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Abstract. An extension of the method devised by Monaghan and Roxburgh (1965) for rapidly 
rotating polytropes is used to study the structure of the primary component of a synchronous close 
binary system. Results are presented for polytropes of index 1.5, 2.0, 3.0, 4.0 and 4.9. We conclude 
that the extended Monaghan and Roxburgh method can be applied to real stars which are perturbed 
by both tidal and rotational forces. 

1. Introduction 

Recently there has been considerable work by a number of groups on the evolution 
of stars in binary systems (Plavec, 1968, and references therein). The results have been 
obtained by using the standard spherically symmetric equations of stellar structure 
with special boundary conditions (Plavec, 1968), and it was also explicitly assumed 
that the effects of the centrifugal and tidal distortions are small, and should not 
seriously change the overall picture of binary star evolution. 

It is the purpose of the present investigation to examine this assumption by calculating 
detailed models which will include both distortion terms. In this our first communi
cation, we will consider the problem of close binary polytropes as they should give 
an estimate of the accuracy which can be expected from the method we have chosen. 

In a famous series of papers Chandrasekhar (1933a, b, c, d) developed a first-order 
perturbation analysis which he applied to the rotational problem, the tidal problem, 
and the binary star problem. Unfortunately when the separation between the com
ponents is only a few times the undisturbed radius of the primary (i.e. more massive) 
component, Chandrasekhar's method no longer gives accurate results near the surface 
of the polytrope unless modified (Monaghan, 1967; Martin, 1970). Since then there 
has been very limited progress in this direction (Takeda, 1934; Kuiper, 1941; Kopal, 
1959; Orlov, 1961). 

In the last five years several methods for finding exact solutions to the rotational 
problem have appeared (James, 1964; Stoeckly, 1965; Ostriker and Mark, 1968). 
However these methods are cumbersome, require large amounts of computer time, 
and are difficult to apply to real stars. For these reasons, Monaghan and Roxburgh 
(1965) (hereinafter referred to as MR) developed a simple perturbation method which 
gives fairly accurate results for rapid rotation but required much less computer time 
than the exact treatments. This technique was then used by Roxburgh et al. (1965), 
Faulkner et al. (1968), Sackmann (1968), and Sackmann and Anand (1970) to deter
mine the structure of rapidly rotating stars. 

The MR technique for rotating polytropes can easily be modified to study binary 
systems. This is accomplished by following the analysis of MR but including the tidal 
potential as well as the centrifugal potential. Results were obtained for polytropic 
models of the primary with indices 1.5, 2.0, 3.0, 4.0, and 4.9. 
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2. Basic Equations and Method of Solution 

Consider two gaseous masses in hydrostatic equilibrium which are revolving in circular 
orbits about their common centre of mass. Spherical polar coordinates (r, 6, <f>) are 
introduced with origin at the centre of mass of the primary and the azimuthal angle (j) 
is measured from the line joining the centres of mass of the two components. It is 
assumed that the rotation axis of the primary is perpendicular to the plane of the 
orbit and 9 is taken to be the colatitude. 

The equation of hydrostatic equilibrium for the primary is 

— = VK + VFT + V 
Q 

Mi 
i«V(l - P2(/i)) ?— Rco2rPl (X) (1) 

where Fis the gravitational potential of the primary of mass Mu Vr is the tidal poten
tial of the secondary of mass M2, (o is the uniform angular velocity of the primary 
about its rotation axis, and synchronism between rotation and revolution is assumed, 
R is the separation of the mass centres, and pi and X are equal to cos0 and sin0 cos<£ 
respectively. The term in square brackets is the centrifugal potential. The gravitational 
and tidal potentials must satisfy Poisson's and Laplace's equations, respectively. It is 
assumed that the primary can be represented by a polytrope of index n, and the fol
lowing dimensionless variables are introduced, 

Q = QCCT" , a = (02I2TIGQC , 

r = ax, a2 = KQ^'1 (n + \)jAnG, K ' 

These variables can be substituted into Equation (1) and with the aid of Poisson's 
and Laplace's equations we obtain 

V L , ^ = -*" + «• (3) 
The form of the tidal potential to be used in this investigation has been derived by 

Chandrasekhar (1933b) to order (ajR)5 where a is the mean radius of the secondary, 
4 

GM2 V / r V , , 
VT = ~ ) I - J Pj (A) + constant. (4) 

To obtain the solution we divide the polytrope into two regions. In the inner region 
a is obtained by employing a first order perturbation analysis, whereas in the outer 
region it is assumed that the local gravitational potential is determined only by the 
mass contained in the inner region. The two solutions for a are then matched on a 
spherical interface. 

