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FULL SUBRINGS OF £-RINGS

SHALOM FEIGELSTOCK

A ring R is said to be an .E-ring if the map R —> E(R+), of R into the ring
of endomorphisms of its additive group via a •—> ai = left multiplication by a,
is an isomorphism. In this note torsion free rings R for which the group Ri, of
left multiplication maps by elements of R, is a full subgroup of i?(.ft+) + will
be considered. These rings are called TE-rings. It will be shown that TiJ-rings
satisfy many properties of £-rings, and that unital TE-rings are E-rings. If R is
a Turing, then E(R+) is an £-ring, and E(R+) + /Rt is bounded. Some results
concerning additive groups of TiJ-rings will be obtained.

1. INTRODUCTION

A ring R is said to be an .E-ring if the map A: R —> E(R+) of R into the ring
of endomorphisms of its additive group defined by A(a) = aj = left multiplication by
a, is an isomorphism. The additive group of an .E-ring is called an .E-group. .E-rings
and .E-groups have received considerable attention, (see [1, 2, Chapter 4, Section 7, 6,
7]). In this note torsion free rings R for which E(R+)\ /Ri is a torsion group will be
considered.

Definitions and notation will follow [2, 4, 5].

NOTATION .

R a ring, not necessarily associative, or unital
R+ the additive group of R

E(R+) the endomorphism ring of R+

ai left multiplication by a 6 R
ar right multiplication by a £ R

Ri the group or ring {a; | a 6 R}

A the map R —> Ri via a t—• aj
t the type function

Several conditions on a unital ring R are equivalent to R being an .E-ring. Some
of these conditions will be recalled.
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PROPOSITION 1. Let R be a unitaJ ring. The following are equivalent:

(1) R is an E-ring,
(2) every ring S with S+ = R+ is associative,
(3) every ring S with S+ = R+ is commutative,
(4) E(R+) is commutative,
(5) a{ab) = aa(b) for all a £ E(R+), and all a, b G R,
(6) a(ab) = a(a)b for all a G E(R+), and all a, be R,
(7) a(x) = a(l)x for all a e E(R), and all x G R.

PROOF: The equivalence of (1), (2) and (3) is proved in [7, Lemma 8], and that
of (1), (4) and (5) in [1, Proposition 1.2]. If R satisfies (5) then R is an .E-ring by [1,
Proposition 1.2], and so R is commutative. Therefore for a G E(R+), and a, b G R, it
follows that ct[ab) = a(6a) = ba(a) = a[a)b, and so (6) is satisfied. If R satisfies (6)
then for all a, b G R, the product ab = bT(l • a) = br(l)a = ba and so R is commutative.
Therefore, for a G E(R+), and a, b G R, one has a(ab) = a(ba) = a(b)a = aa(b), and
so (5) is satisfied. The equivalence of (1) and (7) follows from [7, Lemma 6]. U

DEFINITION: An associative torsion free ring R is a TE-ring (BE-ring) if
E(R+) IRi is a torsion (bounded) group. The additive group of a T-E-ring (I?.E-ring)
is called a TE-group (BE-group).

EXAMPLE. 2Z the ring of even integers is a I?2?-ring but is not an .E-ring. An example
of a T.E-ring which is not a i?.E-ring cannot be given, because T.E-rings and I?.E-rings
are one and the same as will be shown later, Corollary 3. The ring of even integers
satisfies properties (2)-(7) of Proposition 1. This is typical of TE-rings, as will also be
shown.

THEOREM 2 . Let R be a TE-ring. Then

(1) there exists an element e 6 R, and a positive integer n such that eo = no
for all a £ R;

(2) R is commutative;
(3) na = [a(e)]j for all a G E(R+).

PROOF: (1) Let i be the identity map on R+. There exists e G R, and a positive
integer n such that ni = ej. This clearly implies that ea = na for all a G R.

(2) Let a £ R. Since ar G E(R+), there exist 6 G R, and a positive integer 771 such
that mxa = bx for all x G R- Substituting e for x yields that mna — be. Therefore,
mnax = nbx for all x G R. Since R+ is torsion free, this implies that max = bx for
all x G R. Therefore max = mxa which, by the torsion freeness of R+, implies that
ax — xa.

