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It is well known that the semi-simple rings with minimum conditions

coincide with the rings of global homological dimension zero and that the

hereditary rings coincide with the rings of global dimension one. Eilenberg,

Jans, Nagao and Nakayama gave some properties of hereditary rings in [4]

and [11], which relate to global dimension of factor rings0). As an example of

non-commutative hereditary ring we know a tri-angular matrix ring over a

semi-simple ring.

Let A be a ring with radical N. If N is nilpotent and A/N satisfies the

minimum conditions, then we call A a semi-primary ring.

The purpose of this paper is to give a visible form of hereditary semi-

primary rings which is similar to the fact that a simple ring with minimum

condition is isomorphic to a matrix ring over a division ring.

In § 2 we shall define a generalized tri-angular matrix ring over semi-simple

rings and give properties of such a ring, which is a generalization of [4],

Theorem 8 and [11], Proposition 7.

In § 3 we shall show that every hereditary semi-primary ring is isomorphic

to a generalized tri-angular matrix ring over semi-simple rings and we show,

conversely, every generalized tri-angular matrix ring is a homomorphic image

of an hereditary semi-primary ring by modifying slightly the method in [11],

§2.

As an application of results in §§ 1-3, we show in § 4 that if A is an

hereditary semi-primary ring, then so is eAe for any idempotent e and A con-
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°) Added in Proof.

Chase generalized those results to a generalized triangular matrix ring in [2] and
Nakano also studied such a ring in [4]. Some results in this paper will overlap with
them.
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464 MANABU HARADA

tains a minimal faithful left ideal which is contained in any faithful Λ-projective

module as a direct summand.

We consider, in §5, an hereditary ring with minimum conditions, which

is semi-primary. However, we note that we have two ways in such a ring to

obtain a relation between hereditary rings and generalized tri-angular matrix

rings namely by using the nilpotency of the radical and the length of com-

position series of indecomposable left ideals. In general there are no relations

between them, however we show that two ways coincide under some assump-

tions.

We always assume that a ring A has the unit element and any Λ-module

is unitary. Furthermore, any ring is semi-primary except in § 1.

1. basic rings

Let A be a ring with unit element 1 and N is the radical of A. In this

section we always assume that every idempotent element in A/N is lifted from

those elements in A, e.g. A satisfies the minimum conditions or N is nil and

so on. Furthermore, we assume that A/N is a semi-simple ring with minimum

conditions. In such a situation we have

1 = 1.7 = 1

where the Aeij's are indecomposable left ideals in A, e),j — eij and Λβij^ Aei,k,

Aeij%rAei>,k if i±?i'. We put eι = et\ι and e= Σ^/ Then τA(Ae) = A, (see the

definition of trace ideal in [1]). Furthermore, it is clear that Homi(/te, Ae)

= eAe. Since τA(Ae) = A, we obtain from [1], Theorem A. 2.

LEMMA 1. Ae is a finitely generated eAe-projective module and A =

E.omeAe(Aey Ae).

PROPOSITION 1. Let e be as above. A is a semi-primary ring such that N*

= (0) if and only if so is eAe and Nft = (0), where N1 is the radical of eΛe.

Proof. Since Nf - eNe, eAe satisfies the above condition if so does A. We

assume that Γ = eAe is a semi-primary ring with Nft = (0). From an exact sequence

0-+;ieNf -*Ae-*Ae/AeN' -»0 we obtain the exact sequence 0-HomΓ(Λ£, ΛeN')

-*HomΓ(/te, Ae) -»HomΓ(/fe, Λe/AeNf) = Έlomrιw(Ae/ΛeNf, Ae/AeN1) -> 0, since

Ae is Γ-projective. Ae/ΛeN' is a finitely generated Γ/iV'-module by Lemma 1

and hence, Uomr/N{Ae/AeN\ Ae/AeNf) is a semi-simple ring with minimum

https://doi.org/10.1017/S0027763000026313 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000026313


HEREDITARY SEMI-PRIMARY RINGS AND TRIANGULAR MATRIX RINGS 465

conditions. Therefore, ΉomΓ(Aey ΛeN1) contains the radical N of A =

Homr(/te, Ae). However (HomΓ(Λe, AeN')Y<^¥LomAAe, AeNil) = (0). Hence A

is a semi-primary ring such that TV* = (0).

PROPOSITION 2. Let e be as above. Then

l.gl.dim A = l.gl.dim eAe,

r.gl.dim A = r.gl.dim eAe.

Proof. Since Ae is right eAe-protective, we obtain l.gl.dim Λ> l.gl.dim eAe

by [5], Theorem 7. On the other hand l.gl.dim eΛe>\.g\Aim A by [7], Lemma

1.2. Replacing Ae by eA> we have the second half.

COROLLARY 1. A is left hereditary if and only if so is eAe. Furthermore,

eΛe/N1 is a directsum of division rings.

Remark 1. In Proposition 2 we only need that τA(Ae) = A.

Remark 2. If we consider an hereditary semi-primary ring, we may restrict

ourselves to the case where the factor ring with respect to its radical is a

direct sum of division rings from the above results.

2. Generalized tri-angular matrix rings

From now on we always consider a semi-primary ring A and denote its

radical by N{A). In the next section we shall study an hereditary semi-primary

ring and show that it is isomorphic to a generalized tri-angular matrix ring

over semi-simple rings (see the below). Thus, we study, in this section, some

properties of such a ring.

Let R\, R2, . . . , Rn be rings and Mij a left Rt- and right Rj-moάvλe for

i> j and Mi,i = R;. We consider a family of bilinear Ri-Rj homomorphisms.

(1) ψ\,t •* Mi,t®Rt

Ψlt : Ri®Mi,t

and a family of diagrams

IiJ®Ψj.k
ij (g> Mj, 1 ® Mi, k >Mij ® Mj, k

B3 Ri Rj

(2) \<PΪι®Iι.k

¥i,k
Mu® Mιtk ~

m
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where / means the identity mapping.