In the inner region the perturbing forces are small compared to the local gravita
tional force and following the method outlined by Chandrasekhar (1933a) and MR, 
a is expanded in a power series and only first order terms are retained, i.e. 

a = d(x) + aV(x, n, 4>). (5) 
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Furthermore we develop V in terms of a series of surface harmonics, 

V = Mx)+t *J(X)SJ(H,<I>), (6) 

In the outer region the technique is somewhat different. First the equation of hy
drostatic equilibrium is integrated 

K(n+ \)Qllna= K + > 2 a V [ l -P2( /x)] 
4 

Mi •> GM2 Y fa\J ,. / x Rco2axP. (X) + ) xJP:(X) + constant. (8) 

J = I 

The angular velocity is related to the masses and their separation by Kepler's law 

J = I 

where the S- (/i, <ft) must satisfy 

d 

for each j . 

Op. _ 
+ 

{Ml+M2)i 
W ° R3 0 + £ ) ' (9) 

where the quantity e is of order (d/R)5 (Martin, 1970). Since a>2 appears only in terms 
of order (d/R)2, the E term will not enter the subsequent analysis which is consistent to 
order (d/R)5. 

In this region we assume that the density is so low that its contribution to the total 
mass is negligible and hence the gravitational potential in the outer region is deter
mined by the mass contained in the inner region. This approximation improves with 
increasing polytropic index. Thus the gravitational potential in the outer region is the 
Laplace solution. 

•> + t + "> "— (10) 

where jS0 and jSj are constants, the S] (,u, (j)) satisfy the equation for surface harmonics 
and 0 equals V/K (n + \)p\ln. 

The constants and the forms of the surface harmonics are obtained by matching the 
two solutions on a spherical interface at radius x = xf. The method used by MR to 
obtain the fitting point is to find that value of x for which the errors involved in the 
inner and outer solutions are of the same order of magnitude. In the final analysis 
their values of xf were also influenced by the existing tables of the required functions. 
In any event the results should not be extremely sensitive to the position of the fitting 
radius, otherwise the method is unworkable. The validity of this assumption will be 
examined later. For convenience we have chosen the same values of xf as MR. 

The continuity conditions show that both Sj (/i, <p) and S'j (yu, (j)) involve only the 
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spherical harmonics P2{n) and Pj(k) with coefficients A2 and Cy say, for the Sj (/A, (f>) 
and similarly B2 and Dj for the 5j(jU, <p). Our final solution for the inner region is 

a = 9 + <x\p0 + aA2\ji2P2{p) + a £ Cj\j/jPj(k), 
j = 2 

(11) 

and for the outer region 

Po a/*i , «/?2 _ ( x , 

J = 2 

(A) 
+ g«x2[l-P200] 

+ 
1 M, 

2 Mi + M2 
J = 2 

(A) + v0 + av,. (12) 

The constants are defined by: 

p0=-8'x2, j 8 , = - - x V ( . , 

where 

v0 = B + 0'x, Vj = \l/0 + x\j/'0 - \x 

A, 
6(3xjj2 + xij/2y 

B,= — 
xs fx\j/'2 — 2\jj2 

6 \x\j/'2 + 3i^2/' 

c = Ml (-
1 Mx + M2 \R 

3-2 

Cj, 

C' = 2 

"_(2i^l)x^" 

(j + 1) ij/j + xxji'j 

where 

M2 fa 
J ~ Wx+M2 \R 

J-2 

X 
d, = -J 2 

2j + i r 

the prime denotes differentiation with respect to x,j—2, 3, and 4, and the constants 
are evaluated at the fitting radius. New integrations were obtained for all functions, 
and their values, as well as those of the constants, are given in Table I. 

