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Abstract
We present an approximate relation for the effective slip length for flows over mixed-slip
surfaces with patterning at the nanoscale, whose minimum slip length is greater than the
pattern length scale.
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1. Introduction

The central task of fluid mechanics is to find a velocity flow field that satisfies the
Navier–Stokes equations and appropriate boundary conditions. The standard boundary
condition for flow over a solid surface is no slip. That is, fluid is at rest at the boundary;
it does not slip along the wall. With only the odd exception, experiments in the late
nineteenth century by Couette and others appeared to verify the no-slip condition.
However, the pioneers of fluid mechanics recognized that there was no a priori reason
to assume no slip, so the possibility of slip was considered. In fact, in 1823 Navier
proposed the boundary condition

u|z=0 = δ
∂

∂z
u

∣∣∣∣
z=0

, (1.1)

that is, the velocity at the boundary is proportional to the shear rate at the boundary.
The constant of proportionality is the slip length. If the velocity profile is linearly
extrapolated into the wall, the slip length is the depth into the wall at which the velocity
would be zero (see Figure 1).

The first reliable observation of slip was probably by Schnell in 1956 [19]. More
recent experiments confirm slip [3, 5]. In 2001, Craig et al. [8] reported a shear-
dependent slip length of up to ∼20 nm.
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FIGURE 1. Schematic diagram of slip length. Velocity at wall = slip length × slope and u(0)=
δ ∂u(0)/∂z.

Molecular dynamics simulations have been employed to study slip. In 1990,
Thompson and Robbins [20], working with a Lennard–Jones liquid, showed slip in
the hydrophobic regime, and epitaxial ordering of the fluid nearest the wall for the
hydrophilic regime. Bocquet and Barrat [1, 2] report a slip length exceeding 30 atom
diameters for a contact angle of 140◦.

The physical mechanism of slip is not yet understood. Vinogradova’s review article
from 1999 [21] provides an excellent overview of slip. In it she identifies three
candidate models for slip: (1) molecular slip; (2) existence of a gas layer on the
surface; (3) a boundary layer on the surface having very low viscosity. She notes
that the experimentally observed slip in thin capillaries [5] could be due to a gas gap
only one or two atoms thick, with a corresponding slip length 50 times thicker, that is,
10–20 nm.

Two papers by Zhu and Granick provide insight into the role of roughness in the
fluid–solid interaction. In the first, from 2001 [23], experiments with deionized water
flow over atomically flat surfaces show the onset of slip above a critical velocity. The
slip length varied with velocity, and the onset velocity correlated with contact angle.
The second, from 2002 [24], involved flow over similarly hydrophobic surfaces of
differing roughness. It was found that roughness suppressed slip, with the no-slip
condition holding for roughness above ∼6 nm.

In 2002, de Gennes [9] outlined a theory of slip caused by a gas layer at the
boundary, noting that the origin of the film remains obscure. However, prior to this,
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FIGURE 2. Water supported by surface tension on top of a nanoforest.

in 2001, Tyrrell and Attard published a study in which an atomic force microscope
was used to discover that a hydrophobic surface was almost completely covered in
what appeared to flat nanobubbles of height 20–30 nm. Recently (2008), compelling
evidence for nanobubbles on hydrophobic surfaces using infrared spectroscopy has
been provided by Zhang et al. [22]. Nanobubbles of air 5–80 nm high are stable for at
least days, but their existence is not necessarily ubiquitous; energy is required for their
creation, and their presence depends on the history of the surface.

It is now clear that the measurement of slip length is easily confounded. It is useful
to distinguish between the intrinsic slip length of a pure material, and the effective slip
length that is actually measured. Measured slip may in fact be for flow over a mixed-
slip surface, for example, air (nanobubble) and solid substrate. The static properties
of such a binary surface have been studied. In 1996 Onda et al. [15] demonstrated a
“super-water-repellent fractal surface”, on which a water droplet has a contact angle
of a remarkable 174◦. The droplet is supported by surface tension on top of the
hydrophobic dendrites (the Cassie state). This “Fakir” effect of superhydrophobic
surfaces (as they are now known), is accompanied by very low resistance to the
droplet’s motion [17]. Such surfaces occur in the plant kingdom, and are responsible
for the self-cleaning properties of the lotus leaf, for example [14]. A general schematic
of a superhydrophobic surface is shown in Figure 2. Water is supported by surface
tension on top of a hydrophobic nanoforest. With sufficient pressure, the fluid will
penetrate the nanoforest down to the substrate (Wenzel state).