Next, we consider the following sets

Tn(Ri

f u

ij) = I

m

\n,i<=Ri,

n,n-l Tn.n

We can make it a ring as follows:

(3)
{mij) ± (m'ij) = {mij ± m\,j)

{mij) (m'i,j) = (Έψli,j(mitι0mΊ,j)).

It is clear that this product is associative if and only if the diagrams of

(2) are commutative.

In this case, we call it a generalized tri-angular matrix ring over Ri, and

we denote it briefly by g.t.a. matrix ring over Ri. Mi.kMkj means the image

of Mi,kΘMkj by <pk

uj.

We are only interested, in this paper, in a case where all Ri are semi-

primary. Then a g.t.a. matrix ring over Ri is also semi-primary.

LEMMA 2. Let Λ be a g.t.a. matrix ring Tn(Ri I Mij). If Λ is hereditary,

then every Ri submodule in Mij is Ri-projective, and hence, all Ri are hereditary.

Proof. Let M\j be an i?ί-submodule in Mij, or a left ideal in R.

j

Let

0
Λf, ,i M,/-i 0
Λfc+i.1 Ri+i 0

Then % is a two-sided ideal in Λ. Since L is Λ-projective, L/%L is yί/2I-pro-

jective. From types of LfΆL and Λ/%, we know that MJ,y is ift-projective.

Especially we obtain that every left ideal in R; is i?/-projective. Hence, Ri is

hereditary.

By replacing A and L by
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0 0 \ and

s 0 MiJ
0 Mk+i,k 0

, where Nk = N(Rk).

Mn,k

We obtain
ί-fc + l

LEMMA 3. Let A be as above. If A is hereditary, then Σ Mi,k+tMk+t,k is

a direct summand of Mi,k as an Ri-module for all >k, where Mi,i = N(Rj).
0

L E M M A 4. Let A = Tn(Ri Mij) and ej= T « ( 0 , . . . , 0, 1/, 0, . . . 0 ) ,

e = 'Σej. Let A be a left Λ-module such that eA = A. Then l.dimΛA = l.άimeAeA.

and gl.dim /i>gl.dim eΛe, where l f is the unit element of Ri.

Proof It is clear that Λe-eΛe. Hence Λe ® A - eΛe ® A = A as a left Λ-
eAe eΛe

module. Since r.dimeΛeΛ£ = r.dimeΛeeΛe = 0, we have l.άimeAeA = l .dimΛΛe®A

= l.dimΛA and gl.dimΛ^gl.dim eΛe by [5], Proposition 15 and Theorem 7.

THEOREM 1. Let Ri be semi-primary rings with radical Nι. A g.t.a. matrix

ring Tn(Ri Mij) over Ri is hereditary if and only if the following conditions

are satisfied.

a) All Ri are hereditary,

b) ψJj,k is monomorphiCy
7 - 1

c) Mijl^ΣiMi,tMt,j{^ Mij) is Ri-projective M/.ycM,-,;,
t=j_

d) Mu=*Mij@Mij+1Mj+1j® ® Mi,i-ιMi-u ® MijNj as a left Ri-

module, where Mi,i = Ni.

Proof. Let A = Tn(Ri Mij). It is clear that N'= N{Λ) = Tn(Nί9 . . . , Nn

Mij) and F = »i,,,
Mn.i

We put Li = Ni

Mn.i

and Ai = Tn-i+i(Ri, - - . , Rn ί M/,y). Then we may regard that L, is a left yl/-

module. Let a be as above. Then eiL{ = Li and Ai^βiAei. Hence l.dimΛ£/

= \.άimAt Li by Lemma 4. Therefore, we know that A is hereditary if and only
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if Li is Λ/-proiective for all /. For the sake of simpleness to explain, we con-

sider a case of i= 1. We denote Llf Λ\ by L, A. Then

Z = L/NL =

Mί],

where M?,ι = Ni/N]f M*i = Λ4i.i/(M, fii\Γi + +ΛΓ, Afi,ι).

Let {fk]) be a set of non-isomorphic primitive idempotent elements in Rj.

We put ff = Γ«(0, . . . , 0, fi\ . . . , 0 0). Since MΪΛ is an Ri = Ri/Ni-

module, M ^ ^ Σ θ l f i f ^ ^ Γ - f t / S i , rf'eMu. From the idea of
t

minimal projective resolution (cf. [3]), we know that L is Λ-projective if and

only if

(4) L = Σ Σ θ Λy\*\ where y^ =

(5)

0
0

0 Ί

0
0

and

(natural isomorphism).

Let Λf,** = Σ A r f ^ M i. We assume that A is hereditary. Then we obtain
t

Mi,i = P, θ (Mt,iNi 4- -f Mi,i-iMi-i,i) for some i?,-module Λ from Lemma 3.

Hence Λf/,iΛΓi+ +Mz , l -iM/-i,i + ΛΓ/M/,i = JV/P/Θ (Af, fiM+ +M1 ,, -iMi - u ) .

Therefore, we may assume that y{

t" e P, . Then P, = Λίf* * = M,-f i since iV, is

nilpotent. Now, 4) is equivalent to facts that Mi,i = *Σ®Rjylt) and that
t

_
.tjyί0 and Σ M, ίM, , i + Λf/, i are direct sums, respectively. The above argu-

t < = 1

ments are true by replacing 1 by any h. Furthermore, we obtain from (2)
(6) Mk,iMijMi,h^MkjMj>h for all k>i>j>h.
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Since Λft,, ®M/,, = Mk,i®Mu@Mk,i ® (ΈiMi,tMt,j), we obtain from (6)

ί- l

Mk, iMi, j c Mk, iMi, j + Σ Mk, tMt, j Q Mk, iMi, j +

t-2 t

Mk,i-iMi-i,j+ ΣMjfe.ίΛfί.yc Σ Mk,sMsj + Mkj

Therefore,
fc-l

Hence Mkj = Σ θMk.sMsj θMkjNjθMfe,y from the above observation. Which

shows d), a) and c) by Lemmas 2 and 3. Furthermore, from (5) we obtain

f?u)ytl) =y?) Hence (4) and (5) implies ψj

iΛ is monomorphic on Mij®Mj,ι.

