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ON THE GALOIS MODULE STRUCTURE OF

IDEAL CLASS GROUPS

TORU KOMATSU and SHIN NAKANO

Abstract. Let K/k be a Galois extension of a number field of degree n and p
a prime number which does not divide n. The study of the p-rank of the ideal
class group of K by using those of intermediate fields of K/k has been made
by Iwasawa, Masley et al., attaining the results obtained under respective con-
straining assumptions. In the present paper we shall show that we can remove
these assumptions, and give more general results under a unified viewpoint. Fi-
nally, we shall add a remark on the class numbers of cyclic extensions of prime
degree of

�
.

Introduction

Throughout this paper, p will denote a prime number and Fp the finite

field with p elements. For an integer n > 1 prime to p, denote by c(n, p) the

order of p in the multiplicative group (Z/nZ)×, and by d(n, p) the minimum

of c(l, p) for all prime factors l of n. For a finite abelian group A, denote by

rpA its p-rank; rpA = dimFp(A/pA). We will use this notation rp instead of

dimFp even for vector spaces over Fp. Denote by C(K) and h(K) the ideal

class group and the class number of an algebraic number field K.

Let k be an algebraic number field of finite degree and K a Galois

extension of k of degree n prime to p. Iwasawa [5] deduced the inequal-

ity rpC(K) = d(n, p) under the conditions p |/h(k) and p|h(K) from the

following group theoretical proposition:

Let G be a group of order n prime to p and M an Fp[G]-module

such that the action of G on M is non-trivial. Then rpM ≥
d(n, p).

Suppose G and M are as above. Then G acts non-trivially on the quotient

module M/MG, where MG is the submodule of M consisting of elements
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134 T. KOMATSU AND S. NAKANO

left fixed by G. Therefore the conclusion of the above property can be

replaced by rpM − rpM
G ≥ d(n, p). From this simple observation, we can

improve a little the above result of Iwasawa on ideal class groups. It will be

seen that M/MG is isomorphic to the kernel of the norm map: M → M ,

x 7→
∑

σ∈G σx.

In this paper, we shall utilize the kernels of the maps of this kind to

study the behavior of the p-rank of finite G-modules, and apply it to the

rank of ideal class groups. After group theoretical discussions of same kind

as above, we shall apply them to the estimation of the rank of ideal class

groups, and extend the results of Masley[7], Cornell–Rosen[3] and others,

as well as to the non-l-part of the ideal class group in Zl-extensions. Finally,

we shall add a remark on the class numbers of cyclic fields of prime degrees

of Q including a conjecture.

The authors would like to thank the referee for valuable suggestions.

§1. Group theoretical discussions

Let G be a finite group and M a finite G-module. Let x ∈ M . The

stabilizer of x is denoted by Gx and the G-orbit of x by Gx, that is,

Gx = {σ ∈ G | σx = x}, Gx = {σx ∈ M | σ ∈ G}.

It is familiar that |Gx| = (G : Gx).

Lemma 1. Assume that Gx = {1} for every x(6= 0) ∈ M . Then we

have |M | ≡ 1 (mod |G|).

Proof. Decompose M to the G-orbits: M = {0} ∪ Gx1 ∪ · · · ∪ Gxt. It

follows from the assumption that |Gxi| = (G : Gxi
) = |G| (1 ≤ i ≤ t).

Hence we have |M | = 1 + t|G| ≡ 1 (mod |G|).

For a subgroup H of G, we define a subset MH of M by

MH = {x ∈ M | σx = x for all σ ∈ H}.

The norm map NH for H is an endomorphism of M as an H-module defined

by

NH : M → M, x 7→
∑

σ∈H

σx.
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Put H(σ) = σHσ−1 for σ ∈ G. We easily see that

σMH = MH(σ), σNHx = NH(σ)(σx)

for σ ∈ G and x ∈ M . In particular, if H is a normal subgroup of G then

MH is a G-module and NH is a G-homomorphism.

Lemma 2. Let H be a subgroup of G.

(1) Ker NH ⊆ Ker NG.

(2) If H is a normal subgroup acting on M trivially, then M becomes a

G/H-module and Ker NG/H ⊆ Ker NG.

Proof. Use the decomposition to the cosets of H in G.

Lemma 3. If (|G|, |MG|) = 1, then NGM = MG and M = MG ⊕
Ker NG.

Proof. The inclusion NGM ⊆ MG is clear. We must make sure of the

converse. Let x ∈ MG. Then we have NGx = |G|x. It follows from the

assumption that there exists an a ∈ Z such that a|G| ≡ 1 (mod |MG|).
Thus x = a|G|x = aNGx and we conclude MG ⊆ NGM . Furthermore, the

same argument shows that MG ∩Ker NG = {0}. Comparing the orders, we

obtain M = MG ⊕ Ker NG.

