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1. Introduction

In his thesis, A. A. Hussein Omar, motivated by the study of possible shapes of
generic Dirichlet regions for a surface group, made a detailed study for g = 2,3 of the
groups generated by pairs (/*, T) of regular (i.e. fixed-point-free) permutations of order
2,3 respectively and of degree n = 6(2g — 1), such that /IOT is an n-cycle. He observed
that, for g = 2,3, precisely one pair generates what he calls a superimprimitive group,
and raised the question whether such pairs exist for all g, and, if so, whether they are
unique. Our main result is that they do always exist, but that, for large values of g, they
are far from unique. (For details and some motivation for the notation, see [4, 5].)

We begin by constructing pairs (n, T) of prime power degree, dropping the condition
that the permutations should be regular. These pairs are very naturally described by
graphs with edges of two colours. This powerful aid to intuition has been used with
good effect by Stothers [6, 7] and Conder [1, 2] in a context very similar to ours. The
technique seems to have originated in unpublished notes of Graham Higman. We then
obtain regular permutations of degree 6(2g— 1) by taking tensor products of permutations
of prime-power degree.

2. Background

In this section we recall some standard concepts and define superimprimitivity. A
permutation of degree n will, for us, be a group of bijections of the ring Z/n of residue
classes mod n, the permutation a being defined once and for all by the equation

o(r) = r+l.

Occasionally we shall write <xn, in case there is some doubt about the degree.
If m, n are relatively prime integers, we identify Z/mn and the product Z/m x Z/n in the

canonical way. If T , ,T 2 are two permutations of degrees m, n respectively, the permutation
T, x T2 is defined by the formula

(2.1)

In particular we have

fm,=i',«,. (2.2)

•This paper forms part of the Proceedings of the conference Groups-St Andrews 1985.

103

https://doi.org/10.1017/S0013091500018022 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500018022
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Also if fii,fi2
 a r e t w o other permutations of degrees m,n respectively then

(Hi x/i2)o(Tl XT 2 )=(AJIO T I )X( / I 2 OT 2 ) . (2.3)

If T is a permutation of degree n and q is an equivalence relation on Z/w then q and x
are said to be compatible (T is compatible with q or q is compatible with T) if

rqs implies T(r)qr(s). (2.4)

The set of all permutations compatible with q is a group, and any group whose
elements are all permutations compatible with q is itself said to be compatible with q. If
a compatible group is transitive, then all the equivalence classes have the same number
of elements. In this case it is usual to call the equivalence classes blocks and the
equivalence relation a block system. If d is the number of blocks, and d' the number of
elements in each block, then n = da". If either d=\ or d'=\, the block system is called
trivial, since every group is plainly compatible. If there is no non-trivial block system
compatible with a group G, then G is primitive. Otherwise it is imprimitive.

A property completely opposite to primitivity has recently been introduced by
Hussein [4]. G is superimprimitive if, for each factorization n = dd', there is a block
system compatible with G consisting of d blocks each with d' elements. Thus a group of
prime degree is both primitive and superimprimitive. The regular representation of G is
superimprimitive if and only if G satisfies the converse of Lagrange's Theorem. Also
every transitive nilpotent permutation group is superimprimitive. These examples alone
seem to indicate that superimprimitive groups are well worth further investigation. For
the rest of this paper, however, we shall consider only a smaller family of permutation
groups more directly relevant to Hussein's problem.

3. Special superimprimitive groups

Suppose that d is a factor of n. The equivalence relation on Z/n of congruence
modulo d is called a special block system. A group of permutations of degree n is called
a special superimprimitive group if it is compatible with all the special block systems, that
is for d\n and for all geG,

r = s(modd) implies g(r) = g(s) (mod d). (3.1)

The special block systems are plainly the only block systems compatible with the
permutation a, and we therefore have

Proposition 1. If oeG then G is superimprimitive if and only if it is a special
superimprimitive group.

