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FULL SUBRINGS OF E-RINGS

SHALOM FEIGELSTOCK

A ring R is said to be an E-ring if the map R — E(R"’), of R into the ring
of endomorphisms of its additive group via a < a; = left multiplication by a,
is an isomorphism. In this note torsion free rings R for which the group R;, of
left multiplication maps by elements of R, is a full subgroup of E'(R+)+ will
be considered. These rings are called TE-rings. It will be shown that T E-rings
satisfy many properties of E-rings, and that unital T E-rings are E-rings. If R is

a T E-ring, then E(R+) is an E-ring, and E(R+)+/R1 is bounded. Some results
concerning additive groups of T E-rings will be obtained.

1. INTRODUCTION

A ring R is said to be an E-ring if the map A: R —» E(R') of R into the ring
of endomorphisms of its additive group defined by A(a) = a; = left multiplication by
a, is an isomorphism. The additive group of an E-ring is called an E-group. E-rings
and E-groups have received considerable attention, (see [1, 2, Chapter 4, Section 7, 6,
7]). In this note torsion free rings R for which E(R*)" /R, is a torsion group will be
considered.

Definitions and notation will follow [2, 4, 5].

NOTATION.
R a ring, not necessarily associative, or unital
Rt the additive group of R
E(R") the endomorphism ring of R
a left multiplication by a € R
a, right multiplication by a € R
R, the group or ring {a; | a € R}
A the map R — R; via a < q;
t the type function

Several conditions on a unital ring R are equivalent to R being an E-ring. Some

of these conditions will be recalled.
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PRoOPOSITION 1. Let R be a unital ring. The following are equivalent:

(1) R is an E-ring,

(2) every ring S with St = R* is associative,

(3) every ring S with St = RY is commutative,

(4) E(R?") is commutative,

(5) a(ab) = aa(b) for all € E(RY), and all ¢, b€ R,
(6) «a(ab) = a(a)b for all a € E(R"), and all 4, b€ R,
(7) ea(z) =a(l)z for all « € E(R), and all z € R.

PRroOF: The equivalence of (1), (2) and (3) is proved in {7, Lemma 8], and that
of (1), (4) and (5) in [1, Proposition 1.2]. If R satisfies (5) then R is an E-ring by (1,
Proposition 1.2], and so R is commutative. Therefore for « € E(R"), and a, b€ R, it
follows that a(ab) = a(ba) = ba(a) = a(a)b, and so (6) is satisfied. If R satisfies (6)
then for all @, b € R, the product ab = b,(1 - a) = b.(1)a = ba and so R is commutative.
Therefore, for a € E(RY), and a, b € R, one has a(ab) = a(ba) = a(b)e = aa(b), and
so (5) is satisfied. The equivalence of (1) and (7) follows from {7, Lemma 6]. 0

DEFINITION: An associative torsion free ring R is a TE-ring (BE-ring) if
E(R*)* /R, is a torsion (bounded) group. The additive group of a T E-ring ( BE-ring)
is called a TE-group ( BE-group).

EXAMPLE. 2Z the ring of even integers is a BE-ring but is not an E-ring. An example
of a T E-ring which is not a BE-ring cannot be given, because T E-rings and BE-rings
are one and the same as will be shown later, Corollary 3. The ring of even integers
satisfies properties (2)—(7) of Proposition 1. This is typical of T E-rings, as will also be

shown.
THEOREM 2. Let R be a TE-ring. Then

(1) there exists an element e € R, and a positive integer n such that ea = na
forall a € R;
(2) R is commutative;

(3) na =[a(e)); for all a € E(RT).

PROOF: (1) Let ¢ be the identity map on R*. There exists e € R, and a positive
integer n such that ni = e;. This clearly implies that ea = na for all a € R.