Using this argument we shall show that φJ

itk is monomorphic for all i>j>k.

Let Γ= Tn-jvάRjy . . . , Rn ί Mι,s) and L= ( 0 \. Since Γ is hereditary by
Mj,k

\Mn,k)

lemma 4, we know from the above argument that ψ\,k is monomorphic on

Mij®Mj,k. However, Mj,k~Mj,k in this case, and hence, <f{,k is monomor-

phic on Mij®Afj,k.

Conversely we assume that a)-d) are satisfied. From a) we have ^ΣΘRiyi^
t

= Ni. From a), c) and the remark after (5), we obtain M * * = Mi, i = Σ θ Riy^.
t

Since <ρ\tι is monomorphic on Mι,i®Mi,\ by b), we have (5) fromd). Further-

more, d) and a) imply (4).

COROLLARY 2. Let Λ be a g.t.a. matrix ring over semi-simple rings. If ψ^k

is isomorphic, then A is hereditary.

Proof. From the assumption, we have Λf, ,, -i = Mi,i-ι for all i and ~Mϊj =

(0) for all i>j+l. Hence Λ satisfies a)-d).

Remark 3. An usual tri-angular matrix ring over a semi-simple ring R is

a special case of Corollary 2.

THEOREM 2. Let Ri be semi-primary rings and Mij Ri - Rj modules. Let

Λi- Tn-n-i(Ri, . . , Rn Mij). Then gl.dim Λi+1^gl.άim Λ/<gl.dim Λ+i-f

Proof. From Lemma 4, we obtain gl.dim Λ;+i<gl.dim Λi. We denote Λi,

Λivx by Λ, Γ. Then N=N(Λ) = Tn-i+i(Ni, . . . , Nn I Mij), where TV/ =

https://doi.org/10.1017/S0027763000026313 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000026313


470 MANABU HARADA

N = LiΘN(Γ) as a left Λ-module, where L; is the same as in the proof of

Theorem 1. From Lemma 4 we have gl.dim A = 1 + l.dimΛiV = 1 + sup (l.dimΛ

Li, l.άimΓN{Γ)). If we use the same notations as in the proof of Theorem 1,

then

is exact, where P o = Σ ^ / s ^ . We consider

φ{i)~\0) = , where

• 0. T h e n

0
is exact and Nj,i is an

N'n.i J
^-module. Hence we can see directly that φ~\0) = K% NJJ is an

Nn,i

φ-module. If we repeat this argument on Kt we have a minimal Λ-projective

resolution of Li:
„• dk „ . dx

and the first row of each Pι forms a minimal i?/-projective resolution of Ni.

Hence if gl.dim Ri = m, then d^-AO) is a Γ-module. Hence l.dimΛ^m (0) <gl.dim

Γ by Lemma 4. Therefore, 1.dimΛiV<gl.dim R + gl.dim Γ. Thus, we obtain

gl.dim yl<gl.dim Ri + gl.dim Γ-f 1.

COROLLARY 3. We assume that all Ri are semi-simple rings in the above.

Then gl.dim Λ, +i<gl.dim Λ;<1 + gl.dim Λ +i and gl.dim Λ<n~ 1.

Let A be a g.ta. matrix ring Tn{Ri M. .y) and βi be as in Lemma 4. For

an element a in a. two-sided ideals S3ί in A eiαej^^. Hence 9ΐ = Tn{Si iV/,y),

where Si is an ideal in Ri and Njj is an i?, — Rj module in M/y. Hence we

obtain from Corollary 3.

THEOREM 3 Let A be α g.t.α. matrix ring Tn(Rt Mij) over semi-simple
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rings Ri. Then for any two-sided ideal A in A we have

gλ.άim A l^l<n-I.
s

Furthermore, we assume that all Rι are simple rings and 51 + N/N^Σi®R;t.

Then gl.dim A/%<n — s — 1, where N is the radical of A.

3. Hereditary semi-primary rings

In this section we shall determine a type of hereditary semi-primary rings.

Let A be such a ring and N the radical. By virtue of Remark 2, we shall

first restrict ourselves to the case where A/N is a direct sum of division rings.

Then we obtain 1= Σ Φ , where {βi) is a set of non-isomorphic primitive idem-

potent elements in Λ. Since N* = (0) for some ί, we have an integer 5 for e%

such that Nsetr=* (0), N*+1ei = (0). We denote such an integer 5 by n(e{). Then

we can rearrange a as follows - n{ei)>n{ej+i) for all i.

We quote here a well known results by [3] and [12].

LEMMA 5. Let A be an hereditary semi-primary ring. Then every A-projec-

tiυe module is isomorphic to Σ θ (Λe, )s<1).

LEMMA 6. Let A be as above. If e is an idempotent element in A such that

n(e) is minimal among n(e\)y where e1 runs through all primitive idempotent

elements in A. Then n{e) = 0.

Proof If Ne*{0), then j\fe = Σ ® (Λ*#)4< by Lemma 5. Hence n(e) >n(βi),

which is a contradiction.

LEMMA 7. Let A be an hereditary semi-primary ring such that /ί

Δi Δi division ring. Then βiNej = (0) for i<>j and eiAe^Ai.

Proof. From Lemma 6 we know that Nen = (0). Therefore, eιNen - (0)

for all i. We assume that eiNej = (0) for i<j and j>k. Since Nek is A-

projective, we have from Lemma 5 and the assumption n(ei)>n{ei+i)

Hence, Λ ^ Σ ® ( M θ S | = Σ ® («ίf t) ί ι = (0) for i^k from the above as-

sumption. Therefore, βiNej = (0) for all i<j. Since *, Λfe, = (0), Ai^eilei

Mn means a direct sum of n copies of M*
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THEOREM 4'. Let A be an hereditary semi-primary ring such that

Σ θ J/. Then A is isomorphic to a g.t.a. matrix ring over J;, where N is the
J = 1

radical of A and the ΔiS are division rings, ([2] and [14]).

n

Proof. Since 1= Σft, Λ = *Σ®eiΛej and βiAej = (0) if i<j. If we put

Mij = β//l̂  and f/, & is a product of Mij and Λfy,*, then A = TΛ(Ji, . . . , J*

Λf/.y) by Lemma 7.
We shall generalize the above theorem.

