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PSEUDO-INTEGRALITY 

DAVID F. ANDERSON, EVAN G. HOUSTON, MUHAMMAD ZAFRULLAH 

ABSTRACT. Let R be an integral domain. An element u of the quotient 
field of R is said to be pseudo-integral over R if ulv Ç Iv for some nonzero 
finitely generated ideal / of R. The set of all pseudo-integral elements forms 
an integrally closed (but not necessarily pseudo-integrally closed) overling 
R ofR. It is shown that (R[X]) = R[X], where X is a family of indeterminates; 
pseudo-integrality is analyzed in rings of the form D + M; and an example is 
given to show that pseudo-integrality does not behave well with respect to 
localization. 

Introduction. Throughout this note, R will be an integral domain with quotient field 
K. We wish to introduce and study a new type of integrality which is intermediate be­
tween almost integrality and ordinary integrality. Our definition requires the so-called 
v-operation. Denote by J-(R) the set of nonzero fractional ideals of R. For / G J-(R), set 
I~l = {x e K : xi Ç R}. The v-operation on R is the map from ^f(R) into inself given 
by / —-> /v = (7 - 1) - 1 . The nonzero ideal / is said to be divisorial, or a v-ideal, if / = /v. 
The v-operation is an example of a star-operation; the reader is referred to [6, Sections 32 
and 34] for a discussion of the properties of the v-operation, which we shall use freely. 

It is well-known that an element u G K is almost integral over R & there is a nonzero 
ideal / of R for which ul Ç /. Simlarly, u is integral over R & ul Ç / for some nonzero 
finitely generated ideal / of R. We now define an element u of K to be pseudo-integral 
over R if ulv Ç /v (equivalently, ul~l Ç /_ 1) for some nonzero finitely generated ideal / 
of R. It is clear that u integral => u pseudo-integral => u almost integral. 

We denote by R the set of elements of K which are pseudo-integral over R. In his thesis 
[12], B. G. Kang also studies the ring R, but his results are for the most part specialized, 
while our goal is a systematic study of pseudo-integrality. 

In the first section, we show that R is an integrally closed overling of R. Part of our 
motivation for studying pseudo-integrality arises from the fact that the integral closure of 
a domain often has desirable properties. For example, the integral closure of a Noetherian 
domain is a Krull domain. A question that has been open for several years is the follow­
ing: is the integral closure of a one-dimensional coherent domain necessarily Priifer? (cf. 
[9]). Along these lines, we show, as a consequence of the fact that R is integrally closed, 
that there is a large class of rings T for which T is a Priifer v-multiplication domain. (Kang 
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[12, Theorem 5.10] has proved an equivalent result by different methods.) In addition, 
we prove that pseudo-integrality behaves well under passage to the polynomial ring. We 
close Section 1 with a discussion of pseudo-integrality in D + M examples. 

It is well-known that almost integrality fails to be transitive, that the complete integral 
closure of a domain need not be completely integrally closed, and that a localization of a 
completely integrally closed domain need not be completely integrally closed. In Section 
2 we show that pseudo-integrality has corresponding faults. 

Finally, in Section 3, we show that in fact pseudo-integrality exhibits behavior that is 
even more miscreant than that of almost integrality. We provide an example showing that 
an element which is pseudo-integral over R need not be pseudo-integral over an overring 
T of /?, even when T is pseudo-integral over R. We also observe that the intersection of 
pseudo-integrally closed domains need not be pseudo-integrally closed. 

1. The Good. 

DEFINITION. Let R be a domain with quotient field K. An element x E K is pseudo-
integral over R if xlv Ç Iv (equivalently, x E Iv : Iv) for some nonzero finitely generated 
ideal I of R. 

As we show in Proposition 1.1 below, the set of pseudo-integral elements is an over-
ring of/?, which we denote by R and call the pseudo-integral closure of R. We shall also 
use Rf to denote the integral closure of R and R* to denote the complete integral closure 
of/?. It is clear that R' ÇRÇR*. 

PROPOSITION 1.1. R is the directed union of the overrings Iv : /v, the union being 
taken over all nonzero finitely generated ideals I ofR. In particular, R is a ring. 

