closed graph theorem show that

$$||h||_{A(G)} \leq \text{const.} ||f||_p ||g||_p'$$

where

$$||h||_{A(G)} = \sum_{\chi \in X} |\hat{h}(\chi)|$$

denotes the usual norm on A(G). As a result, if σ is any pseudomeasure on G, there is a continuous linear map U of $L^{p}(G)$ into itself such that

(4.1)
$$\langle Uf, g \rangle = \int_G h d\sigma = \int_{G'} \langle U_{-a}f, g \rangle d\sigma(a)$$

for $f \in L^{p}(G)$ and $g \in L^{p'}(G)$; cf. the corresponding portion of the proof of Theorem 1. From (4.1) it appears that $(Uf)^{\wedge} = (\hat{\sigma} \circ \alpha) \cdot \hat{f}$, so that $\hat{\sigma} \circ \alpha \in (p, p)$. As σ ranges over P(G), $\hat{\sigma}$ ranges over $l^{\infty}(X)$, so that (vii) is established.

5. Discussion of Theorem 2

The set F_{α} of functions of the form $\psi \circ \alpha$, where ψ ranges over $l^{\infty}(X)$, comprises exactly those bounded, complex-valued functions on X which are constant on each of the sets $\alpha^{-1}({\chi})$; in particular, $F_{\alpha} = l^{\infty}(X)$ if α is one-to-one.

Theorem 2 asserts that $F_{\alpha} \subset (\not p, \not p)$ for some $\not p \in (1, 2)$ whenever conditions (v) and (vi) hold.

Now the standard theory of random Fourier series (see, for example, [3] pp. 212-222, and [4]) is easily developed to show that the relation $F_{\alpha} \subset (p, p)$ is false for $p \neq 2$, at least if α satisfies the following condition: (w')

(v')
$$\sup_{\chi \in X} \# \alpha^{-1}(\{\chi\}) < \infty,$$

where #S (a nonnegative integer or ∞) denotes the number of elements of the set S. One thus obtains the following corollary.

COROLLARY. Suppose that α satisfies (v) and (v'). Then there exists a null and meagre F_{σ} -subgroup A of G such that, if $a \in G \setminus A$, φ_a belongs to (p, p) for no $p \neq 2$.

588

A simple special case is that in which $G = R/2\pi Z$, X = Z, and $\alpha(n) = 2^{|n|}$ for $n \in Z$.

More generally, suppose that G is first countable. Enumerate X as $\{\chi_k : k = 1, 2, \dots\}$. Then ([1], p. 126) one can define many sequences $n_1 < n_2 < \cdots$ of positive integers such that $\{\chi_{n_k} : k = 1, 2, \dots\}$ is a Sidon subset of X. Defining α by $\alpha(\chi_k) = \chi_{n_k}$, the corollary shows in particular that for almost all $a \in G$ the the function $\varphi_a : \chi_k \to (a, \chi_{n_k})$ belongs to (p, p) for no $p \neq 2$.

REMARKS. (i) The corollary can be stated in an apparently different way. To this end we write, for $h \in L^1(G)$,

(5.1)
$$||h||_{p,p} = \sup \{ ||h| * f||_p : f \in T(G), ||f||_p \leq 1 \}.$$

Suppose chosen any sequence or net (k_i) of functions in $L^2(G)$ such that $\lim_{k \to \infty} \hat{k}_i = 1$ pointwise on X. With these conventions, the corollary asserts that

(5.2)
$$\lim_{i} ||\sum_{\chi \in X} (a, \alpha(\chi)) \hat{k}_i(\chi)\chi||_{p,p} = \infty \quad (a \in G \setminus A, p \neq 2),$$

In case $G = R/2\pi Z$, this conclusion (5.2) may be alternatively expressed in the form

$$\lim_{N\to\infty} ||\sum_{|n|'\leq N} (1-|n|/N)e^{2\pi i s\alpha(n)+inx}||_{p,p} = \infty$$

for $s \in R \setminus B$ and $p \neq 2$, where B is a certain null and meagre F_{σ} -subgroup of R.

(ii) Notwithstanding the foregoing corollary and §3,(2), if G is the circle group one can easily construct one-to-one maps α of Z into itself such that $\alpha(Z)$ is a Sidon set and such that the additive group S of numbers $s \in R$, such that $n \to \varphi'_s(n) = \exp(2\pi i s \alpha(n)) \in (p, p)$ for all $p \in [1, \infty]$, contains uncountably many transcendental numbers.

Thus, suppose that $s \in R$ admits rational approximations p_r/q_r :

$$(5.3) s = p_r/q_r + \varepsilon_r,$$

where $r, p_r, q_r \in Z, r > 0, q_r > 0$, and $|p_r|$ and q_r are coprime; and that α is a map of Z into itself such that to each $n \in Z$ corresponds $r(n) \in Z$, r(n) > 0, for which

(5.4)
$$\alpha(n)/q_{r(n)} \in \mathbb{Z}, \sum_{n \in \mathbb{Z}} (\alpha(n)\varepsilon_{r(n)})^2 < \infty.$$

Then

$$\varphi'_{s}(n) = \exp\left(2\pi i \alpha(n)\varepsilon_{r(n)}\right) = 1 + O(\alpha(n)\varepsilon_{r(n)}),$$

which makes it apparent that $\varphi'_{s} \in (p, p)$ for all $p \in [1, \infty]$.

On the hand other, conditions (5.3) and (5.4) can be satisfied for suitable one-to-one maps α of Z into itself for which $\alpha(Z)$ is a Sidon set,

R. E. Edwards

and for corresponding uncountable sets of Liouville numbers s. To do this it suffices, for example, to begin with an ultimately strictly increasing sequence (v_k) of positive integers such that v_k divides v_{k+1} and to define α by $\alpha(0) = 0$ and $\alpha(n) = \operatorname{sgn} n \cdot v_{|n|}$ for $n \in \mathbb{Z}$, $n \neq 0$. Having thus fixed α , (5.3) and (5.4) will be satisfied by each number s of the form

$$(5.5) s = \sum_{k=1}^{\infty} b_k / v_k$$

for which $b_k \in Z$ and

$$\sum_{n=1}^{\infty} \left(v_n \sum_{k>n}^{\infty} b_k / v_k \right)^2 < \infty.$$

If the v_k are suitably chosen (for example, $v_k = 2^{k^2}$, or $v_k = 2^{[k^{\gamma}]}$ for some fixed $\gamma > 1$, or $v_k = 2^{[k + \log^{\gamma} k]}$ for some fixed $\gamma > 0$), all will be well for any bounded sequence (b_k) of integers. Such sequences (b_k) will generate, via (5.5), uncountably many transcendental Liouville numbers s for each of which $\varphi'_s \in (p, p)$ for all $p \in [1, \infty]$.

References

- [1] W. Rudin, Fourier analysis on groups (Interscience Publishers 1962).
- [2] R. E. Edwards, 'Translates of L_{∞} functions and of bounded measures', J. Austr. Math. Soc. 4 (1964), 403-409.
- [3] A. Zygmund, Trigonometric series, Vol. 1 (Cambridge University Press 1959).
- [4] S. Helgason, 'Multipliers of Banach algebras', Ann. of Math. 64 (1956), 240-254.
- [5] H. Weyl, 'Über die Gleichverteilung von Zahlen mod. Eins', Math. Ann. 77 (1916), 313-352.

Department of Mathematics Institute of Advanced Studies Australian National University

A MARKEN AND A STREET

a de la companya de l La companya de la comp

1. 1. A. 18 (1997)

÷. Etter in service in the service of t

or e inde Senter

590

[7]