Let A = Tn(Ri M, ,y) be a g.t.a. matrix ring over rings 2?/. Let

Then we can define a natural operation of elements in (Ri)Sί (resp. (Rj)Sj)

from the left side (resp. right side) on 9Jί/,y. We put Γ= Γ«((i?i)Sl, . . . , (Rn)sn'>

3Kf,y), then Γ is also a g.t.a. matrix rings over (Rt)Sι with naturally extended

bi-linear mapping Φ\tk : (U<fi>)) ® ((^r,<,)) ̂ ( ( Σ ^ l ^ ^ ^ Θ ^ ^ ) ) , xt.peίMij,

i

Let /̂̂ m be the matrix units in (Ri)Si and £* = T«(0, . . . , 0 ^ j , 0 0 0).

If we put E = S^ί then τΓ(ΓE) = Γ and EΓE^A. Hence we have from Pro-

position 2

gl.dim Λ = gl.dim Γ.

We call Γ an induced g.i.a. matrix ring from A.

THEOREM 4". L^ A be an hereditary semi-primary ring. Then Λ is isomor-

phic to an induced g.t.a. matrix ring T(Ri SUΪ/.y) over simple rings Ri from a

g.t.a. matrix ring as in Theorem 4\ φ{,k is monomorphic for all i>j>k and

50̂ ι,y+iSίy+i,y+ ' -*-5Wi,ί-iSDΪ<-ity is a directsum in Wij as a left Ri-module, where
t - l

sOT/y = 2Ji/y® Σ ySli.Mtj as a left Ri-module.

Proof. Let A/N=^ΘRi and e = Σ^/ as in § 1. Then Λ = BomeAe{Aey Λe)

and /̂î  is an hereditary semi-primary ring by Propositions 1 and 2. Further-

more, Ae is a finitely generated £Λ#-protective module, and hence,
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where Γ-eAe, and {/,} is a set of non-isomorphic primitive idempotent elements

in Γ and all s, are finite. We may assume n{fi)>n(fn-Ί) for all i. Hence it

is clear that Λ= Γn((/iΓ/i)S l f . . . , (fnΓfn)sn (/ίΓ/Xs.-xs,)). The second

part is clear from Theorem 1.

We shall modify slightly the above theorem.

LEMMA 8. If n{ei) - n(ei±1) = =n(en-s), then ekAβp-(θ) for k<i + s,

i<p<i + s- 1 and

Proof. Since Nep = ̂ @{AedQl for i<p<,i-\-s from the assumption,

= V1 ®(ekAeι)Qι. Hence if k<i + s, βkAei = (0) by Lemma 7.Σ

LEMMA 9. n(ei+ι) <n{ed <n{eivι) -f 1.

Proof. Let t-n(e;+1). Nei- Ί>Ί Θ I

= (0). Hence ^(^ ) < ί + l .

First we assume that Λ is an hereditary semi-primary ring such that Λ/iV

= Σ θ Jί. We assume N"'1 * (0), iVn- (0). Then it is clear that n{eL) =n-l.

If we classify e\s by a relation e~-e'€=>n(e) = n(ef), then we have (n — l)

classes by Lemma 9. Furthermore, if g;, . . . , βi+t-i are in a class then we

put Ri - βiAβi® ®ei+t-iΛen.t-ι. Then /i = T«(J?, 3K, ,y), where

(8) ^ - • - • i K £ ί ^ " Mi+u+t-ι

and iV= anΛ(Λ-iTOn-ltΛ-2 3«2,i* (0). Therefore, 3Ri,y2Wif,--i9n/-i./.a 2Ry+i.y

% (0). Hence we have in general.

THEOREM 4'". Let A be an hereditary semi-primary ring such that iVn"1 * (0),

j\[n = (0). 77z£/z /I es isomorphic to an induced g.t.a. matrix ring Tn{Rιy . . . ,

iv?n 5J?ί,y) <? r̂ semi-simple rings such that all M/,y#(0). Furthermore,

Tn-i+ι(Ri, . . . , i?n I 9ftι\y) ^ also an hereditary semi-primary ring with radical Nι

such that NΓ1* (0), Λ7""ί+1= (0).

Remark 4. The expression of A in Theorem 4'" is not unique. For example,

' Δ
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Then A is hereditary by Corollary 2. However we have two expressions as

Theorem 4'":

A
0 A

A 0

A A

0

A
A A

0

and

The latter is as in Theorem 4'".

COROLLARY 4. Let A be as above. Then for any two-sided ideal % in A

gl aim A/%<n-I.

We shall give one more remark for this expression.

From Theorem 4", we do not lose a generality if we consider a case of

Λ/iV=Σ®4/. If n(eι) =w(e, + 1) = ••• = »(*,>*) >n(ei + t-i) = # # = »(e/m-/')

> then for any such that i<j<i + t we have Nej = Aes® , where

/ + ί + l < 5 < / - f f + f. Hence esNej* (0). Therefore, if Mi.y is as in (8), then

each column of M/,/-i is not zero. Since Mi,jΏMi,i-ιMi-i,i-2 M/+i,y, each

column of M/,y is not zero. Conversely, in an expression in Theorem 4'", if we

assume that each column of M, ,, -i is not zero, then each unit element e of simple

components of Ri has the same n(e) and converse. Under such an assumption

we have a unique expression up to isomorphism.

We call such a representation of hereditary ring a left normal representation

as a g.t.a. matrix ring.

If we start from properties of eN instead of Ne, we have the similar argu-

ments as above.

By nf(e) we denote an integer such that eNn* (0), &/Vnfl = (0). In general,

there are no relations between n{e) and n'{e). For instance

Then n(ez) = 1 and w'(e8) = 0.