(3) Let a G E(R+). There exist a G R, and a positive integer m such that
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ma — at. Therefore ma(e) = na, and so ma{e)x = nax — mna(x) for all x £ R.

Since R+ is torsion free, this implies that na(x) — a(e)x.

From now on e will always denote the distinguished element of a TE-ring R

satisfying ex = nx for all x G R- u

An immediate consequence of Theorem 2 (3) is:

COROLLARY 3 . Every TE-ring is a BE-ring.

COROLLARY 4 . Let R be a TE-ring. Then the map X: R -> E(R+) defined by

A(a) = a/ for all a 6 R, is a ring monomorphism.

PROOF: Clearly X(a + b) = X(a) + A(6), and the associativity of R insures that
X(ab) = X(a)X(b) for all a, b G R- Let a G ker A. Since R is TE there exists a positive
integer n such that na = a/(e) = 0, and so a = 0. D

COROLLARY 5 . Let R be a unital TE-ring. Then R is an E-ring.

PROOF: By Corollary 4, it suffices to show that X: R -> E(R+) is onto. Let
a G E(R+). Then na(x) = a(e)x for all x G iZ, and so na(l) = a(e). Therefore
na(x) = na(l)x for all x G -R, which implies that a = [a(l)]f = A[a(l)]. D

LEMMA 6 . Let R be a TE-ring. Then E(R+) is commutative.

PROOF: Let a,P € R. Then n2a/3 = (na)(n/3) = [a(e)],[/?(e)]; = [/3(e)],[a(e)], =

n2/3a. Since £ ( f l + ) + is torsion tree, aj3 = (3a. D

THEOREM 7 . Let R be a TE-ring, and let S be a ring with S+ = R+ . Then S

is commutative and associative.

PROOF: Let * denote multiplication in S. For every o G S the map R+ —+ R+

via x •—> a * x belongs to £( i?+) . Theorem 2 yields that na * x = (a * e)x for all
x G S. The map iZ+ —> -R+ via x •—> x * e belongs to E(R+) so, again by Theorem 2,
na * e = (e * e)a and so n2a * x = (e * e)az for all a, x G 5 . Hence for a, b £ S, one
has n2a * 6 = (e * e)a6 = (e * e)ba = n2b * a. Since S+ is torsion free it follows that
5 is commutative. Let a, b, c G S. Direct computation shows that ns[(a* b) * c] =
n3[a * (6 * c)] = [e * (e * e)]abc, and so S is associative. D

LEMMA 8 . Let R be a TE-ring, a G .E( .R+) , and Jet a,b£R. Then

(1) a (a6) = a ( a ) 6 , and
(2) a(ab) = aa(b).

PROOF: (1) a(ab) = ao br(a) = (by Lemma 6) br o a(a) = a(a)b.

(2) a{ab) = a(6a) = (by (1)) a{b)a = aa{b). D

Rings satisfying property (1) of Lemma 8 were studied in [3], and were called
^-associative rings.
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THEOREM 9 . Let R be a TE-ring. Then E(R+) is an E-ring.

PROOF: Let * be a ring multiplication on E(R+). By Proposition 1 it suffices to
show that (E(R+)+, *J is commutative. It follows from Theorem 2 that nE(R+) C ify.
Define multiplication in Ri by a; o 6j = n(ai * bi) for all a, b £ R. It is readily seen that
o is a ring multiplication on Ri. Since Ri ~ R+ it follows from Theorem 7 that (Ri, o)
is commutative. Let a, /? £ E{R+) . Then not — [a(e)]j, and n/3 = [/?(e)]j by Theorem
2. Therefore n3a*/3 = n(na) * (n/3) = [a(e)]i o [0(e)]z = [/?(e)]j o [a(e)], =n3fi*a.
Since i?(.R+)+ is torsion free it follows that a * /3 = /? * a. D

COROLLARY 10 . Let R be a torsion free ring. Then R is a TE-ring H and only
if there exists an E-ring S, and an embedding of R into S with bounded index.