Flow over superhydrophobic surfaces was investigated by Cottin-Bizonne et al. in
2003 [7]. Using a molecular dynamics simulation, they showed for the first time
that roughness could increase slip length: at sufficiently low pressure, a dewetting
transition occurs, and the fluid flows on the top of hydrophobic pillars, in the Cassie
state. In 2006 Choi and Kim attempted to fabricate a superhydrophobic surface for
maximum slip: teflon-coated silicon nanoturf [4]. They claim a measured slip length of
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20 microns, an order of magnitude greater than slip measured over a carbon nanotube
forest by Joseph et al. [12] that same year.

The utility of a relation for effective slip length in terms of intrinsic slip lengths
should now be obvious. The first major theoretical assault on the problem seems to be
by Philip in 1972 [16], analysing flow over binary surfaces consisting of alternating
strips of no-slip and no-shear (infinite slip) conditions. For strips parallel with the
direction of flow, the effective slip length is δeff = (L/π) ln sec(φπ/2), where L
is the period of the striping, and φ is the area fraction of the infinite slip region.
Lauga and Stone in 2003 [13] derive a (numerical) effective slip length for pressure-
driven flow down a capillary, whose wall consists of alternating rings of no-slip and
no-shear conditions. In a follow-up paper to [7], Cottin-Bizonne et al. advance an
argument for the effective slip length of alternating strips of infinite-slip and partial-
slip boundary conditions [6]. Introducing an interfacial friction coefficient, η/δ
(where η is viscosity), which is then area averaged, they show that

δeff =

[
φ

1
δs
+ (1− φ)

1
δg

]−1

, (1.2)

where δs and δg are the slip lengths of the solid (partial slip) and gas (infinite-slip)
regions.

In a previous paper [11], we have given a more rigorous foundation for result (1.2),
in the case of alternating strips of period L , where δs > L . It is the purpose of the
present paper to extend this analysis to the case of alternating squares of period L .

2. Method

The general physical situation consists of fluid flow across a surface of periodically
changing slip length. The velocity vector is Eu = (u, v, w), where u, v, w are the
velocities in the x, y, z directions, respectively. The fluid (nominally water) has
pressure p, density ρ and kinematic viscosity ν, and is assumed incompressible,
so obeys the continuity equation. Although our analysis is valid for an arbitrarily
changing slip length, for clarity we shall often speak of a binary mixed-slip surface, for
example water supported by surface tension on the top of a nanoforest (Cassie state).

Our first assumption is that the surface is the flat xy-plane z = 0. We denote the
intrinsic slip length of the solid area as δs and that of the gas as δg . The pattern
is square-periodic with period length L , and the area fraction of the solid portion is
denoted φ. The Navier slip condition holds at the surface.

Our second assumption is that the flow is driven by shear, not by pressure. At some
height D above the surface is a driving plate moving at steady velocity u D . The no-
slip condition holds at the plate, giving the top boundary condition u(x, y, D)= u D .
A consequence of the lack of pressure gradient is that the flow field is periodic:

u(x + L , y, z)= u(x, y + L , z)= u(x, y, z). (2.1)
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Thus, steady-state flow satisfies

(Eu · ∇)Eu =−
1
ρ
∇ p + ν∇2

Eu,

∇ · Eu = 0, (2.2)

v(x, y, D)= w(x, y, 0)= w(x, y, D)= 0, (2.3)

u(x, y, D)= u D, (2.4)

δ(x, y)
∂

∂z
u(x, y, 0)= u(x, y, 0). (2.5)

Consider the slip condition (2.5). If the slip length δ(x, y)→ 0 across the surface,
then the condition becomes the no-slip boundary condition: u(x, y, 0)= 0. On the
other hand, if δ(x, y)→∞, the slip condition ∂/∂z(u(x, y, 0))= u(x, y, 0)/δ(x, y)
reduces to the shear-free boundary condition ∂/∂z(u(x, y, 0))= 0. These two
extremes of the slip boundary condition give rise to two exact solutions for shear-
driven flow: the no-slip condition results in the Couette flow solution, in which the
velocity profile is a linear z gradient. The shear-free (perfect slip) condition results in
plug flow, in which the velocity throughout the fluid is identical to the driving velocity.
In addition, a shear-driven flow over a surface of uniform slip length will result in a
linear velocity profile—essentially Couette flow extrapolated down to the slip length.