PROOF. It is clear from the definition that R = U (Iv : Iv). That the union is directed 
follows from (Iv : Iv) U (Jv : Jv) Ç (IJ)V : (IJ)V. Finally, since each (/v : /v) is a ring, R is 
also a ring. • 

Recall that a domain R is said to be essential if it is the intersection of valuation 
overrings each of which is a localization of/?. It is well-known that an essential domain is 
a v-domain; a domain R is a v-domain if (//~l)v — R (equivalently, (//~l)~l = R) for each 
nonzero finitely generated ideal / of R. It is natural to call a domain R pseudo-integrally 
closed if R = R. From the equation (II~l)~l = I~l : I~l = Iv : Iv one easily obtains that a 
domain R is pseudo-integrally closed ^ R is a v-domain. Thus essential domains provide 
examples of pseudo-integrally closed domains. In [13, 14] Nagata gives an example of 
a completely integrally closed (hence pseudo-integrally closed) one-dimensional quasi-
local domain which is not a valuation domain. Thus pseudo-integrally closed domains 
need not be essential. 

We next point out situations in which the pseudo-integral closure of a domain coin­
cides with either the integral closure or the complete integral closure. Of course, if the 
domain R is Noetherian, then Rf = R = R*. Now recall that if R is a domain, then R' is 
the directed union of { ( / : / ) : / is a nonzero finitely generated ideal of R} . Thus if R 
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has the property that /_ 1 is finitely generated for each nonzero finitely generated ideal / 
of R, that is, if R is quasi-coherent [2], then R' — R. Of course, this implies that R' = R 
for each coherent domain R. On the other hand, it is easy to see that R = R* if R has 
the property that for each nonzero ideal I of R there is a finitely generated ideal J of R 
for which Iv — Jv. It is known [16, Théorème 1] that Mori domains, domains satisfying 
the ascending chain condition on divisorial ideals, possess this property. Hence we can 
restate the well-known characterization of Krull domains as completely integrally closed 
Mori domains as follows: a domain R is a Krull domain ^ R is a pseudo-integrally closed 
Mori domain (cf. [20]). 

It is known that if R is a domain, then R* is integrally closed [ 18, p. 76] but need not be 
completely integrally closed [8, Example 1]. We now provide the first step in the proof 
that pseudo-integral closure behaves similarly. 

THEOREM 1.2. Let T be an overring of the domain R, and let x be an element ofK. 
Suppose that T is pseudo-integral over Rand that x is integral over T. Then x is pseudo-
integral over R. In particular, R is integrally closed. 

PROOF. From the equation of integrality satisifed by x, there are elements u\,...,up 

G T with x integral over S = R[u\,..., up]. Since each m is pseudo-integral over /?, there 
is a nonzero finitely generated ideal 7/ of R such that M/(//)V Q (Ji)v- Let J — lUi; then 
U[JV Ç Jv for each i. Since (Jv : Jv) is a ring, it follows that S Ç (Jv : Jv). Now, since x is 
integral over S, there is a nonzero finitely generated ideal / = Sz\ + • • • + Szq of S with 
xi Ç /. Let A = Jz.\ + - • • + Jzq. Then A is a finitely generated ideal of R, and we shall 
complete the proof by showing that x G (Av : Av). First note that JSZJ Ç Jvn for each /. 
Thus JIÇ Jvz\ + • • • +JvZq Q (Jz\ + • • • +Jzq)v = Av. Since xzt G / for each /, we therefore 
have xA = x(Jz\ + • • • + Jzq) Ç / / C Av. It follows that x G (Av : Av), as desired. • 

Recall that a Prùfer v-multiplication domain(PVMD) is a domain in which the frac­
tional v-ideals of finite type form a group under v-multiplication. Equivalently, a PVMD 
is a v-domain R in which I~l is a v-ideal of finite type for each nonzero finitely generated 
ideal / of R. In [11] the authors introduced the notion of a UMT-domain. To define this 
property, let R be a domain and consider the polynomial ring R[X]. A nonzero prime 
ideal P of R[X] is said to be an upper to zero if P D R = (0); equivalently, P is an upper 
to zero if P is the contraction of a nonzero prime from K[X]. Then R is a UMT-domain 
if each upper to zero contains an element/ with c(f)v — R, where c(f) is the ideal gen­
erated by the coefficients off. It was observed [11, Proposition 3.2] that a domain R is a 
PVMD & R is an integrally closed UMT-domain, and it was shown [11, Proposition 3.3] 
that the integral closure of a quasi-coherent UMT-domain is a PVMD. The question of 
whether the hypothesis of quasi-coherence is necessary was left open. As an application 
of Theorem 1.2, we prove that the pseudo-integral closure of a UMT-domain is a PVMD. 
We need one further idea. An overring T of a domain R is said to be t-linked over R if 
(T : (T : IT)) — T for each nonzero finitely generated ideal I of R for which Iv = R. In 
[5] it was shown that, for every domain R, R is t-linked over R. 
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PROPOSITION 1.3. IfR is a UMT-domain, then R is a PVMD. 