(2) Let a € R. Since a, € E(R"), there exist b € R, and a positive integer m such
that mza = bz for all z € R. Substituting e for z yields that mnae = be. Therefore,
mnaz = nbz for all z € R. Since R' is torsion free, this implies that maz = bz for
all z € R. Therefore maz = mza which, by the torsion freeness of R, implies that
az = za.

(3) Let o € E(R*). There exist ¢ € R, and a positive integer m such that
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moa = ay. Therefore ma(e) = na, and so ma(e)z = naz = mna(z) for all z € R.
Since R* is torsion free, this implies that na(z) = a(e)z.

From now on e will always denote the distinguished element of a TE-ring R
satisfying ez = nz forall z € R. 0

An immediate consequence of Theorem 2 (3) is:

COROLLARY 3. Every TE-ringis a BE-ring.

COROLLARY 4. Let R be a TE-ring. Then the map A\: R — E(R™") defined by
Ma) = a; for all @ € R, is a ring monomorphism.

ProOF: Clearly A(a + b) = A(a) + A(b), and the associativity of R insures that
A(ab) = A(a)A(d) for all a, b € R. Let a € ker A. Since R is TE there exists a positive
integer n such that na = ai{e) =0, and so a = 0. 1

COROLLARY 5. Let R be a unital TE-ring. Then R is an E-ring.

PRrROOF: By Corollary 4, it suffices to show that A\: R — E(R™) is onto. Let
a € E(R"). Then na(z) = afe)z for all z € R, and so na(l) = a(e). Therefore
na(z) = na(l)z for all z € R, which implies that a = [a(1)]; = Ale(1)]. 0

LEMMA 6. Let R be a TE-ring. Then E(R') is commutative.

PROOF: Let a, B € R. Then n?af = (na)(nB) = [a(e)li[B(e)i = [B(e)lila(e))i =
n?fa. Since E(R+)+ is torsion tree, af = fa. 0
THEOREM 7. Let R be a TE-ring, and let S be a ring with S* = Rt . Then S

is commutative and associative.

PROOF: Let * denote multiplication in §. For every a € S the map Rt — Rt
via < a x z belongs to E(R'). Theorem 2 yields that na*z = (a*e)z for all
z € S. The map R* — R* via z < z x e belongs to E(R') so, again by Theorem 2,

2axz = (exe)az for all a,z € S. Hence for a, b € S, one

na+e=(exe)a and so n
has n2a xb = (e xe)ab = (e x e)ba = n?b* a. Since St is torsion free it follows that
S is commutative. Let a, b, ¢ € §. Direct computation shows that n®[(a *b) * c] =

n®[a * (b*c)] = [e * (e * e)]abc, and so § is associative.
LEMMA 8. Let R be a TE-ring, a € E(R*), and let a, b€ R. Then
(1) a(ab) = a(a)b, and
(2) o(ab) = aa(d).
PRrROOF: (1) a(ab) = aob,(a) = (by Lemma 6) b, 0 a(a) = a(a)b.
(2) a(ab) = a(ba) = (by (1)) a(b)a = aa(b). 0
Rings satisfying property (1) of Lemma 8 were studied in [3], and were called

E-associative rings.
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THEOREM 9. Let R be a TE-ring. Then E(R%) is an E-ring.

PROOF: Let * be a ring multiplication on E(R*). By Proposition 1 it suffices to
show that (E(R"' ), *) is commutative. It follows from Theorem 2 that nE(R*) C R;.
Define multiplication in R; by a;0b; = n{a; * b;) for all a, b € R. It is readily seen that
o is a ring multiplication on R;. Since R;~ R* it follows from Theorem 7 that (Ry, o)
is commutative. Let a, 8 € E(R*)*. Then na = [a(e)]i, and nB = [B(e)]; by Theorem
2. Therefore n’a x f = n(na) x (nB) = [a(e)]i o [B(e)l: = [B(e)ls o [a(e)li = n°B * .
Since E(R*)" is torsion free it follows that a* 8 = B * a. 0

COROLLARY 10. Let R be a torsion free ring. Then R is a T E-ring if and only
if there exists an E-ring S, and an embedding of R into S with bounded index.