We aim to find the effective slip length of a mixed-slip surface. This is the uniform
slip length that determines the linear velocity profile of fluid that is above a boundary
layer. The periodically changing slip length will cause a periodic flow disturbance,
which will die away with increasing height. The height H , at which the perturbation
has become negligible, is the height of the boundary layer. Obviously, there is some
choice in the definition of H . By dimensional arguments, H must be a function of L
and φ. The velocity at the top of the boundary layer is steady: u(x, y, H)= us .

What conditions hold within the boundary layer? We consider the superhydropho-
bic regime, wherein the surface consists of high-slip solid regions and near-perfect-slip
gaseous regions. If the boundary layer is sufficiently thin, then even the lowest slip
velocity will be close to the velocity at the top of the boundary layer. In terms of slip
length, δmin� H . Figure 3 illustrates this geometrically.

In other words, flow is close to plug flow. As such, it can be formally expressed
as a perturbation of plug flow. A suitable perturbation small parameter expressing the
closeness to plug flow is ε = H/δmin.

Now, H is not a length scale of the physical system; it is emergent. In a 2005
precursor to the present paper [10], it was shown that H ∼ L . Furthermore, in a
nanoscale superhydrophobic regime, with δmin ∼ 20 nm, we expect that δmin� L .
In that case, our perturbation parameter can be defined in a more fundamental manner,
ε = L/δmin. We present a perturbative analysis of plug flow for the nanoscale
superhydrophobic regime.
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Top velocity Slip velocity
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FIGURE 3. Physical illustration of perturbed plug flow. To remain close to plug flow, the slip velocity
must be only a small fraction less than the top velocity. Thus, the minimum slip length must be greater
than the height of the top velocity, that is, δmin� H .

In nondimensional form, the steady-state Navier–Stokes equations are

Re
[(

û · ∇̂
)
û
]
=−

p0L

µu D
∇̂ p̂ + ∇̂2û, Re=

u D L

ν
.

In the nanoscale superhydrophobic regime for which δmin� L , with δmin ∼ 20 nm,
the Reynolds number is negligibly small. With a vanishing left-hand side, the Navier–
Stokes equation reduces to the Stokes equation. Returning to physical units, the fluid
motion is now specified by the Stokes equation

1
µ
∇ p =∇2

Eu, (2.6)

and (2.1)–(2.5).
The top boundary condition, the driving velocity u D , is assumed to be well above

the boundary layer, that is, D� H . (An alternative approach is treat the problem as
a boundary layer problem: asymptotic solutions above and below the boundary layer
are matched at the boundary layer.)

Perturbed plug flow Formally, the exact solution is assumed to be expressible as a
power series in a small parameter, ε, with the zeroth-order term identical to plug flow.
After appropriate substitution, the boundary conditions are expressions containing ε,
with the zeroth order yielding plug flow.

The slip length is written as a variation about its minimum

δ(x, y)= f (x, y)δmin,
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where f (x, y)≥ 1 is a dimensionless function of position. The slip boundary
condition becomes

δmin f (x, y)
∂

∂z
u(x, y, 0)= u(x, y, 0).

In terms of the small parameter,

f (x, y)L
∂

∂z
u(x, y, 0)= εu(x, y, 0).

As ε→ 0, the no-shear condition leading to plug flow is recovered.
The exact velocity solution to (2.1)–(2.6) is expressed as a power series in ε,

Eu = Eu0 + ε Eu1 + O(ε2), (2.7)

where
Eu0 + ε Eu1 = (u0, v0, w0)+ ε(u1, v1, w1),

and the pressure as a perturbation series

p = p0 + εp1 + O(ε2). (2.8)

Both (2.7) and (2.8) are inserted into (2.1), (2.2), (2.4)–(2.6), giving, to first order:

∇
2
Eu0 + ε∇

2
Eu1 =

1
µ
∇ p0 + ε

1
µ
∇ p1,

∇ · Eu0 + ε∇ · Eu1 = 0, u0(x, y, D)+ εu1(x, y, D)= u D,

u0(x, y, z)+ εu1(x, y, z)= u0(x + L , y, z)+ εu1(x + L , y, z),

f (x, y)L
∂

∂z
u0(x, y, 0)+ ε f (x, y)L

∂

∂z
u1(x, y, 0)= εu0(x, y, 0).