For each n, there is a unique maximal special superimprimitive group SS(n) defined to
be the set of all permutations of degree n compatible with the special block systems. We
now determine the structure of SS(n). In the following theorem, the direct product G x H
of two permutation groups of relatively prime degree m,n respectively, is to be
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interpreted as the set of all permutations

{axx\aeG, zeH}

the product of permutations being defined as in (2.1) (the tensor product).

Theorem 1. If (m, n) = 1, then SS(mri) = SS{m) x SS(n).

Corollary. / / the prime factorization of n is n = p\lp2
2...plk then SS{n) = SS(p\l)x

Proof. If geSS{mn), then g induces a permutation gt of the residue classes modm
and a permutation g2 of the residue classes mod n. Thus g is of the form gl x g2. Since g
is compatible with congruence modulo every factor of m, so is gl9 and similarly g2 is
compatible with congruence modulo every factor of n. Thus SS(mri) is contained in
SS(m) x SS(n). The reverse inclusion is immediate.

The corollary of Theorem 1 shows that we need now only consider the case of prime-
power degree. Consider first the case of a finite set Q. of cardinality n = da". A system of
d blocks each with d' elements can be regarded as a product decomposition

where B has a" elements and the blocks are the "fibres" {a} x B. A permutation g acting
on Q is compatible with this block system if and only if the first coordinate of the g-
image of (a, b) depends only on the first coordinate a; that is, there is a uniquely defined
permutation g* of A such that

g(a,b)=(g*(a),ha(b)) (3.2)

where, for each as A, ha is some permutation of B. The set of all permutations of the
form (3.2) defines the wreath product (exactly as given, in particular, in Marshall Hall's
book [3, p. 81]) so we see that the group of all permutations compatible with this single
block system is the wreath product

Sd.wrSd

where, as usual Sk denotes the symmetric group on k elements. If in particular we take
d = a"=p, where p is prime, we derive

= SpwrSp. (3.3)

A straightforward extension of the argument to n factors yields:

Theorem 2. SS(p") is the n-fold iterated wreath product with itself of the symmetric
group Sp.
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4. Permutation-pairs

A pair (n, x) of permutations of degree n is called a (2,7>)n-pair if

The (2,3)n-pair is called superimprimitive if the group </I,T> which it generates is
superimprimitive, so that, since aeG, by Proposition 1 it is then a special super-
imprimitive group. Thus (fi,x) is superimprimitive if and only if, for d\n, x = y(modd)
implies both n(x) = fi(y)(modd) and x(x) = x(y)(mod'd).

The (2,3)n-pair is called regular if fi and x are both regular permutations. In that case
n must be an odd multiple of 6, say n = 6(2g— 1). (See [4, 5].) In constructing regular
(2,3)n-pairs which are superimprimitive, the following theorem is an essential tool.

Theorem 3. / / (m, ri) = 1, (/ (fiu tj) is a (2,3)m-pair and (fi2, x2) is a (2,3>)n-pair then

(Hi X/i2)T! XT2) (4.1)

/s a (2,3)mn-pair. Moreover, if one of \xx,\i2 is regular and one of xux2 is regular then the
product (4.1) is regular.

Proof. All the assertions, apart from the regularity at the end, follow from (2.2), (2.3).
Now suppose that nx xfi2 is not regular, i.e., it has a fixed point (x,y)eZ/mxZ/n. Then
H1{x) = x and n2(y) = y by (2.1), so neither /i, nor /i2 is regular. The regularity of xx x x2

follows similarly.

Now, for a moment, consider permutations with domain a set Q of n elements, not
initially given the ring structure Z/n. A pair (n, x) of permutations of Q with fi2 = T3 = id
can be represented by a graph with vertex set Q and with edges of two colours;
undirected red edges joining a point of Q to its /i-image if it is not fixed by fi; directed
blue edges joining a point of Q to its r-image, if it is not fixed by T. Points which are
fixed by n are not incident with any red edge, and points which are fixed by T are not
incident with any blue edge. Thus the graph is a union of red edges, no two of which
have a vertex in common, and a set of blue oriented triangles, no two of which have a
vertex in common. Conversely, such a graph always defines a pair of permutations (n, T)
with fi2 = r3 = id.