However from the above observation we have

PROPOSITION 3. Let A be an hereditary semi-primary ring such that N*1'1 *? (0),

Nn = (0). Then for any idempotent element e n(e) —n — n'{e) if and only if A

Pias a right and left normal representation as a g.t.a. matrix ring.
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Finally we give a characterization of a g.t.a. matrix ring over semi-simple

rings. We recall the definition of connected sequence of primitive idempotents,

(cf. [11], § 1. We do not need an assumption N2 = (0)).

A sequence (eQί eiy . . . , en) of primitive idempotents in A is called con-

nected if βi+iNei* (0) for / = 0, . . . , n- 1 and we denote the maximal length

of connected sequence by l(Λ).

PROPOSITION 4. Let A be semi-primary. Then gl.dim Λ/N2 = 1{Λ) = liΛ/N*)

andNI{A)+1={0).

Proof. It is clear that l{Λ)>l(Λ/N2). If eNf* (0) and eNfQN2, then we

may assume eNf<^N\ eNf^ΞN^1. Then eNf = eNsf. Hence, there exist primitive

idempotents 0o=/, el9 . . . , es = e such that ei^iNe^N2. Hence, (/, eu . . . ,

es-u e) is a connected sequence in A and A IN2. Therefore, l(Λ)<l(A/N'2).

We know gl.dim Λ/N2 = l(A/N2) by [11], Proposition 2.

THEOREM 5. Let A be a semi-primary ring with radical N. Then the following

conditions are equivalent.

1) A is a g.t.a. matrix ring over semi-simple rings.

2) l{Λ)<oo.

3) gl.dim A/N2 <oo,

4) A is a homomorphic image of an hereditary semi-primary

ring Ω such that 1{A) =l(Ω). (cf. [2], Theorem 4.1 and [11], Theorem 5).

Proof. 1) -+2). Let A = Tn{Ri MitJ) ', Ri semi-simple rings and Γ= Tn{Rι 0).

Then A = Γ®N. Since we can replace idempotents in a connected sequence

by isomorphic ones, we may assume that idempotents in a sequence are in Γ.

Then et+iNei^ (0) implies p(i) <p{i-h l), where ei^R?H). Hence, every length

of connected sequence does not exceed n.

2) ->3). It is clear from Proposition 4.

3)->4). Let fi £» be mutually orthogonal idempotents in A such

that EiΔEilEiNEi is a simple component of A/N. Since 1{A) < °°, EiNEι= (0).

Let Γ = Σ θ E , v ί E f Cyί. We use a similar argument to [11], §2. Put Q = Γ θ

NΦN&N® ®N®N® (g)iVΘ . By the natural multiplication Ω
Γ Γ Γ

becomes a ring. If N®N- 0iV> (0), then there exist idempotents e l9 fι in
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Γ and m in N such that esnsfs® ββiWi/i^O. Hence, eiNfi* (0) and

# 0 for all /, which means // f i ̂  e, and fi+iNfu-i # (0). Therefore, iV® ® JV

= (0). It is clear that iV(£) = NΘN&NΘ = i2®iV. We have a natural
r

epimorphism ^ of Ω to Λ by sett ing ψ {rA-nι + n2®n3+ ' )=r+nί + n2nΆ

•f *). From the construction of i2 we know that Ω is hereditary and l(Ω)

>/(/ί). However N(l)l(A)+1 = (0). Hence, l(Ω)<l(Λ) by the following proposi-

tion 5.

4) -*1). It is clear from Theorem 4'".

Remark 5. From Proposition 4 and Theorems 2 and 5 we obtain l(Λ) =

gl.dim Λ/iV2^gl.dim Λj% for any twoside ideal 91 of Λ.

4. Applications.

In this section we shall give some properties of hereditary semi-primary

rings as applications of results in § § 1-3.

From Theorems 4, 4" and 4'" we have

THEOREM 6. Let Λ be an hereditary semi-primary ring with nilpotency n of

the radical. Then for any two-sided ideal % in A

gl.dim Λ/%<n-l.

Furthermore, if A/N is a directsum of m simple rings and N+ %/N is a directsum

of s simple rings, then

gl.dim A/%<m- s + 1.

(cf. [4], Theorem 8 and [11], Proposition 7).

The following proposition shows that the first inequality in the theorem is

best, which was given in [4], Corollary 11.

PROPOSITION 5. Let A bean hereditary semi-primary ring. Then l(A) =. 1{A/N2)

= gl.dim A/N2 is equal to (the nilpotency of N) - 1.

Proof. From Theorem A1" we know 1{A) + 1 = the nilpotency of N.

PROPOSITION 6. Let A be an hereditary semi-primary ring. If AIN is a simple

ring, then so is A.

PROPOSITION 7. The center of an hereditary semi-primary ring A is a directsum

of fields. Especially A is indecomposable if and only if its center is a field.
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Proof We may assume that A is isomorphic to a g.t.a. matrix ring Tn

(Ri : Mij) over simple rings Ri. It is clear that each component of center C

of A is contained in the center of R{. We denote the center of Ri by C, . For

Mij* (0) we put Lij = {c| e C/, there exists a unique element c'(c) in Cy such

that cm^mc'(c) for all m e M , ,/}, and i?y,/ = {c'| e Cy, there exists a unique

element c(c') in Q such that mc'-c(c')m, for all m&Mij). It is clear that

L* ,y and Rjj are fields and are isomorphic each other. We consider a path

from the index 1 to i tx = 1, i2j . . . , zV = z such that M, fc, , Λ f l =*F (0) or M, fc hl, , fc =*F

(0) for all &. By / we denote all indexes which is connected to 1 by the above

path. Then A = Aι®A1c where At consists of all elements in A whose (£, j)-

components are zero for i, j^Ic. If A is indecomposable, then every index is

connected to 1. Therefore, in this case we know from the above observation

that C is isomorphic to a subfield of ΠRi.ki Hence in general C is a directsum

of fields.