PROOF. Since (by Theorem 1.2) R is integrally closed, it suffices to prove that R is a 
UMT-domain. Accordingly, let P be an upper to zero in R[X\. Then PPi R[X] is an upper 
to zero in R[X], whence PD R[X] contains an element/ with cR(f)v — R. Let / = cR(f). 
Then IR = c^(f), and the conclusion follows from the fact that R is t-linked over R. m 

Next, we wish to show that pseudo-integrality behaves well under passage to the poly­
nomial ring, that is, that (R[X]) = R[X]. In fact, we shall do this in the more general con­
text of semigroup rings. The reader is referred to [7] for background and terminology. 
Thus let S be a commutative, additive, cancellative, torsion-free monoid, and let G be 
the quotient group of S. For each fractional ideal J of S, let J - 1 = {geG: g+JÇS} 
and Jv = (J~l)~l. We then define S to be the set of elements g of G such that g + Jv CJV 

for some finitely generated ideal J of S. 
It is convenient to state one preliminary result. 

LEMMA 1.4. Let Rbe a domain, and let the domain T be aflat extension ofR. Then 
R ÇT. (This can fail without the flatness assumption—see Example 3.2 below.) 

PROOF. Since finite intersections of ideals are preserved by flat extensions, it is easy 
to see that T : IT = I~lT for each finitely generated ideal / of R. The result now follows 
easily. m 

THEOREM 1.5. Let Rbe a domain and let S be as above. Then (R[S]) = R[S]. 

PROOF. Let u G R and g G S. Then ulv Ç Iv and g + Jv Ç Jv for some finitely 
generated ideals / of R and J of S. It is easy to see that L = I[J] is a finitely generated 
ideal of the semigroup ring R[S] = R[{X8 : g G S}] and that Lv = IV[JV]. Now uX8Lv Ç 
(ulv)[g + 7V] Ç Wv\ = Ly, so that uX8 G (R[S]). Thus R[S] Ç (R[S]). 

To establish the opposite inclusion, we first observe that (R[S]) Ç K[G] since K[G] is 
completely integrally closed [7, Corollary 12.6(2)]. Let k be an element of K[G] which 
is pseudo-integral over R[S]. Then klv Ç Iv for some nonzero finitely generated ideal / 
of R[S]. For/ = T,agX

g G K[G], let c(f) denote the content ideal of/, that is, c(f) is the 
fractional ideal ofR generated by the coefficients ag. Write c(I) for the ideal generated by 
the coefficients of all the elements of /. Since / is finitely generated, we may write c(I) — 
c(h) for some h G /. By the content formula [15], there is a positive integer m for which 
c(h)m+lc(k) = c(h)mc(hk). Since/ C c(I)R[Sl we have that Iv Ç (c(I)R[S])v = c(I)vR[Sl 
whence c(/v) Ç c(I)v. Therefore, since hk G /v, we have c(I)m+lc(k) = c(h)m+lc(k) = 
c(h)mc(hk) Ç c(I)mc(Iv) Ç c(I)mc(I)v. Thus c(k)(c(I)m+l)v Ç (c(/)m+1)v, whence c{k) Ç R 
and k G R[G]. 

To complete the proof, it suffices to show that k G K[S], since R[G] Pi K[S] = R[S]. 
We introduce a little more notation. For/ = EagX

g G K[G], let C(f) = ({X8} )K[S] = 
K[J], where J is the finitely generated ideal of S generated by {g : ag ^ 0} . Define 
C(/), where / is an ideal of K[S], in the natural way. Now R[S] Ç K[S] is flat, so that 
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(R[S]) Q (K[S]) by Lemma 1.4. Since k G (/?[£]), we therefore have a nonzero finitely 
generated ideal / of K[S] with klv Ç /v. There is an element/ G / with C(/) = C(f) = 
K[J], as just described. We claim that C(IV) Ç C(/)v. This follows since 7V Ç C(/)v = 
K[J]V = K[JV] => C(/v) Ç C(A:[JV/]) = tf[/v] = K[J]V = C(/)v. As above, C(k) Ç 
((C(/)w+1)v : (C(/)m+1)v). Now C(I) = K[J] so that C(/)m+1 = tf[(m + 1)7]. Thus by [7, 
Theorem 16.6], we have C(k) Ç K[((m + l)7)v : ((m + l)7)v]. Hence if A: = £ ^X*, then 
each g G ((m + l)/)v : ((m + l)7)v Ç S. Hence k G AXS], as was to be shown. • 

COROLLARY 1.6. (R\X\) = #[X], w/iere X = { Xa } is any set of indeterminates. 