The pair (fi, T) can be regarded as a (2,3)n-pair if \i o x is an n-cycle. For in this case we
may write n°x = a and pick a vertex v to be the zero-vertex. By associating <f(v) with
the residue-class r(modn), we identify Q with Z/n, and (n,x) now is a (2,3)n-pair.

We denote the graph described above with undirected red edges and directed blue
edges by T(/x, T)—where /x and x are the permutations from which it is derived. There do
not appear to be intuitively simple necessary and sufficient conditions on T for fi ox to
be an n-cycle. However, we shall derive a sufficient condition below which will be
enough for our purpose. When there is no doubt about n,x, we shall simply write F
instead of F(fi, x).
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As a preliminary, we restrict attention to graphs F(/i, T) satisfying the following:

r(/i,r) is connected. (4.2)

No pair of vertices is joined by both a red edge and a blue edge. (4.3)

These are both necessary for /JOT to be an n-cycle, since the first condition asserts that
the group <//,T> is transitive, while the second asserts that n°x has no fixed point.

(4.3) being satisfied, we can construct a graph F t from F by collapsing all blue
triangles to single points. All vertices will have valency 1, 2 or 3. F t will have no loops
by (4.3), and it will be connected by (4.2). A free vertex of F, can correspond either to a
free vertex of F or to a triangle in F; a vertex of valency 2 or 3 in Fj must correspond
to a triangle in F, since two red edges in F cannot have a vertex in common. We shall
refer to Fj as the collapsed graph of the pair (H,T).

Example. Let F t be the graph with two vertices and three distinct red edges joining
them. Then F must consist of two blue triangles with the vertices of one joined in some
order to the vertices of the other. The choice of orientation gives two possibilities for F.
In Fig. la we find n°x=(123456), while in Fig. lb we find /IOT = (12)(34)(56). Thus a
decision whether /IOT is an n-cycle cannot be made, in general, from the study of FL

alone. Unexpectedly, however, we have:

FIGURE 1 Two graphs of degree 6 with the same collapsed graph (on left). Red edges are broken, blue
edges are solid.

Theorem 4. / / F t is a tree, /iot is an n-cycle.

Proof. By induction on the number n of vertices of F. The small values n= 1,2,3,4
yield one graph each satisfying (4.2), (4.3) and these are shown in Fig. 2. The theorem
holds in these cases. We assume therefore that «>4 and that the theorem has been
demonstrated for all smaller values of n. The graph F, is then a tree with nl vertices,
where n, _2 , so it has a free vertex which is the end-point of a single red edge.

In this and the next section it is useful to have a name for vertices which are not end-
points of any red edge in F: we shall call these uncoupled vertices. Those which are not
vertices of a blue edge must be vertices of a single red edge, and are therefore free
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n r r 1 v T

1 • • id id

2 • — -• • — • (12) id

id (123)

(12) (234)

FIGURE 2 Graphs of degree 1,2,3,4, which collapse to a tree.

vertices, so no ad hoc term is needed. Since F is connected no vertex can be both
uncoupled and free except in the trivial case n= 1.

Returning to our inductive proof, the free vertex of the collapsed graph F,
corresponds in F either

Case 1 to a triangle vtv2v3 with vY joined by a red edge to a vertex w in F while v2

and t;3 are uncoupled; or

Case 2 to a free vertex t^ joined to a vertex w of F by a red edge.

Let F* denote the graph obtained from F by deleting, in Case 1, the triangle vtv2v3 and
the red edge wvx; in Case 2, vx and the red edge vtw. Then F* satisfies (4.2), (4.3) and
we have a pair of permutations (n*,x*) of its vertex set. The corresponding collapsed
graph (F*), is obtained from F t by deleting a single free vertex and the edge incident
with it, so it is again a tree. By the induction hypothesis, ft*or* is a single cycle which
can be written (/Iwjw), where A is a sequence giving all the vertices of F*, except Wj.vv,
in some order, and w, = T~1(W) = T*~1(W). We then have the two cases illustrated in
Fig. 3.