PROPOSITION 8. Let A be an hereditary semi-primary ring. We assume A is

indecomposable and K is the center of A. A®L is hereditary and semi-primary
K

for all extension field L of K if and only if A/N is separable over K, (K-άim A/N

- 0 ) .

Proof By Theorem 4" A is isomorphic to a g.t.a. matrix ring Tn(Ri M, ,y)

over simple rings Ri. If A®L is hereditary, then Rj®L is hereditary by
K K

Lemma 2, since Λ(g>L= Tn(Ri®L Mij®L). Since A0L is semi-primary, so
K K K K

is Ri®L. Let C, be the center of Ri. Then d®L is the center of Ri®L.
K K K

Hence d®L is a directsum of fields by Proposition 7. Therefore, Ri®L is a
K K

semi-simple ring with minimum conditions for any L by [10], p. 114, Theorem

1. Thus, we obtain from [6], Theorem 1 that LR, : HG<°°. Since C, is

separable over K, so is Ri. Conversely, if A/N is separable over K, then [///

N : i Π < °° by [13], Theorem 1. Hence, iV<g)Z, is the radical of Λ®L. Since

N is Λ-projective, N®L is Λ<g>Z,-projective. Therefore, Λ<g)Z, is semi-primary
K K

and hereditary.

LEMMA 10. Let A be a g.t.a. matrix ring Tn{Δk ', Mij) and Γ- 7V,(Ji, . . .,

0, . . . , An \ Mkj - (0) // k or j = i). If A is hereditary then so is Γ.

Proof. Let e = T»(0, . . . , l, ,0. . . 0) and E=l-e. Then Γ = EAE. EA
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= EAEΘEAe. EΛe is a left ideal of Γ' = Tn-, +iU, , . . . , Δn I Mkj). Hence,

EAe is Γ'-projective. Furthermore, by Lemma 3 we obtain 0 = l.άimΓ>EAe =

LdimΓ»EAe = l.dimΓ£Λe, where Γ" = Tn-i(Δi+u . . . , Δn ', Mkj). Therefore, £Λ

is Γ-projective. Since N(Γ) = JE/VE, £WE is Γ-projective.

THEOREM 7. 2>ί A be an hereditary semi-primary ring and M a finitely

generated projective A-module. Then HomΛ(M, M) is hereditary and semi-primary

and so is eAe for any idempotent element e in A.

k

Proof M^ Σ θ (Λenj))s*. Hence, HomΛ(M, M) =

(skxspϊ), which is an induced g . ta . matrix ring from Γ = Tk(euj)Aenj) e^p)Aei{Q)).

From Lemma 10 we know Γ is hereditary and semi-primary. Hence, so is A

and eAe = HomA{Aey Ae) is hereditary.

PROPOSITION 9. Let A be an hereditary semi-primary ring and M a projective

left A-module. Then the annihilator ideal % of M in A is a direct summand of A

as a left module and A/% is hereditary.

Proof. We may assume that A/N is a directsum of division rings. Since
t t

M^'ΣiAei)8*, 31 is equal to the annihilator ideal of Σ ^ . If we denote the

annihilator ideal of Aei in A by 31/, then 31 = Π3ίt . Let A = Tn(Δi M, ,y) and

ei= Γn(0, lp(l ,, 0 0). Then Λ# = ΓΛ(0, . . . , Δ?ii)9 0 M'k,ι = (0) for l*p(i)9

M'k,p(i) = Mk.Pίi)). It is clear that 3te> = Λ^ if MΛ.P(/) = (0) and 3ί ;^= (0) if

Mk, P(ί) ̂ F (0). Hence, 31; = ΈAer. Therefore, 31 = Σ Aeί{s). We note that Λf/<*>, A
β = l

= (0) if ^=^some l(q). Hence, A/% = eAe for some idempotent element e.

Therefore, A/% is hereditary from Theorem 7.

PROPOSITION 10. Let A be as above. Then there exists a minimal faithful left

ideal L and every faithful left A-projective module contains an isomorphic image

of L as a direct summand.

Proof Let Λ / i V - Σ θ Λ ; and Tn(Ri \ 3R, ,y) a g . ta . matrix ring as a normal
ρ ( t ) l

right representation, namely Ri = Σ θ Δk9 Mp q is a Ap- ΔQ module and 9ft, y
fc-p(ί)

is as in (8) and furthermore, each row of 5tt, ,y is non-zero. From this as-

sumption we can see as above that AE\ — L is a faithful left ideal in A where

E i = Tn(li, 0 0). Let M be a faithful projective Λ-module. Since

and eM^ (0) for primitive idempotent et in yίEi, M^A
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COROLLARY 5. Every hereditary semi-primary ring is a subdirectsum of finite

many of hereditary rings in the endomorphism ring of vector space over a division

ring.

Proof. Let L be a minimal faithful left ideal and L = Ae{Θ ® Aet.

Then it is clear that Aβi{i = l, . . . , / ) is a right module over a simple ring

(^-module in the above). Hence, we have the corollary from Proposition 9.

As a related problem to Corollary 5, we consider hereditary rings in the

endomorphism ring of finitely generated module M over a division ring A. Let

A be such a ring and N=N(A). Then we have a chain of Λ-module :

NM3 ^N^M^rfM^ (0). We put A = W G H O I Ϊ I , ( M , M), X

for all /}. M = MiΘM2Θ @Mt as a J-module such that N{M = Λf,>iφ

ΘMί. Then it is clear that Λ = Tt(Ani9 . . . , Λ, Jimxnj)) where CM/ : J]

= «/, and N{2Y= (0), iVU)'" 1 * (0).

LEMMA 11. A{pxq) ® {qxs)?z A(pxs).
Δq

I o \
Proof. Let β, = *' 1,0- 0 in A(pxq). Then A(pxq) = Σ © M « . Hence

\ 0 /

A(pxq) φA(qxs) = S # ® A(qxs). It is clear that ei®A{qx s)^i[ A A
0

From this lemma and Corollary 2 we know that A is hereditary.