PROOF: If R is a TE-ring then A: R —> E(R+) is an embedding of R into an
.E-ring by Corollary 4 and Theorem 9. It follows from Corollary 3 that A(ii) = Ri has
bounded index in E(R).

Conversely suppose that R is a subring of an .E-ring S, and that nS C. R, n a
positive integer. Let 1 be the unity of 5. Then e = n • 1 £ R. For a £ E(R+) define
S: S+ —> S + by a(z) = a(nz). It is readily seen that 2 £ E(S+). Therefore, by
Proposition 1, a(s) = a(l)x = a(e)x for all x £ S. Therefore na(x) = a{nx) = a(e)s
for all x £ .R, that is, net = [a(e)]j and so R is a Ti?-ring. D

LEMMA 1 1 . Let R be a TE-ring, and let S be a unital subring of R such that
?+ is bounded. Then S is an E-ring.

PROOF: The ring Q®E(S+) ~ Q®E(R+) is commutative by Lemma6. Therefore
*~) is commutative, and so S is an .E-ring by Proposition 1. u

LEMMA 12 . Let R be a TE-ring. Then every group direct sum R+ = H @ K is
a ring direct sum.

PROOF: Let h £ H, and let x £ R. The natural projection of R+ onto H along
K, TTff, belongs to E(R+). It follows from Lemma 8 that hx = nH(h)x = -Kfi{hx) £ H,
that is, HR C H, and similarly RH C fl\ Therefore H is an ideal in R. The same
argument, using the projection of R+ onto K, yields that if is an ideal in iE. Since
HK C £T D K = {0}, and similarly # # = {0}, it follows that R = H @ K is a ring
direct sum.

The result parallel to Lemma 12 for 2?-rings, was proved in [7, Corollary 2]. D

COROLLARY 13 . Let G be a TE-group. Then G cannot be an infinite direct
sum of non-trivial groups.

PROOF: Let G - © Gi, and let R be a TE-ring with R+ - G. There exists a

finite subset {1, . . . , k} C I such that e = ei + • • • + e*, with e< £ d for i = 1, • • • , k.
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Let x 6 G. Then nx = xe = xei -\ \- xek • Since xei G G,- for each i by Lemma 12,

it follows that nx E Gi © • • -@Gk- The fact that G\ @• • • @G* is a pure subgroup of G,

and that G is torsion free, yields that x £ G\ © • • • © Gfc, that is, G = Gi © • • • © G*. D

LEMMA 1 4 . Let G be a completely decomposable torsion free group. The fol-

lowing are equivaient:

(1) G is an E-group,
(2) G is a TE-group,

k

(3) G = © Gi, with k a positive integer, Gi a r an i one torsion free group,
t=i

t(Gi) idempotent, and t(Gi) £ t{Gj) for all 1 < i, j ^ k, i ^ j .

P R O O F : Clearly (1) =• (2).

(2) => (3): Suppose that G is a completely decomposable T.E-group. It follows
k

from Corollary 13 that G is a finite direct sum of rank one torsion free groups, @ Gi.
i=l

Let A = © E{Gi). Since E(R+) = A@ © Hom(Gi, Gj), and r(G) = r{E(G))+ =k,

it follows that Hom(Gi, Gj) = 0 for all i ^ j . If t(Gi) < i(G,) for i ^ j , then
Hom(Gi, Gj) 7̂  0, a contradiction. Let R be a TE-ring with .R+ = G, and let
a £ Gj , a 7̂  0, for some 1 ^ j ^ k. Let e = ci + • • • + e* with e,- G Gj for all
1 < i < jfe. Then t(Gj) = t(na) - t(aej) ^ 2t(Gj), and so i(G,) is idempotent for all
1 ^ j < k. U

(3)=>(1): [7, Theorem 2].

QUESTION 1. Is every T-E-group an ^-group? It follows from Corollary 3, and Theorem
9, that every T.E-group is quasi-isomorphic to an .E-group.

QUESTION 2. Let R be a subring of a torsion-free i?-ring S, with S+ /R+ a torsion
group. Is R a TE-ring?
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