(2.9)

Zeroth order Setting ε to zero in system (2.9) yields the zeroth-order equations

∇
2
Eu0 =

1
µ
∇ p0, ∇ · Eu0 = 0, u0(x, y, D)= u D,

u0(x, y, z)= u0(x + L , y, z), f (x, y)L
∂

∂z
u0(x, y, 0)= 0.

As defined, the solution is plug flow: u0(x, y, z)= u D , x velocity constant throughout
the channel.

First order Cancelling zeroth-order terms and dividing by ε yields the first-order
equations

∇
2
Eu1 =

1
µ
∇ p1, (2.10)

∇ · Eu1 = 0, w1(x, y, 0)= 0, u1(x, y, D)= 0,

u1(x, y, z)= u1(x + L , y, z), f (x, y)L
∂

∂z
u1(x, y, 0)= u0(x, y, 0)= u D.
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We eliminate pressure using the vorticity equation. Taking the curl of the Stokes
equation (2.10) gives

∇ × ∇
2
Eu1 =∇ ×

1
µ
∇ p1. (2.11)

The right-hand side of (2.11) is identically zero. The remaining equation ∇ ×
∇

2
Eu1 = 0 gives us three partial differential equations (PDEs)

∂3w1

∂y∂x2 +
∂3w1

∂y3 +
∂3w1

∂y∂z2 =
∂3v1

∂z∂x2 +
∂3v1

∂z∂y2 +
∂3v1

∂z3 ,

∂3u1

∂z∂x2 +
∂3u1

∂z∂y2 +
∂3u1

∂z3 =
∂3w1

∂x3 +
∂3w1

∂x∂y2 +
∂3w1

∂x∂z2 , (2.12)

∂3u1

∂y∂x2 +
∂3u1

∂y3 +
∂3u1

∂y∂z3 =
∂3v1

∂x3 +
∂3v1

∂x∂y2 +
∂3v1

∂x∂z2 . (2.13)

In order to capitalize on our boundary conditions, we want expressions in u1 and w1.
Equation (2.12) can be used directly. Equation (2.13) is differentiated with respect
to y, enabling a substitution for ∂v1/∂y using the continuity equation

∂v1

∂y
=−

∂u1

∂x
−
∂w1

∂z
.

This yields two PDEs in u1 and w1,

∂3u1

∂x2∂z
+
∂3u1

∂y2∂z
+
∂3u1

∂z3 =
∂3w1

∂x3 +
∂3w1

∂x∂y2 +
∂3w1

∂x∂z2 , (2.14)

∂4u1

∂x4 + 2
∂4u1

∂x2∂y2 +
∂4u1

∂x2∂z2 +
∂4u1

∂y4 +
∂4u1

∂y2∂z2 =−
∂4w1

∂x3∂z
−

∂4w1

∂x∂y2∂z
−
∂4w1

∂x∂z3 .

(2.15)

Because the flow is periodic, it is natural to write u1 as a Fourier series

u1(x, y, z)=
∞∑
Ek

UEk(z) exp
(
i Ek · Er

)
, (2.16)

where the wave vector Ek is a reciprocal lattice vector defined by integers p, q ,

Ek = (m, n)= (2πp, 2πq), k2
= m2

+ n2,

and the Fourier coefficient is

UEk(z)=
1

L2

∫ L

0

∫ L

0
u1(x, y, z) exp

(
i Ek · Er

)
dx dy.
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Similarly for w1,

w1(x, y, z)=
∞∑
Ek

WEk(z) exp
(
i Ek · Er

)
. (2.17)

The two velocity expressions (2.16) and (2.17) are inserted into (2.14) and (2.15). The
resulting expressions are true for arbitrary Er = (x, y), so it is required that, for all k,

d3

dz3 U (z)− k2 d

dz
U (z)= i

(
d2

dz2 W (z)− k2W (z)

)
m, (2.18)

k2 d2

dz2 U (z)− k4U (z)= i

(
d3

dz3 W (z)− k2 d

dz
W (z)

)
m. (2.19)

(The variables k and m are of course not independent.) After differentiating (2.19)
with respect to z, and multiplying (2.18) by k2, the two equations may be combined,
giving an ordinary differential equation (ODE) in W (z) alone (defined for nonzero k),

d4

dz4 W (z)− 2k2 d2

dz2 W (z)+ k4W (z)= 0,

whose solution is

W (z)=
(
PEk + QEk z

)
e−kz
+
(
REk + SEk z

)
ekz .