PROPOSITION 11. Let A be an hereditary semi-primary ring in a simple ring

An with nilpotency t of N and we assume that A has the unit element of An. Then

there exists a maximal hereditary semi-primary ring in An with nilpotency t which

contains A.

Proof Let A be as above, Γ be an hereditary semi-primary ring containing

A and let its radical N1 have the nilpotency t. We may assume Γ = Γ. We

consider a chain; M ^N'M^> o>Nft~ιM^> (0). It is clear that this chain

is a composition series as a Γ-module. Furthermore, this is a chain as a A-

module and M has a composition series of length U s a A -module. Hence,

N'M^NM, N(<1MΏNN'MΏN2M- . Hence N{M=NfiM. Therefore, f = A.

PROPOSITION 12. Let An be a simple algebra over a field K and A an hereditary

algebra with \_A : Kl < °°. We assume that A contains the unit element of An

and its radical has the nilpotency t. A is a maximal hereditary ring with nilpotency
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t t

t in Δn if and only if A/N^ Σ Θ Ani and Σ ^ / = n.
i = 1 t = 1

Proof, The "only if" part is clear from Proposition 11. We prove the "if"

part. From the assumption and Theorem 4"' A = Tt{Ri Mij) Tf is a simple

algebra and M/,y^ (0). Let 1 = ex + e2+ -f e<, where #,- is the unit element
n(i)

in Ri. Further e, = Σ^'.y is a decomposition of e, into the mutual orthogonal

primitive idempotents in An. Then we may assume that those e\js are a subset

of matrix units in An. eiAeA^Δnt)ΩeiΔnβi = J ^ ). Hence, m<n(i). However

since Σ ^ / ^ ^ , tii = n{i) for all /. Therefore, ^vί^ = βiΔei since C/ί * ULD<°°.

Furthermore, βiΔnej = eiAneiMijejΔnej = M, ,y, since Mi.y^CO).

5 Hereditary rings with minimum conditions

In this section we shall study hereditary rings with left or right minimum

conditions. Such a ring is also semi-primary. Hence, all results in § § 2 and

3 are valid for this ring. However, we give another approach to those results.

First we consider A such that Λ / i V = Σ θ 4 . Let 1 = Σ ^ as in §3. For

any idempotent element e we define l{e) as follows: l(e) = the composition

length of Λe as a left ideal. We can arrange {&) as /(£,-)>/(ef +i) for all /.

Then we have similar results for l(e;) to n{ed. From Lemma 5, we have

Lemma 7 for l(ed and etc.

LEMMA 12. Let Λ be a g.t.a. matrix ring Tn(Ai Mij) over division rings

Ai. Then l(ed = Σ CM/,/ : Jy], where *,-= Γ«(0, . . . , 1, , 0, . . . 0).

Thus, we have from T h e o r e m 4'"

THEOREM 8. A is an hereditary ring with left minimum condition if and only

if A is isomorphic to a g.t.a. matrix ring Tn(Rt I Mij) over semi-simple rings

Ri, which satisfies the conditions in Theorem 4n and Mij is a finitely generated

Ri-module for all i>j.

We note we do not have a relation as Lemma 8 for l{ed and that there are

no relations between l(ed and n(ed in general.

PROPOSITION 13. Let A be an hereditary g.t.a. matrix ring Tn{Ai Mij) over

division rings. Let tk = lMj,k : 4/1 Then l(ed = 1 + 'Σtkliβk), where Jfj.k = Mj,k/

Proof.
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. Mn.l

and Mj,i is a left Jy-module. Hence, since Nei is Λ-projective, Nei = Σ ® (AekYk

and iV̂ ί is a maximal Λ -module in /l̂ /, l(ed — *Σtkl{ek) + 1.

PROPOSITION 14. Z,£ί A be an hereditary semi-primary ring such that A/N =
n

Σ Θ 4 Then Nn = (0). Furthermore, N71'1 # (0) if and only if ei^Aei * (0) for

all i. In this case l) etAej^ (0) for all i>j. 2) LβiAej : Δβ>leiΛej, : J/], ίeiAej:

i f > i (res/). i>i'). 3) l(eι) > l{ei+1). 4) If A satisfies the left minimum condition,

then l(e) >l(e') is equivalent to n(e) >n(e').

Proof. We put Mij = βiAβj. Then A is a g.t.a. matrix ring Tn{Δi Mij).

Hence Nn =• (0). Nn~ι ^ Mntn-\Mn-\,n-2m ' ' M2,i Since ^i,/5 is monomorphic

by Theorem 1, ^ " " ' # ( 0 ) if and only if e^iAβi = Λfί+ifί # (0) for all /. We

assume that all Λf,•+!,,•* (0). Then MijΏ.Mu-χMi-u-2- -Mj+u* (0). 2) If

; ' > / , then MijΏMijMfj. Hence [Λf/,, : J, ]>CM, ,y. : J, ] and {Mij : ^ ] >

CM,-,.// Jy/] since ^ is monomorphic. 3) By Lemma 12 and 2) we obtain l(ed

= Σ CM/,, : Jy]> Σ CM/.i+i : Jy] = /(^/fi). 4) is clear from definition of
j = i + 1 J-i + 2

/( ) and «( ).

PROPOSITION 15. Let A be as in Proposition 13. If Nn~x is a non-zero irreducible

left Λ-moduley then Δi is monomorphic to J, +i and A satisfies the left minimum

condition.

Proof. Nn~ι = Mn,n~ι - - * M2,i. Since Aen = enAen = Δn, N
n~ι is an irreducible

J«-module and hence, DV"*"1 • Δnl = 1. Furthermore, Nn~ι contains an isomor-

phic image of MΛ,n-i * M, +i,t as a left /ί-module. Hence CMi+i,ί : Jt+iΠ = 1,

say Mi t-i,, = Jί+iW +i. Since M, +i,, is a right J,-module, o"m/+i = nn+id' for some

δ ' e Δi. It is clear that a mapping <5-»d' is a monomorphism of J/+i to J/.