PROOF. R[X] = R[S], where S = 0 5 a and each Sa is a copy of the additive monoid 
of nonnegative integers. Define S* — { g G G : ng +1 G 5 for some / G 5 and all n > 1} 
(cf. [7, p. 151]). Clearly, SÇSÇS*. Since (0Sa)* = ©S* = 0 5 a , we have that S = S. 
The result now follows from Theorem 1.5. • 

Let V be a valuation domain of dimension > 2. Then V contains a nonunit t with 
n ( ^ ) ^ (0). Hence by [6, Proposition 13.11], VflXO is not (pseudo-) integrally closed, 
and thus (VJÈXJ) D VPffl = V[[X]]. Thus Corollary 1.6 has no counterpart for power 

series rings. 
We now turn to a discussion of how D + M constructions behave with respect to 

pseudo-integrality. 

LEMMA 1.7. Let V be a domain of the form F + M, where F is afield and M is the 
maximal ideal ofV. Let D be a subring ofFf and let R = D+M. Then D + M Ç R. 

PROOF. We may assume that D is not a field. Let x = d+m G D+M. Then dlv Ç /v for 
some nonzero finitely generated ideal / of D. It follows that / + M is a finitely generated 
ideal of R and that (/ + M)v = Iv + M ([3, Theorem 2.1(k)] and [1, Proposition 2.4]). 
Therefore, since (d + m)(/v + M) Ç /v + M, x G ((/ + M)v : (/ + M)v) Ç R. • 

PROPOSITION 1.8. Let V and R be as above, and assume that V is a valuation domain. 
Then 

(i) R = D + M if F is the quotient field ofD, and 
(ii) R = V if F properly contains the quotient field ofD. 

PROOF, (i) Suppose that F is the quotient field ofD. If D = F,then£ = V = D+M. 
Suppose that D C F. Then each nonzero finitely generated fractional ideal J of R has the 

form J = c(I + M) for some element c ^ 0 of the quotient field of R and some nonzero 
finitely generated (integral) ideal / o f D [3, Theorem 2.1(k)]. Thus Jv : Jv = (/ + M)V : 
(I + M)v = (/v + M) : (/v +M) = (/v : /v) + M. It follows that R Ç D + M. The other 
inclusion follows from Lemma 1.7. 

(ii) Now suppose that F properly contains the quotient field k of D. Choose u G K\k 
and let / = D+Du. Then J = I+M is a finitely generated fractional ideal of/?, and Jv = V 
[3, Theorem 4.3 and its proof]. Hence Jv : Jv — V, whence V Ç R. To obtain the other 
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inclusion, let A be a finitely generated ideal of R. By [3, Theorem 2.1(k)] A = c(B + M) 
for some finitely generated D-submodule B of F. If B is not a fractional ideal of D, then 
Av : Av = cV : cV = V [3, Theorem 4.3(2)]. If £ is a fractional ideal of D, then, as in 
the proof of (i) above, Av : Av Ç D + M Ç V. Thus ^ C V , and the proof is complete. • 

We close this section by making use of the D + M analysis to exhibit a domain R for 
whichRcRf CRCR*. 

ï ï Ï 
EXAMPLE 1.9. Let F\ C F2 C F3 C F4 be fields with F2 algebraic over F\ and F^ 

* * * 
algebraically closed in F3. Let V be a discrete rank one valuation domain (DVR) of the 
form F4 +M, and let W be a DVR of the form F3 + N and having quotient field F4. Finally, 
setR = (Fi +A0 + M, Ri = (F2+N)+M, and R3 = W + M. Then 

(i) V is the complete integral closure of each ofR, R2, and R3; 
(ii) R3 is the pseudo-integral closure ofR and R2, and R3 is pseudo-integrally closed; 

and 
(in) R2 is the integral closure ofR. 