For convenience a further simplification is introduced. It was shown by Chan-
drasekhar (1933c) that the parameters a, q, and rj where r\ = Rja and q = M2jM{ are not 
independent for synchronism but are related by 

2(\ + q)x\\d\\ 
WW = 

d0. 

which is correct to first-order in a; the subscript 1 denotes the value at the Emden 
radius. 
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TABLE I 
Function values and constants at the fitting radius 

n 
Xf 
9 
9' 
Wo 
yo1 

yi 
V21 

W3 
yzl 

Wi 
I//41 

Az 
Bz 

Po 
h 
Vo 
VI 

Cz 

C3 

Ct 

d2 

d3 

dA 

1.5 
3.2 
1.0455 (-1) 

-2.5875 (-1) 
1.0423(0) 
4.9660 (-1) 
4.3134(0) 
1.0255(0) 
1.7411(1) 
1.1811 (1) 
6.3560(1) 
6.7034(1) 

- 5.2604 (-1) 
-1.8427(1) 
2.6496 (0) 
5.8375 (0) 

- 7.2345 (-1) 
-2.4886(0) 
1.5781 (0) 
1.0675(0) 
8.8644 (-1) 
5.5282(1) 
2.3084 (2) 
1.3130(3) 

2.0 
3.6 
1.1525 (-1) 

- 1.8269 (-1) 
1.2961 (0) 
6.7495 (- 1) 
4.5360 (0) 
1.2617(0) 
2.2090 (1) 
1.4617(1) 
9.3676 (1) 
9.2461 (1) 

- 5.9504 (-1) 
-2.5151(1) 
2.3676 (0) 
6.8047 (0) 

- 5.4242 (-1) 
- 2.7541 (0) 
1.7851 (0) 
1.1583(0) 
9.4333 (- 1) 
7.5452(1) 
3.7936 (2) 
2.6519 (3) 

3.0 
5.0 
1.1082 (-1) 

-8.0126 (-2) 
2.7202 (0) 
1.2512(0) 
6.5108(0) 
1.9891 (0) 
4.9772 (1) 
2.7318(1) 
3.0845 (2) 
2.3611(2) 

- 7.0674 (-1) 
-5.4356(1) 
2.0032 (0) 
1.0384(1) 

-2.8981 (-1) 
- 3.5233 (0) 
2.1202(0) 
1.3033(0) 
1.0329 (-1) 
1.6307(2) 
1.4809(3) 
1.9105(4) 

4.0 
8.0 
1.0450 (-1) 

-2.7957 (-2) 
8.1810(0) 
2.3563 (0) 
1.3843(1) 
3.1887 (0) 
1.8284(2) 
6.6699 (1) 
1.8700(3) 
9.2231 (2) 

- 7.9557 (-1) 
-1.7732(2) 
1.7889(0) 
1.4862(1) 

-1.1910 (-1) 
- 4.4683 (01 
2.3867 (0) 
1.4167(0) 
1.1018(0) 
5.3197 (2) 
1.2384(4) 
4.0729 (5) 

4.9 
97.4 
7.6465 (-3) 

-1.8179 (-4) 
1.5688(3) 
3.2434 (1) 
1.7738 (3) 
3.6417(1) 
3.0095 (5) 
9.2691 (3) 
3.8377 (7) 
1.5760(6) 

- 8.9145 (-1) 
- 8.8761 (4) 
1.7246(0) 
2.6347 (2) 

-1.0060 (-2) 
-1.5017(1) 
2.6743 (0) 
1.5352(0) 
1.1726(0) 
2.6628 (5) 
7.3862 (8) 
3.1498 (12) 

The surface of the polytrope is specified by <r = 0. If <r = 0 and simultaneously 
dajdx = Q at ^ = 0, k= 1, then the effective surface gravity at the equator in the direc
tion of the secondary is zero. The result is the so-called critical configuration. 