Lemma 4. If |G| is prime and (|G|, |Ker NG|) = 1, then |Ker NG| ≡ 1

(mod |G|).

Proof. Let x(6= 0) ∈ KerNG. If Gx = G, then 0 = NGx = |G|x which

yields x = 0 by the assumption (|G|, |Ker NG|) = 1. This is a contradiction.

Thus we have Gx ( G. Since the order of G is prime, we have Gx = {1}
which completes the proof by Lemma 1.

In order to state our results on the p-rank of G-modules, we shall use

the notation c(n, p), d(n, p) defined in Introduction for an integer n > 1

prime to p, and one more notation e(n, p) defined as the greatest common

divisor of c(l, p) for all prime factors l of n. The following relations hold

among them:
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c(l, p) ≤ c(n, p)

||

d(n, p) ≤ d(l, p)

∨| ||

e(n, p) ≤ e(l, p)

where l is a prime factor of n. For an abelian group A and a positive integer

m, let A[m] be the kernel of the multiplication-by-m map, i.e.,

A[m] = {a ∈ A | ma = 0}.

It is easy to see that A[p] is an Fp-vector space and its dimension is equal

to rpA provided A is finite.

Proposition 1. Let G be a cyclic group of prime order l 6= p and M

a finite G-module. Then we have

rp KerNG ≡ 0 (mod c(l, p)).

Proof. One may easily check that rp Ker NG = rp(M [p] ∩ KerNG).

So we can assume M to be an Fp-space. Then, by Lemma 4, we have

|Ker NG| = prp KerNG ≡ 1 (mod l) which implies the desired congruence

from the definition of c(l, p).

Remark. We have rpM = rpM
G + rp Ker NG by Lemma 3. So the

conclusion of the above proposition can be replaced by

rpM − rpM
G ≡ 0 (mod c(l, p)),

like in the following results (Propositions 2 and 3).

We next state two propositions which extend slightly the results of

Iwasawa [5], Cornell–Rosen [3] or Cornell [2]. Though the heart of the proof

may be found in their original arguments, we present here an approach via

the direct use of the kernels of norm maps, which seems to us more easily

comprehensible.

Proposition 2. Let G be a group of order n prime to p. Let M be a

finite p-group and also a G-module on which the action of G is non-trivial.

Then we have

rp KerNG ≥ d(n, p).
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Proof. Choose σ ∈ G with minimal order such that the action of σ on

M is non-trivial. Let l be a prime dividing the order of σ. Put H = 〈σ〉/〈σl〉.
Since σl acts on M trivially, M is an H-module and the action of H on

M is non-trivial. (The use of such H is owing to Iwasawa [5].) One can

use Proposition 1 to see rp Ker NH ≡ 0 (mod c(l, p)). If KerNH = {0} then

the norm map NH is injective and consequently M = NHM ⊆ MH ⊆ M .

This means M = MH which contradicts the non-triviality of the action

of H. Thus we conclude Ker NH 6= {0}. It follows from Lemma 2 that

Ker NH ⊆ Ker N〈σ〉 ⊆ KerNG. Hence

rp Ker NG ≥ rp Ker NH ≥ c(l, p) ≥ d(n, p),

which completes the proof.

Proposition 3. Let G be a solvable group of order n prime to p and

M a finite G-module. Then there exists a non-negative integer xl for each

prime factor l of n such that

rp Ker NG =
∑

l|n

xlc(l, p);

therefore we have

rp Ker NG ≡ 0 (mod e(n, p)).

Proof. Since G is solvable, G has the composition series

G = G0 ⊃ G1 ⊃ · · · ⊃ Gt = {1}

such that every factor group Hi = Gi−1/Gi is cyclic of prime order. In view

of the sequence

MG = MG0 ⊆ MG1 ⊆ · · · ⊆ MGt = M,

we write

rpM − rpM
G =

t
∑

i=1

(

rpM
Gi − rpM

Gi−1

)

.

Note that MGi is an Hi-module and further (MGi)Hi = MGi−1 . Therefore,

by Lemma 3 and Proposition 1,

rpM
Gi − rpM

Gi−1 = rp Ker
(

NHi
: MGi → MGi

)

≡ 0 (mod c(li, p)),
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where li = |Hi| = (Gi−1 : Gi). Hence we can take non-negative integers yi

such that

rp Ker NG = rpM − rpM
G =

t
∑

i=1

yic(li, p).

This proves our assertion.