In particular, R C R' C R C R*. 
ï ï Ï 

PROOF, (i) Since M is an ideal of each ring involved and VM Ç M, it follows that V 
is contained in the complete integral closure of each ring involved. On the other hand V, 
being a DVR, is completely integrally closed. 

(ii) It follows from Proposition 1.8 that W is the pseudo-integral closure of each of 
the rings D\ = F\+N and D2 = F2 + N. Then, since each of D\, D2, and W has quotient 
field F4, it follows (again from Proposition 1.8) that R = (R2) = (R3) = #3-

(iii) This is well-known [3, Theorem 2.1(b)]. • 

REMARK 1.10. For a concrete example of the situation above, set Fi = Q, F2 — Q 
(= the algebraic closure of Q ), F3 = C, F4 = C ((X)), V = F4ŒO (with M = YF4mi 
and W = F3|[X]|(with N = XF3|[X]]). 

2. The Bad. We begin this section by showing that pseudo-integrality, like almost 
integrality, fails to be transitive, and that the pseudo-integral closure of a domain need not 
be pseudo-integrally closed. In fact, we can use the classic example of Gilmer-Heinzer 
[8] for our purpose. 

EXAMPLE 2.1. Let it be a field, set R = ^[{X2n+1r(2n-hl)}n
c20], and set T = 

k[{XY»}™0}.Thcn 
(i) Rf = R = R* = 7; 

(ii) T=r = k[X,Y]\md 
(iii) Y is pseudo-integral over T but not over R. 

PROOF, (i) That R* = T is [6, Exercise 3, p. 144]. Moreover, T is an integrally closed 
Mori domain [4, Example 4.6(b)]. Since T is obviously integral over R, (i) follows. 
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(ii) Since T is a Mori domain, f = F \ and it is easy to see that T* = k[X, Y]. 
(iii) That Y is pseudo-integral over T follows from T = T*. Finally, Y is not almost 

integral, much less pseudo-integral, over R since R* = T. • 
Recall that if R is the ring of entire functions, then R is a completely integrally closed 

Bézout domain, but that some localizations of R fail to be completely integrally closed 
(cf. [6, Exercises 17,19, and 21, pp. 147-148]). (This example is infinité dimensional, but 
Sheldon [17, Example II] gave a two-dimensional example.) A similar situation exists 
with respect to pseudo-integrality, as the following result shows. 

PROPOSITION 2.2. Let R be a domain and let S be a multiplicatively closed subset 
of R. Then (R)s Ç (Rs). However, proper containment is possible. In particular, the 
property of being pseudo-integrally closed is not necessarily preserved upon passage to 
a localization. 

PROOF. That R C (Rs) follows from Lemma 1.4. (An alternate proof can be based 
on [19, Lemma 4]. Since 1/ s € (Rs) for each s G S, we have (R)s Ç (Rs). To show 
that proper containment is possible, we examine an example of Heinzer [10]. This is an 
example of an essential domain R (Heinzer uses D) containing a prime ideal P such that 
Rp is not essential. In fact, Rp = k + M, where M is the maximal ideal of a valuation ring 
W of the form F + M and k C F are fields. By Proposition 1.8, (Rp) = W. However, R, 

being essential, is pseudo-integrally closed. Therefore, if we set S = R\P, we have that 
(R)s = RS = Rp, while (Rs) = (Rp) = W. m 

REMARK. If R is a Mori domain, then (R)s = (Rs) for each multiplicatively closed 
subset S ofR ([12, Lemma 5.11]). 

3. The Ugly. 

REMARK 3.1. The intersection of integrally closed domains (contained in some com­
mon field) is integrally closed. Similarly, the intersection of completely integrally closed 
domains is completely integrally closed. However, the domain T of Example 2.1, being 
integrally closed, is the intersection of a family of valuation domains inside its quotient 
field, and, since valuation domains are pseudo-integrally closed, T is the intersection of 
pseudo-integrally closed domains. Of course, T itself is not pseudo-integrally closed. 

EXAMPLE 3.2. Let V — F + M be a valuation domain with maximal ideal M and 
with F afield. Let D be a pseudo-integrally closed subring of F such that D contains a 
field k. Suppose that F is the quotient field ofD. Set R = k + M and T = D +M. Then T 
is pseudo-integral over R, but R%t. 

PROOF. By Proposition 1.8, R = V and f = D + M = T. Thus V, hence also T, is 
pseudo-integral over R, but RÇ.T. • 
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