The smallest equipotential surface (in volume) for which the gradient of the total 
potential is zero on the line joining the centres of mass is known as the inner Lagran-
gian surface or contact surface. Hence it is obvious that the primary lobe of the 
contact surface and the critical configuration are identical in our theory. 

3. Discussion of Results 

The parameters (xc, t]c) appropriate to the critical configuration can be obtained for 
various q by solving <r = 0 and dajdx = Q at n = 0, X= 1 simultaneously. When q is zero 
our equations reduce to those of the rotational problem and in Table II the critical 
values of xt and ac are given, and, for comparison, the values of MR and James (1964) 
are also listed. The values of ac differ markedly for the case n = 1.5 and the reason for 
this behaviour can perhaps be understood because the errors involved in the two-zone 
approximation for this polytropic index are the largest of all five cases. Moreover the 
difference between the two values obtained by the same method can be explained by 
noting that the constants a2 (of MR) and B2 of the present paper are not equal although 
they should be. It appears that the value of ^(xj) used by MR is incorrect. A similar 
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TABLE II 
Comparison of the critical models of Monaghan and Roxburgh (MR), 

« 
Xe 
Xe (MR) 
Xe(J) 
Xe/Xl 
a 
a (MR) 
a (J) 

1.5 
5.3687 
5.24 
5.3585 
1.4694 
3.7544 (-
4.10 (-
4.3624 ( -

-2) 
-2) 
-2) 

the present investigation 

2.0 
6.3748 
6.33 
6.307 
1.4645 
1.9439 ( - 2 ) 
1.99 ( - 2 ) 
2.1604 ( - 2 ) 

3.0 
10.1370 
10.12 
-

1.4698 
3.9304 ( -
3.95 ( -
3.932 ( -

3) 
3) 

•3) 

4.0 
22.3408 
22.26 
-

1.4922 
3.2203 ( 
3.27 ( 

-

James (J) and 

- 4 ) 
- 4 ) 

4.9 
257.2197 
-
-
1.5004 
2.0269 ( - 7 ) 
-
-

situation exists for « = 4.0 but the effect on the critical values of jce and ac is small 
because of the manner in which B2 enters the equation. 

The accuracy of the results improves with increasing polytropic index since the 
amount of mass being neglected becomes vanishingly small. A similar behaviour is 
expected in the binary star problem. 

A sample of the binary results is given in Table III for q = 1.0 and 0.1 where we list 

TABLE III 
Dimensions of the critical primary for different n and the corresponding Roche surface 

It 

XclVc 

ydic 
Zc/r/e 
Wc/tfc 

n 
Xc/tlc 

ydvc 
Ze/tlc 
Wc/tjc 

1.5 
0.5333 
0.3832 
0.3601 
0.4258 

1.5 
0.8305 
0.6550 
0.5598 
0.6917 

2.0 
0.5317 
0.3941 
0.3622 
0.4247 

2.0 
0.8262 
0.6530 
0.5625 
0.6884 

4 = 1.0 

3.0 
0.5303 
0.3851 
0.3647 
0.4237 

4 = 0.1 

3.0 
0.8217 
0.6508 
0.5651 
0.6848 

4.0 
0.5296 
0.3851 
0.3650 
0.4231 

4.0 
0.8193 
0.6493 
0.5648 
0.6828 

4.9 
0.5291 
0.3848 
0.3648 
0.4227 

4.9 
0.8183 
0.6485 
0.5642 
0.6820 

Roche 
0.5000 
0.3742 
0.3562 
— 

Roche 
0.7175 
0.5961 
0.5345 
-

the principal dimensions of the Roche primary and those obtained in the present 
work. For n = 4.9 the largest differences, x 6% for q = 1.0 and « 14% for q = 0.1 occur 
in the value of xjric which appears to be quite sensitive to the relative importance of 
tidal and centrifugal forces, particularly for small q. The differences in the other radii 
are somewhat less. The fraction of these differences resulting from errors intrinsic to 
the method is difficult to estimate for all cases. However for q= 1.0 and for all n, 
xjrjc should equal one-half exactly. It might appear that the difference in xjr]0 