If we write a = fioz and a* = fi*ox*, then each of the vertices which occur in the
sequence A above has the same image under a and under a*, so the sequence Awt

occurs in the cycle representation of a. By direct study of Fig. 3, we find, in Case 1,

v3, <r(vi) = w, a(w) = a*(w), ^ ( / I W J

and in Case 2,

<Kw1) = u1, a(Vi) = w, a(w) = a*(w), a = (Aw1vlw).

In both cases //or is a single cycle, and the theorem is proved by induction.
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v/,

T
FIGURE 3

Theorem 4 immediately yields (2,3)n-pairs for every n. For future use we describe the
standard (2,3)n-pair. Its graph is a sequence of similarly placed blue triangles each
directed clockwise, with the right-hand base vertex of each triangle joined by a red edge
to the left-hand base vertex of the next, and with one free vertex joined to the left base
vertex of the first triangle if n= I(mod3), two free vertices joined by red edges to the left
base vertex of the first triangle and the right base vertex of the last triangle if
n = 2(mod3). To be quite specific, the involutions y. are given below:

n = 3m {n-l,5). ..(2m + 2,2m-\)

In each case we can compute x from the relation x = n°o. See Fig. 4.

A A.-..1 An = 3m

n = 3m+l

n - 3m+2 i g \ —

FIGURE 4 The standard graphs.
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5. Superimprimitive (2,3)n-pairs of prime power degree

In this section we construct superimprimitive (2,3)n-pairs when n is a power of an odd
prime. Such pairs cannot of course be regular, since the degree is not divisible by 6, but
Theorem 3 will enable us to use them as building blocks to construct regular pairs.
There is no superimprimitive pair, regular or otherwise, if n is divisible by 4, because
there is no superimprimitive (2,3)4-pair.

The prime 5 will need to be treated separately, because there is only one uncoupled
vertex in the graph of the unique (2,3)5-pair. For all odd primes other than 5, the
standard (2,3)p-pair has at least two uncoupled vertices; and for p = 3, the graph,
consisting of a single blue triangle, has no free vertex. This proves Case m = l of the
following theorem:

Theorem 5. / / p is an odd prime different from 5, there is a superimprimitive (2,3)pm-
pair whose graph has at least two uncoupled vertices and such that its collapsed graph is a
tree. Moreover, if p — 3, the permutation x is regular (or, what is the same thing) the graph
has no free vertex.

Proof. Make the induction assumption that we have a (2,3)pra-pair (/im, rm) whose
graph Fm has two uncoupled vertices, v,w, say, and with collapsed graph ( r m ) t a tree
and such that (fim, rm) is superimprimitive.

The graph Fm + 1 is then constructed by adjoining p—1 red edges to the disconnected
graph which is the disjoint union of p copies of Fji1, i=\,...,p of Fm. For each i and for
each vertex x of Fm let x(1) denote the vertex of F^' corresponding to x. Define the map <f>
from the set Km + 1 of vertices of this union to Vm, the set of vertices of Fm, by <p(xM) = x.

The graph Fm is obtained by adding red edges

(w(2), w(3)), (w<4), w<5'),..., (w<p- u , w(p))

to the union F ^ ' u ^ - u F ^ 1 . F m + 1 and therefore (Fm + 1)1 is connected. To prove that
( r m + 1)j is a tree we verify that the number of vertices exceeds the number of edges by 1
(see [8, p. 45, Theorem 9A(iii)]). Each (F^)! is a tree. In their union the total number of
vertices exceeds the number of edges by p. Adding p — 1 edges reduces the deficit to 1
a n d ( F m + 1 ) , is a tree.

