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Abstract. We introduce an extended 3D numerical simulation study of Reynolds stress models
of stellar convection and probe fluxes as well as mean temperature gradient profiles.
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1. Introduction and motivation
To account for the non-local nature of turbulent convection numerous models have

been proposed. The Reynolds stress approach is the most systematic one among them
(cf. Canuto 1993) and predicts lower order moments of the ensemble averaged fluctuations
of velocity, temperature, and density around their mean values as functions of location
and time. As the hydrodynamical equations are non-linear, moment expansions yield an
unclosed hierarchy of equations. Closure approximations truncate the hierarchy at third
or fourth order. It has been subject of a long-standing debate, whether such approxima-
tions can be made for a physical parameter space large enough to avoid tuning of closure
‘constants’ for each case and whether they provide predictive capability beyond integral
quantities (stellar radius, depth of a convective zone, etc.). Systematic studies have re-
mained small in number. The most extended one has been published by Chan & Sofia
(1996), but focused on consistency tests of individual approximations. Grossman (1996)
used particle simulations which contained their own approximations to the hydrodynam-
ical equations. In Kupka (1999) solutions of a closed set of moment equations (Canuto &
Dubovikov 1998 combined with results from Canuto 1992, 1993) were compared to 3D
numerical simulations published in Muthsam et al. (1995, 1999). While implications were
promising for thin convection zones dominated by radiative transport (as in A-stars and
hot DA/DB white dwarfs, see Kupka & Montgomery 2002 and Montgomery & Kupka
2004), their relevance for deep, quasi-adiabatic convection zones as in our Sun remained
unclear. Here, we present results from an extended study of Reynolds stress convection
models using numerical simulations for a much wider range of physical parameters aimed
at probing the models and their approximations for different types of convection zones:
shallow and deep, coupled and isolated. We first focus on fluxes and mean structure.

2. 3D numerical simulations as a test case
We have performed direct numerical simulations of turbulent convection assuming

idealised microphysics. This includes a perfect gas equation of state (γ = 5/3), prescribed
radiative conductivities (time independent piecewise quadratic functions of depth), and
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a cartesian geometry with a constant, downwards pointing gravitational acceleration.
Horizontal boundary conditions are periodic while vertical ones are closed and stress-
free with a constant energy flux imposed at the bottom and a constant temperature
at the top. Radiative transfer is treated in the diffusion approximation. We explicitly
prescribe viscous dissipation through a fixed Prandtl number Pr. Thus, small-scale shear
instabilities with length scales <10% of the width of a downdraft are suppressed. In most
‘large-eddy simulations’ (e.g., solar convection simulations with realistic microphysics)
these remain unresolved, too (damped by numerical viscosity or a subgrid-scale model).
Configurations include a convection zone embedded between two stable layers as well as
two convection zones separated by a stable layer inbetween and another one at the bottom
of the simulation box. Unstable zones of various sizes (1 – 3 pressure scale heights) and
convective efficiencies (peak enthalpy fluxes from 25% to ∼100%) are simulated. Early
simulations with Pr = 1 have used a box with 72×50×50 grid points, while more recent
runs for Pr = 1 and 0.25 have used a box with 125 × 100 × 100 points. Companion runs
with Pr = 0.1 are based on grids with 160×140×140 points (first coordinate denotes the
vertical component). This way Rayleigh numbers Ra between 105 and 107 are achieved.

After thermal relaxation of the simulations horizontal averages were computed for the
lower order moments of velocity, temperature, and pressure and some of their gradients.
The horizontal averages were averaged for 10 to 100 turn-over times of the flow to obtain
convergence to a statistically steady state. This was equivalent to ∼103 to ∼104 sound
crossing times or ∼0.1 to ∼1 thermal time scales. Such long runs were necessary due to
the stably stratified layer at the bottom of the domain. For solar granulation relaxation
can be achieved in a small fraction of the thermal time scale, as it becomes irrelevant
because of quasi-adiabatic stratification down to the bottom of the simulation box.

3. Configurations and models studied
In Fig. 1 we show results for ‘model 3J’ from Muthsam et al. (1995) (cf. Kupka 1999).

Its convective zone is inefficient (enthalpy flux <25% of the total flux) and just 1 pressure
scale height (Hp) deep, but the temperature gradient is close to the adiabatic one (its
most important difference to envelopes of A-stars and hot DA/DB white dwarfs). The
second case shown in Fig. 1, ‘model 155X’, has a 3Hp deep, efficient convection zone
(in terms of fluxes and temperature gradients) and a large super-adiabatic peak (as in
the Sun). Two more cases were shown at IAU S239. Here, the direct averages from the
simulations are compared to self-consistent solutions of Reynolds stress models computed
with a modified version of the code of Kupka (1999). The model equations are those
suggested by Canuto & Dubovikov (1998) (CD98) with extensions taken from (Canuto
1992, 1993, 1997) as in Kupka (1999) and Kupka & Montgomery (2002) (KM2002). The
cases shown in Fig. 1 assume different approximations for third order moments (TOMs)
and pressure fluxes (〈p′w〉). They include the down-gradient approximation (DGA; cf.
also Xiong 1978) and the full dynamical equations for the TOMs (CD98, as in KM2002)
with and without pressure fluxes (taken from Canuto 1993, 1997), and the intermediate
model from (Kupka 1999). The local limit model shown is also taken from CD98.

4. Discussion of results and conclusions
Compared to the local limit solution the Reynolds stress models provide major im-

provements when predicting convective fluxes. As the latter are negative in the over-
shooting layers, the temperature gradient in adjacent stable layers becomes closer to the
simulation averages. The accuracy of the match depends also on how the pressure fluxes
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Figure 1. Super-adiabatic temperature gradient (lefts panels) and relative convective flux
(right panels) for case ‘3J’ (top row, only central region shown) and ‘155X’ (bottom row).

and third order moments (TOMs) are modelled. It is found that the temperature gradi-
ent inside the convection zones can become sub-adiabatic, even for the DGA, although
not for the TOM model used in Kupka (1999). Since this is resolved, if contributions
from 〈p′w〉 are accounted for, pressure fluctuations and other compressibility effects can-
not be neglected. The cases in Kupka & Montgomery (2002) and Montgomery & Kupka
(2004) had temperature gradients far from adiabatic, hence this problem did not appear,
although it should be expected for the solar case (see also Kupka & Muthsam 2007a,b).
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