LEMMA 13. Let A be an hereditary g.t.a. matrix ring over Δi such that LMij:

Δi] = LMjj : Δ/} = 1 for all i, j . Then A is isomorphic to a usual tri-angular

matrix ring over Δ, where Δ^Δj.
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Proof. First we choose a generator m, ,ι-i of M, ,, -i for z = 2, . . . , n

M/,i-i = mύi-iAi-i. We define a generator m, ,y of M, y as follows : w, j = W, , M

• mJ+1,j. Since Λ is hereditary, mi,j*0. It is clear from the definition of

î,y> tm.jtnj.k = m, ,fc. As in the proof of Proposition 15 we obtain an isomorphism

oci.j of J2 to Δj such that xmij — mijx*iij for jte J, . Since mijmjtk = mi,k, we

have ccijocj,k- cti,k. Let Γ be a usual tri-angular matrix ring TW(J J) over

J. We define a mapping Φ of Γ to A as follows for an element γ = T(nj)

φ(r) = Tntr^ymij), where w, ,, = 1/. Then we can easily check, by noting the

above observation, that Φ is isomorphic.

THEOREM 9. Let A be an hereditary ring such that A/N is a directsum of n

division rings. Then the following conditions are equivalent:

1) A is a usual tri-angular matrix ring over a division ring.

2) A is a general uniserial ring and Nn~x^ (0).

3) ϊβnΛei : eiAeJ = LenAeι : enAen~\ = 1 and Nn~ι * (0).

4) lied, r(en)<n, and Nn'x^{0).

5) n{ed = l(eι) = r(en) and Nn~ι*(0).

Where N is the radical of A and {ei) is the set of non-isomorphic primitive idem-

potent elements as the beginning of this section, and r{e) is the composition length

of eA as a right A-module.

Proof. From the assumption and Theorem 4", we know that A- Tn(Δi

Mij), where the J/s are division rings.

1) ->2) is clear.

2) ->3). Since Aa has a unique composition series, we obtain that LMij

Δil - 1 (resp. [M/,; : Ajl = l) for all i>j.

3)->4). By Proposition 14 we have LMij : Δϊ\<[_Mn,ι Δnl = 1. Hence

l(edy r(en)<n.

4) ->5). 4) implies clearly that l(ei) = n - iΛ 1 for all i and hence LMij :

Δβ = 1. Therefore, «(^ ) = l(ed.

5) ->l). Since n(ed =n(ei+ι) + 1 by Lemma 8, »(^), r(^«) = «. Therefore,

LMij : Δβ = ίMij : Δjl = l as above. Hence, we have l) from Lemma 12.

Remark 7. In Theorem 9 if we replace the assumption "A/N is a directsum

of ?z division rings" by simple rings, then Theorem 9 is true provided we replace

l) by 10 A is a g.t.a. matrix ring Tn((Δ)Si Mij = (s, xsy)-matrices over J).
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Appendix.

Let R be a discrete rank one valuation ring with quotient field K and Σ

= Kn. We know, by [8], Theorem 6.2, all types of hereditary orders over R

in Σ We shall give another proof by a similar argument to § 4.

By standard argument (cf. [8], § l) we may assume that R is complete.

In this case we can use Lemma 5. Let p be a unique maximal ideal in R and

{βi) the set of primitive idempotent elements as in §1. Then eΛe is an

hereditary order in eΣfi, where e = Σ Φ and eΛe/eNe is a directsum of division

rings.

First, we assume that A = eΛe and Σ = eΣe. Since Σ^ί is an irreducible

left ideal in Σ by ClU, Proposition 2.8, we may assume that a is a matrix

unit βij in Σ Furthermore, we may assume that A is contained in a maximal

order Ω = Rn. By [8], Lemma 3.2 we know that N{Ω) = J)i2<iV. Let Λ = Λ/

LEMMA A. If Ne^Aej, then l) 0/,;eΛ, Nei = Aej,i, Nβi/pΩe; is A/pΩ-projective

and l(ei) = 1 + /(<?/) or 2) ΛVe, = Λpβ .f.

Let ^ : Aej~+Nei be an isomorphism. ψ(ej) -nei^βjnei for some

n<BN. Since p^N, there exists A in Λ such that λejnej - pβi = edejnei. Hence,

p = e-λejnei. Therefore, l) edej^p&ij and ejnβi^e'ejj or 2) eiλej = e, and ^w,-

= pε'ejti, where e, e' are unit elements in R. Case l ) . Nei = Aejnei = Aeji and

ψ(pΩej) = pQej,i = pΩei. Hence, Nei/pΩei^A/pΩ'ej. Since Z ^ ,/ is irreducible,

LEMMA B. A/pΩ is an hereditary ring with minimum conditions.

Proof. Since N=*ΣNej, N/pΩ ̂ Σ^N/pQ'ei is Λ/j)42-projective by Lemma

A and a fact that Net is indecomposable.

LEMMA C. We assume /(^i)>/(^ +i) for all /, ί/z<??z /(?/)

P/Ό6>/. We assume that /(?«) < l{en-i) < </(?/+i). Since for « <j<>i+ 1

Nej^Λβj+i by Lemma A. Hence ej+iNej^ej+iAej^i. Therefore, ^"Z^"= Tn-i(R/

p Mij — R/p) by Theorem 4' and the assumption 422Λ, where e= Σ ^ If

l(ei+ι) =/(^"i), then Nei^Aei+2 by Lemma A. Hence, έPZέP = Tn-i+i(R/ρ M, +i,,

= (0), Mk,ι = R/p for (A, / ) # ( / + l , i)), where e' = e/ + β. Therefore, AT has

the same components on ίίA and / + l ί A columns. Since /ί = HomΛίA ,̂ TV) by [73,
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Theorem 6.1, Λ^βi+ij, ei,i+ly which is a contradiction.

From this lemma we have that eiΛej = R for f>;. Therefore, we have

THEOREM. Let R be a discret rank one valuation ring with quotient field K.

An hereditary order over R in Kn is isomorphic to

R

R

R

P

R

R

P

P

R

where p is a unique maximal ideal in R.
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