One may notice that Proposition 3 includes Proposition 1. In the rest

of this section, we will extend Proposition 1 in a different direction. Define

a subset ΓGM of M by

ΓGM =
⋂

H

Ker(NH : M → M),

where H runs through all the subgroups of G such that H 6= {1}. Here, even

if the running range of H is restricted to all the cyclic subgroups of prime

order, we have the same set as in the right-hand side of the above formula.

This is confirmed by the fact that if subgroups H1,H2 satisfy H1 ⊆ H2 then

Ker NH1
⊆ Ker NH2

by Lemma 2. It must be also noted that ΓGM becomes

a G-module, as shown by the relation σ Ker NH = Ker NH(σ) for σ ∈ G.

Lemma 5. If (|G|, |ΓGM |) = 1, then |ΓGM | ≡ 1 (mod |G|).

Proof. Let x be a non-zero element of ΓGM . From Lemma 1, it is

enough to show that Gx = {1}. Suppose that there exists σ(6= 1) ∈ Gx. Let s

be the order of σ. It follows from x ∈ ΓGM ⊆ Ker N〈σ〉 that sx = N〈σ〉x = 0;

thus we have x = 0 by the assumption. This is a contradiction.

The next proposition is shown in the same way as Proposition 1 using

this lemma.

Proposition 4. Let G be a group of order n prime to p and M a

finite G-module. Then we have

rpΓGM ≡ 0 (mod c(n, p)).

This is a natural generalization of Proposition 1, because ΓGM is noth-

ing but Ker NG in case G is cyclic of prime order.
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§2. Rank of ideal class groups

Throughout this section, k denotes a finite algebraic number field. We

will apply the results of the previous section to the p-rank of the ideal class

groups. We shall describe the behavior of p-rank for a Galois extension of

k.

Let K/k be a Galois extension of degree n with the Galois group G.

Note that both C(K) and C(K)[p] are G-modules. Furthermore, we can

show that if p does not divide n then C(k)[p] is naturally isomorphic to

C(K)[p]G = C(K)G[p]. Thus, for the usual norm map NK/k : C(K) →
C(k), we have

rp Ker NK/k = rpC(K) − rpC(K)G = rpC(K) − rpC(k).

From this, we obtain Theorems 1, 2, 3 below as consequence of Propositions

1, 2 and 3, respectively. We add that Theorems 2 and 3 improve the results

of [5], [3] or [2].

Theorem 1. Let K/k be a cyclic extension of prime degree l 6= p.

Then we have

rpC(K) ≡ rpC(k) (mod c(l, p)).

Theorem 2. Let K/k be a Galois extension of degree n prime to p.

Assume that rpC(K) 6= rpC(k). Then we have

rpC(K) − rpC(k) ≥ d(n, p).

Theorem 3. Let K/k be a solvable extension of degree n prime to

p. Then there exists a non-negative integer xl for each prime factor l of n

such that

rpC(K) − rpC(k) =
∑

l|n

xlc(l, p);

therefore we have

rpC(K) ≡ rpC(k) (mod e(n, p)).

Next, in order to restate Proposition 4, we define a subgroup B(K/k)

of C(K), for a finite Galois extension K/k, by

B(K/k) =
⋂

F

Ker(NK/F : C(K) → C(F )),
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where F runs through all the fields such that k ⊆ F ( K and K/F is cyclic

of prime degree. Though we may make F run through all the intermediate

fields (6= K), the right-hand side turns out to be the same group as above,

as remarked after the definition of ΓGM . Then Proposition 4 shows the

following general result.

Theorem 4. Let K/k be a Galois extension of degree n prime to p.

Then we have

rpB(K/k) ≡ 0 (mod c(n, p)).

There are several corollaries of Theorem 4. We first present the result

on a cyclic extension which generalizes Theorem 1 naturally.

Corollary 1. Let K/k be a cyclic extension of prime degree l 6= p.

Assume that there is a subfield k0 of k such that K/k0 is cyclic of degree

ld. Then we have

rpC(K) ≡ rpC(k) (mod c(ld, p)).

Proof. Use the identity B(K/k0) = Ker NK/k.

This leads us to the result on the non-l-part of the ideal class groups

in a Zl-extension.

Corollary 2. Let l be a prime different from p. Let k∞/k be a Zl-

extension and kn its n-th layer, that is, [kn : k] = ln. Then we have

rpC(kn) ≡ rpC(kn−1) (mod c(ln, p)),

for n ≥ 1.

Remark. If k is abelian over Q, then there is no interest in applying

this result to the layers of sufficiently large degrees. In fact, Washington [9]

has proved that, in such a case, the non-l-part of the class number h(kn) is

bounded as n → ∞ (see also [10, Ch. 16]).