Next we show that (/im+1,Tm+1) is superimprimitive. Since each red edge in F m + 1

joins a vertex x(1) to either (^m(x))(1) or (/im(x))(1±1) if x is v or w; and since each blue edge
comes from a blue edge in one of the Fj^, so that

we deduce:

The sets {</>~'(x)|xe Vm) form a block system compatible with the permutations
A*m+i>Tm+i- These blocks are in one-to-one correspondence with Vm and the permutations
Vn,+ i,*m+i induce the permutations nm,xm of Vm.
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Since (nm,TJ is superimprimitive, it follows that, for l ^ r ^ m it has a system of p'
blocks {B1,...,Bpr} with which it is compatible. Then {(p~l{Bl),...,(l)~

l(Bp,)} is a block
system compatible with (/im + i,Tm+1), which is therefore superimprimitive.

If p = 3, none of the F£ has a free vertex, so, since only edges and no vertices are
added to make Fm + 1 5 it follows that F m + 1 has no free vertex.

Finally, F m + 1 has the uncoupled vertices w(1), v{p) and the proof of Theorem 5 by
induction is complete.

Theorem 6. There is a superimprimitive (2,3)5m-pair whose graph Fm has at least one
uncoupled vertex and at least one free vertex, and such that its collapsed graph is a tree.

Proof. We give only the inductive construction of the graph which yields the desired
pair. The proof that it has the properties claimed is similar to the proof of Theorem 5
and is omitted. Suppose then that Fm has been constructed, that v is a free vertex and
that w is an uncoupled vertex. Then F m + 1 is obtained by adding to the disjoint union of
five copies Fj^'u F^ 'u- - - u F^> of Fm two new red edges (w(1), w(2)), (w<4), w(5)) and a
new blue triangle (v{2\vl3),vw). Fm + 1 then has the uncoupled vertex w(3) and the two
free vertices t>(1), v{5). The induction is started off with the standard pair (2,3)5 described
at the end of Section 4.

6. Regular superimprimitive pairs

Let n = 6(2g— 1), where n has the prime factorization

where a , ^ l and 55^p2<p3< ••• <pk are the prime factors, other than 2,3, of 2g—l.
Let (^o>T0) = ((12),id) of degree 2, let (/ii,?,) be a superimprimitive (2,3)3<*,-pair with

T, regular, and for r = 2,...,k, let (/ir,rr) be superimprimitive (2,3)p«r-pair. Finally, let

and

T = T 0 X T j X ••• X Zk.

Then, by Theorem 3, (/i, T) is a regular superimprimitive pair.
Thus regular superimprimitive pairs exist for every value of g, as Hussein surmised.

Even using our construction, however, which certainly does not yield all possible pairs,
we can see that the superimprimitive pair is by no means unique. Thus if we begin with
a prime p and the standard graph has more than two uncoupled vertices, we have a
choice of different pairs of vertices v, w to start off the induction. Also there is no reason
why we should not use new blue triangles in the building process (as was done for p = 5)
whenever p is a prime larger than 7 and congruent to 2 mod 3. In addition to this, if the
degree is not very small, we have a choice of many possible trees for the graph F, other
than the rather dull one associated with the standard graph. In addition to the
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uniqueness noted by Hussein for g= 1,2,3, there is only one regular superimprimitive
pair for g = 4. For g = 6, however, uniqueness no longer holds. To see this, note that, in
addition to the standard graph of degree 11, we have the two distinct graphs shown in
Fig. 5. There are also more than one regular superimprimitive graphs for g = 5, but it is
slightly more difficult to illustrate these, since the prime power constituent 27 = 33

occurs.
All but one of the graphs with 11 vertices give pairs (n,z) which generate An. The

remaining one is the first graph shown in Fig. 5 which generates the exceptional
permutation representation of PSL(2,11) (see [9, p. 286, Theorem 262]). The Mathieu
group Mlv does not appear. These facts have been verified using the Cayley program
on the University of Pittsburgh VAX/VMS. Our thanks to Dr John Cannon for making
the software available and to John Burkhardt for getting it established on the computer,
and for his patience in correcting my first stumbling attempts to use it.

FIGURE 5 Two distinct graphs, other than the standard graph, of degree 11.

Note added in proof. Since writing this paper, I have been shocked and saddened by
the news of Hussein's sudden death. The concept (and the name) "superimprimitive" is
his invention, and I hope this paper helps it to live on.
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