Proor: If R is a TE-ring then A: R — E(R?) is an embedding of R into an
E-ring by Corollary 4 and Theorem 9. It follows from Corollary 3 that A(R) = R; has
bounded index in E(R).

Conversely suppose that R is a subring of an E-ring S, and that nS C R, n a
positive integer. Let 1 be the unity of S. Then e=n-1¢€ R. For a € E(R") define
a: St — S* by a(z) = a(nz). It is readily seen that @ € E(S*). Therefore, by
Proposition 1, a(z) = @(1)z = a(e)z forall z € S. Therefore na(z) = a(nz) = a(e)z
for all z € R, that is, na = [a{e)]; and so R is a TE-ring.

LEMMA 11. Let R be a TE-ring, and let S be a unital subring of R such that
S*/R* is bounded. Then S is an E-ring.

PRrROOF: Thering QR E(SY) ~ Q®E(R') is commutative by Lemma 6. Therefore
E(S*) is commutative, and so S is an E-ring by Proposition 1. ]

LEMMA 12. Let R be a TE-ring. Then every group direct sum Rt = H® K is

a ring direct sum.

PROOF: Let h € H, and let = € R. The natural projection of Rt onto H along
K, my, belongs to E(R*). It follows from Lemma 8 that hz = wy(h)z = my(hz) € H,
that is, HR C H, and similarly RH C H. Therefore H is an ideal in R. The same
argument, using the projection of Rt onto K, yields that K is an ideal in R. Since
HK C HN K = {0}, and similarly KH = {0}, it follows that R = H @ K is a ring
direct sum.
The result parallel to Lemma 12 for E-rings, was proved in [7, Corollary 2]. 1]
CoROLLARY 13. Let G be a TE-group. Then G cannot be an infinite direct
sum of non-trivial groups.
PROOF: Let G = @ G;, and let R be a TE-ring with Rt = G. There exists a
i€l
finite subset {1, ..., k} C I suchthat e=e; + - +ex,withe; € G; fori=1, -, k.
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Let z € G. Then nz = ze = ze; +--- + zex. Since ze; € G; for each i by Lemma 12,
it follows that nz € G1 ®- - -®Gx. The fact that G1®---® Gy is a pure subgroup of G,
and that @ is torsion free, yields that z € G1®---® G, thatis, G = G116 - ®Gr. U

LEMMA 14. Let G be a completely decomposable torsion free group. The fol-
lowing are equivalent:
(1) G is an E-group,
(2) G is a TE-group,

k
(8) G = @ G;, with k a positive integer, G; a rank one torsion free group,
i=1
t(G;) idempotent, and t(G;) £ t(G;) forall 1 <4, j < k,i#3j.
Proor: Clearly (1) = (2).
(2) = (3): Suppose that G is a completely decomposable TE-group. It follows

k
from Corollary 13 that G is a finite direct sum of rank one torsion free groups, @ G;.
=1
k
Let A= @ E(G:). Since E(R*) = A® @ Hom (G;, G;), and r(G) = r(E(G))* =k,
=1 i#j

it follows that Hom(G;, G;) = 0 for all i # j. If ¢(G;) < t(Gj) for i # j, then
Hom (G;, G;) # 0, a contradiction. Let R be a TE-ring with R = G, and let
a € Gj,a#0,forsomel <j<k. Lete=e +: - +e with e € G; for all
1 <7< k. Then #{(G;) = t(na) = t(ae;) > 2t(G;), and so t(G;) is idempotent for all
1<j<k. 0

(3)= (1): [7, Theorem 2].

QUESTION 1. Isevery TE-group an E-group? It follows from Corollary 3, and Theorem
9, that every T E-group is quasi-isomorphic to an E-group.

QUESTION 2. Let R be a subring of a torsion-free E-ring S, with §*/R* a torsion
group. Is R a TE-ring?
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