Next we generalize the result of Masley [7] where the restricted case

that K/k is abelian and moreover rpC(k) = 0 is treated (cf. [3] and [10,

Ch. 10]).
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Corollary 3. Let K/k be a Galois extension of degree n prime to p.

Assume that rpC(F ) = rpC(k) for every intermediate fields k ⊆ F ( K

such that K/F is cyclic of prime degree. Then we have

rpC(K) ≡ rpC(k) (mod c(n, p)).

Proof. We abbreviate (Ker NK/F )[p] to D(F ) for an intermediate field

F of K/k. Then we have rpD(F ) = rp Ker NK/F = rpC(K) − rpC(F ). If

K/F is cyclic of prime degree, then rpD(F ) = rpD(k) by our assumption,

and thus D(F ) = D(k). Hence we find B(K/k)[p] = D(k). The desired

congruence follows from this and Theorem 4.

Remark. Let A be a finite abelian group and m a positive integer. We

define pm-rank of A by rpmA = dimFp(p
m−1A/pmA). Obviously, it is also

given by rpmA = rp(A[pm]/A[pm−1]). Considering C(K)[pm]/C(K)[pm−1]

instead of C(K)[p], we may extend all the results of this section to those on

the pm-rank of ideal class groups. For example, Theorem 2 is generalized as

rpmC(K) − rpmC(k) ≥ d(n, p), if rpmC(K) 6= rpmC(k),

and the conclusion of Theorem 4 is rewritten in the form

rpmB(K/k) ≡ 0 (mod c(n, p)),

for a positive integer m. The other results are also to be modified in the

same manner. Note that c(n, p) is independent of m.

§3. A remark on cyclic extensions of prime degrees of Q

The results mentioned in the previous section are of a nature to restrict

the structure of the ideal class group C(K) of a number field K by those

of its subfields. We now consider the simplest case where K is a cyclic

extension over Q of prime degree l. The set of the class numbers h(K) of all

such fields K is denoted by H(l). We define a set H(l) of positive integers

by

H(l) = {a ∈ N | pvp(a) ≡ 1 (mod l) for all prime numbers p 6= l },

where vp(a) is the additive p-adic valuation of a, that is, the non-negative

integer v satisfying pv|a and pv+16 |a.

Proposition 5. For a prime l, we have H(l) ⊂ H(l).
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Proof. Let h ∈ H(l) and take an arbitrary cyclic extension K over Q

of degree l with h = h(K). Then for any power pm of a prime 6= l, we find

rpmC(K) ≡ 0 (mod c(l, p)) by the “pm-rank version” of Theorem 1. Thus

vp(h) =

∞
∑

m=1

rpmC(K) ≡ 0 (mod c(l, p)),

which means pvp(h) ≡ 1 (mod l). Hence h ∈ H(l).

It seems to us that the converse inclusion is also true, and we would

like to propose the following

Conjecture 1. H(l) = H(l).

Since H(2) = N, the conjecture for l = 2 says that there exists a

quadratic field of which the class number is any given positive integer.

Put Hx(l) = {h ∈ H(l) | h ≤ x} and define Hx(l) similarly. We have

carried out a computer search whether Hx(l) = Hx(l) or not for l = 2, 3, 5

and for several values of x. Using PARI/GP and KASH, we could confirm

the following;

H5000(2) = H5000(2), H283(3) = H283(3), H81(5) = H81(5).

We will illustrate them with some numerical results. First, we have made the

complete list of the class numbers of quadratic fields Q(
√
−m) with positive

square-free integers m up to 107. Any positive integer h ≤ 5000 appears in

the list as a class number except h = 4801 and 4921. A little further search

revealed h(Q(
√
−10074671)) = 4801 and h(Q(

√
−10483871)) = 4921. Next,

to examine the case of the cyclic cubic fields, we have used the polynomial

Fm(X) = X3 + mX2 − (m + 3)X + 1 with m ∈ Q that parameterizes all

the cyclic cubic extensions of Q (cf. [8]). The computer search showed that

all integers h ∈ H350(3) \ {289,337} are covered with the class numbers of

the cubic fields Km defined by Fm(X) = 0 for irreducible fractions m = s/r

where 1 ≤ r, s ≤ 1000. In Tables 1 and 2 we present Km of class number h

which has the least conductor f in the running range of m = s/r. In quintic

case, several types of parametric polynomials with cyclic Galois group of

degree 5 appear in [1, Ch. 5], [4], [6] and others. We could use them to

discover a cyclic quintic field of class number h for each h ∈ H(5) less than

200 with three exceptions. Table 3 shows irreducible polynomials g(X) that

define such fields and their conductors f.
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Table 1: Cyclic Cubic Fields
h m f