Now, the z velocity vanishes at the top of the fluid where z = D, that is, W (D)= 0.
Furthermore, D is arbitrarily large. For large D, the e−k D term is negligible, but
the ek D term is singular as D→∞. Thus, the top boundary condition holds if and only
if REk = SEk = 0. We are left with W (z)= (PEk + QEk z)e−kz . The z velocity vanishes at
the bottom surface also, hence W (0)= PEk = 0, leaving just

W (z)= QEk ze−kz . (2.20)

Equation (2.20) may be inserted back into (2.19) giving an ODE in U (z),

k2 d2

dz2 U (z)− k4U (z)= i QEkmk2e−kz,

whose solution is

UEk(z)=

(
PEk + i QEk

m

k2

)
e−kz
+ BEkekz .

This is defined for nonzero k. For k = 0, W (z) is not defined, and from (2.18), U (z)
satisfies d3U (z)/dz3

= 0, whose solution is U0 = A0 + B0z + C0z2, so that

u1(x, y, z)= A0 + B0z + C0z2
+

∑
Ek 6=E0

(
AEke−kz

+ BEkekz)ei Ek·Er , (2.21)
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where AEk = PEk + i QEkm/k2. Inserting this solution into the x component of the Stokes
equation

∂2

∂x2 u1 +
∂2

∂y2 u1 +
∂2

∂z2 u1 =
1
µ

∂

∂x
p1,

gives

2C0 +
∑
Ek 6=E0

(
AEke−kz

+ BEkekz)(k2
− k2)ei Ek·Er

=
1
µ

∂

∂x
p1,

so that

2C0 =
1
µ

∂

∂x
p1. (2.22)

The flow is shear-driven only, thus p is a periodic function of x . Therefore, by
integrating (2.22) over one period of x , we eliminate the right-hand side.

2C0L =
1
µ
[p1(L , y, z)− p1(0, y, z)] = 0.

The quadratic coefficient C0 in (2.21) vanishes. We now have

u1(x, y, z)= A0 + B0z +
∑
Ek 6=E0

(
AEke−kz

+ BEkekz)ei Ek·Er .

The top boundary condition is

u1(x, y, D)= A0 + B0 D +
∑
Ek 6=E0

(
AEke−k D

+ BEkek D)ei Ek·Er
= 0.

Now, D is of course arbitrary, and is assumed to be sufficiently large that perturbations
due to the surface have died away. Thus, the periodic part (sum) of u1, and the mean
part (constant), must both vanish at z = D. The e−k D term is negligible, but the ek D

term is singular as D→∞, so for all k the coefficient BEk is zero. The constant term
must be A0 =−B0 D, and we are left with

u1(x, y, z)= B0(z − D)+
∑
Ek 6=E0

(
AEke−kz)ei Ek·Er .

To find B0, we make use of the first-order slip condition

∂

∂z
u1(x, y, 0)=

u D

f (x, y)L
.

Differentiating the definition of zeroth-Fourier coefficient gives the relation

d

dz
(B0z − B0 D)=

1

L2

∫ L

0

∫ L

0

∂

∂z
u1(x, y, z) dx dy.
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Evaluating at z = 0 gives

B0 =
1

L2

∫ L

0

∫ L

0

∂

∂z
u1(x, y, 0) dx dy,

=
1

L2

∫ L

0

∫ L

0

u D

f (x, y)L
dx dy =

u D

L

〈
1

f (x, y)

〉
,

so our x-velocity pertubative solution is

u(x, y, z)= us + ε
u D

L

〈
1

f (x, y)

〉
(z − D)+ ε

∑
Ek 6=E0

(
AEke−kz)ei Ek·Er .