between the n = 4.9 model and the Roche model is a result of our assumption that the 
secondary can be represented by a mass point (i.e. we neglect terms of order (d/R)6), 
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in addition to the use of the MR approximation scheme in the primary. However the 
largest part of this difference arises in the truncation of the expansion of \\r' (Equation 
(4), Chandrasekhar 1933c) aty'=4, because it is assumed that djR is approximately 
the same size, or larger, than r/R. For the surface radii of the critical models this is 
not necessarily true, especially in the direction of the secondary. Reference to section 
III.3 of Kopal's monograph (Kopal, 1959) shows that r/R can be approximately 3 
times larger than djR for a mass ratio of 0.1. In the expansion 

J = 0 

the summation should be continued until (r/R)J is of the order of (d/R)6. With this 
correction the dimensions of the n = 4.9 polytrope and the Roche model agree to 4 
significant figures, and in general, for 4.9^«>1.5 the differences in radii between 
polytropes and the Roche model are less than 1%. A complete second-order theory 
has been derived by Martin (1970) which reduces these differences by still another 
factor of 2. However we feel that such accuracy is not necessary in the calculation of 
stellar models when the errors in the input data (e.g. opacities) can be much larger. 

The effect of changes in the fitting radius (e.g. + 10% of the values previously quoted) 
has been investigated. In general it seems that an increase of the fitting radius intro
duces a smaller change in the results than does a decrease of xf and this shows that 
the results are more sensitive to the mass approximation than to the first-order ex
pansion. In more quantitative terms for the rotating case a 10% increase in xf results 
in an increase of «0.6% in the critical value of xe for n=l.5 and this decreases to 
« 0.2% for n = 4.0. The changes in ac are larger and vary from «4%for«=1.5 to ~l% 
for « = 4.0. When xf is decreased by 10% the changes are « 3 times larger than those 
changes which occur when xf is increased. As expected the changes decrease as n 
increases. In the binary case similar variations were obtained, with the percentage 
change in the separation being larger than the change in xt. 

In conclusion, we feel that small changes in the fitting radius will result in only 
minor variations of the critical parameters. It also appears that it is better to overesti
mate the fitting radius than to underestimate it. 

4. Conclusion 

Since our principal aim is the study of real binary stars rather than polytropes, the 
underlying purpose of the present investigation has been to determine whether the 
extended Monaghan-Roxburgh method is capable of treating such a problem. Hence 
our discussion of the detailed structure of close binary polytropes has deliberately 
been brief, but a complete and more accurate treatment will appear elsewhere (Martin, 
1970). 

Encouraged by the results of the present investigation we are extending this method 
to study the structure of real binary stars. These models will include detailed opacities 
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and energy generation rates and where necessary we will allow for radiation pressure, 

partial electron degeneracy, and convective envelopes. The main sequence systems 

will be discussed in the second paper of this series. 
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Discussion 

Roxburgh: When we did similar calculations several years ago I do not recollect any difference 
between the Monaghan and Roxburgh paper and the binary work by Durney and myself. The error 
for the n = 4.9 case seems enormous; you seem to be saying that the quadrupole moment of such a 
centrally condensed polytrope is very large - this I find difficult to accept. Since you can make the 
error in the approximation technique very small for this case you should be able to calculate the 
structure to a high degree of accuracy. The external potential can be expanded as a power series at the 
fitting point and keeping terms up to and including the fourth power should give an accuracy of much 
better than 1 % since the fitting point is so far inside the polytrope that r/R<^ 1 so that (r/7?)6<^ 
0.01. All coefficients should be known to a high degree of accuracy, the quadrupole moment should be 
very small and you should reproduce the Roche model results. 

Jackson: I have also calculated some models for close binary members using the same method. 
They were Cowling models, which include the opacity and nuclear energy generation as simple 
power laws. My results agree with those presented yesterday by Dr. Thomas. They show that the 
reduction in luminosity is due almost entirely to rotation and that the increase in volume is due mostly 
to rotation, with only a small contribution from the tidal force. 
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