1 5/1 7

3 3/2 63

4 11/1 163

7 16/1 313

9 3/8 657

12 31/16 679

13 31/1 1063

16 195/14 1777

19 37/1 1489

21 111/34 1261

25 345/58 7753

27 47/8 3913

28 336/1 4219

31 70/1 5119

36 27/4 1197

37 471/1 8269

39 29/6 1687

43 107/1 11779

48 9/16 2817

49 444/1 7351

52 127/1 16519

57 23/18 4687

61 86/15 13291

63 51/1 2763

64 101/1 10513

67 155/1 24499

73 79/10 9511

h m f

75 59/12 6901

76 163/1 27067

79 146/103 161911

81 73/8 7657

84 37/18 6283

91 205/1 42649

93 116/1 13813

97 77/122 168067

100 136/1 18913

103 139/6 22147

108 126/1 16263

109 89/10 11491

111 114/1 13347

112 142/1 20599

117 156/1 8271

121 239/1 57847

124 284/1 81517

127 121/1 15013

129 407/351 17557

133 200/1 40609

139 322/1 104659

144 127/153 21931

147 31/34 14527

148 277/1 77569

151 283/157 435223

156 149/1 22657

157 28/167 265813
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Table 2: Cyclic Cubic Fields (continuation)
h m f

163 20/119 134989

169 212/1 45589

171 65/6 5719

172 169/36 58477

175 254/1 65287

181 446/139 558787

183 196/1 39013

189 119/8 17593

192 311/121 48769

193 403/1 163627

196 20/121 139429

199 262/257 865087

201 207/1 43479

208 290/1 84979

211 688/149 980689

217 259/1 67867

219 211/1 45163

223 206/1 43063

225 233/1 54997

228 59/6 4867

229 304/1 93337

237 44/215 63763

241 136/167 337633

243 81/94 15561

244 332/1 111229

247 368/1 136537

252 34/155 33313

h m f

256 427/237 991447

259 364/1 133597

268 472/1 224209

271 869/582 5320951

273 198/1 39807

277 367/1 135799

279 822/145 45277

283 163/115 201829

289

291 58/299 122857

292 359/1 129967

300 171/1 29763

301 70/99 113899

304 406/1 166063

307 295/337 1407391

309 330/1 109899

313 463/1 215767

316 395/1 157219

324 89/36 29197

325 343/1 118687

327 119/12 19741

331 5/108 106621

333 39/185 47313

336 707/348 29467

337

343 266/1 71563

349 131/12 23173

https://doi.org/10.1017/S0027763000008072 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000008072


GALOIS MODULE STRUCTURE OF IDEAL CLASS GROUPS 145

Table 3: Cyclic Quintic Fields
h g(X) f

1 X5 + X4 − 4X3 − 3X2 + 3X + 1 11

5 X5 − 65X4 − 6395X3 + 7840X2 − 1625X + 1 275

11 X5 + 4X4 − 70X3 + 135X2 + 54X + 1 191

16 X5 + 16X4 − 274X3 + 817X2 + 178X + 1 941

25 X5 + 1640X4 + 41950X3 − 7043X2 − 15122X + 1 2651

31 X5 + X4 − 4912X3 − 32913X2 + 4053123X + 17302471 12281

41 X5 + X4 − 4024X3 − 73244X2 + 1163776X + 5996224 10061

55 X5 + 49X4 + 452X3 + 1125X2 − 207X + 1 1271

61 X5 + X4 − 8560X3 + 255100X2 + 1951600X − 5058176 21401

71 X5 + X4 − 33388X3 − 1459073X2 + 31681585X 83471

+1537601101

80 X5 + 25X4 − 460X3 + 1605X2 + 285X + 1 1775

81 X5 + 524X4 − 558634X3 + 87180396X2 1671161

+1430815089X − 443695552

101 Not found.

121 X5 + X4 − 5728X3 + 7447X2 + 7652455X − 3749609 14321

125 X5 + X4 − 5592X3 + 32436X2 + 5992704X − 2659392 13981

131 Not found.

151 X5 + X4 − 150036X3 + 30802473X2 − 2034901683X 375091

+34977429477

155 X5 − 1755X4 + 98729X3 − 101785X2 + 3278X + 1 8651

176 X5 + X4 − 5068X3 + 158641X2 − 847031X − 4729247 12671

181 Not found.

191 X5 + X4 − 8844X3 − 72524X2 + 5838896X − 42516736 22111
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