The small parameter ε may be folded into the area average f (x, y) term

ε
u D

L

〈
1

f (x, y)

〉
=

L

δmin

u D

L

〈
1

f (x, y)

〉
= u D

〈
1

δ(x, y)

〉
.

Thus, our final velocity equation is

u(x, y, z)= u D + u D

〈
1

δ(x, y)

〉
(z − D)+ ε

∑
Ek 6=E0

(
AEke−kz)ei Ek·Er .

Effective slip length At the driving height D above the surface, perturbations due to
the mixed-slip surface have died away, and the fluid velocity is constant. The shear
rate at D will determine an effective slip length, via the Navier slip condition:

δeff
∂

∂z
u(x, y, D)= u(x, y, D),

δeff

[
u D

〈
1

δ(x, y)

〉
+ ε

∑(
−k AEke−k D)ei Ek·Er

]
= u D.

Now, the sum term is negligible at D, so we are left with:

δeff =

〈
1

δ(x, y)

〉−1

. (2.23)

This is the key result of this paper.

Perturbed Couette flow A similar analysis perturbing Couette flow yields an
effective slip length given by the simple area average of slip lengths,

δeff = 〈δ(x, y)〉.
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3. Discussion

Equation (2.23) is valid for δmin� H , that is, for a nanoscale superhydrophobic
surface, where the perturbed boundary layer is sufficiently thin that flow within the
boundary layer can be considered plug-like. The effective slip length determines the
flow for the rest of the fluid, which need not be plug-like.

For a binary gas–solid surface satisfying δs � H , with φ the area fraction of the
solid, the relation is

δeff =

[
φ

1
δs
+ (1− φ)

1
δg

]−1

. (3.1)

Thus, slip lengths add like (area-weighted) capacitors in series, or resistors in parallel.
Other formulations include

δeff =
δg

φ((δg/δs)− 1)+ 1
=

δs

φ(1− (δs/δg))+ (δs/δg)
,

which illustrate the basic form of inverse-φ-dependence δeff = 1/(aφ + b).
In practice, the slip length over gas may be very large. As δg→∞, the relation

reduces to δeff = δs/φ. In the case of alternating strips of period L , with a being the
length of the solid part, and a divergent gas slip length, we expect δeff = Lδs/a. If a
were held fixed, and L varied, then obviously a linear dependence of δeff on L would
result. This could hold in the case of carbon nanoforests, where the density is varied,
but nanotube diameter is unchanged.

Using the length scale L in the perturbation parameter has the advantage that it can
in principle be determined unambiguously. As noted, earlier work [10] has shown that
H ∼ L . For fixed L , it is expected that H peaks at φ ≈ 0.5. Now, in some regimes
with small φ, it will be the case that L > H . In those cases, an analysis assuming
δmin� L will still give valid results even though in fact δmin ∼ L , simply because it is
still true that δmin� H . This has been observed: our previous numerical calculations
in [11] agree with (3.1) for δmin values down to δmin ∼ L , and at δmin = 0.1L the
discrepancy peaks at φ ≈ 0.5, as expected. Cottin-Bizonne et al. compute values that
agree with (3.1) down to δmin = 0.1L [6].

One limitation of our work is the assumption that the interface is a flat plane. In
most real situations, some degree of curvature will be present. On a superhydrophobic
surface, pressure pushes the liquid down into the gas regions, increasing the surface
area of the liquid–gas interface. Nanobubbles on a hydrophobic surface obviously
have convex surfaces. Accounting for these effects would be a useful extension of
the work. A superhydrophobic microgrooved surface was studied by Sbragaglia and
Prosperetti, who used a perturbative approach to quantify the change in slip length
caused by curvature [18].

4. Conclusion

We have shown that for flow that is close to plug flow, over an idealized flat surface,
patterned with doubly-periodic variation in intrinsic slip length, with minimum slip
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length not less than the pattern period, the effective slip length is given by

δeff =

〈
1

δ(x, y)

〉−1

,

which, for a binary surface such as the fluid interface on a nanoscale superhydrophobic
surface, or a hydrophobic surface decorated with nanobubbles, reduces to

δeff =

[
φ

1
δs
+ (1− φ)

1
δg

]−1

,

where δs , δg are the intrinsic slip lengths of the solid and gaseous regions, respectively,
and φ is the area fraction of the solid region.
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