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SUMMARY

The occurrence of epidemics of vaccine-preventable diseases, and the immunization coverage
required to prevent them, is affected by the presence of households and heterogeneity in the
community. We consider a community where individuals live in households and are of different
types, according to infectivity and/or susceptibility to infection. We describe a method for
computing the critical immunization coverage to prevent epidemics in such communities and
discuss the effectiveness of immunization strategies. In a heterogeneous community where
individuals live in households several immunization strategies are possible and we examine
strategies targeting households, randomly selected individuals, or groups with highly intense
transmission, such as school children. We compare estimates of the critical immunization
coverage if we assume that disease is spread solely by random mixing with estimates which
result if we assume the effects of the household structure. Estimates made under these two sets
of assumptions differ. The results provide insights into the community effects of vaccination,
and the household structure of the community should be taken into account when designing
immunization policies.

INTRODUCTION

Immunization is one of the most effective means of
preventing infectious disease, but epidemics of
vaccine-preventable diseases continue to occur and to
cause significant mortality and morbidity, even when
high levels of vaccine coverage have been achieved [1].
The prevention of epidemics of disease is a major
objective of immunization programmes.

The potential of a communicable disease to cause
epidemics depends on several factors; inherent charac-
teristics of the disease, the community within which it
occurs and the effectiveness of control measures.
During the rising phase of an epidemic each person
infected with the disease is, on average, replaced by
more than one new case, and this level of replacement
* Author for correspondence.

constitutes an epidemic threshold. If each infected
person is replaced on average by less than one case,
the number of cases dwindles away, and the disease
will eventually disappear. If replacement occurs at a
level less than one from the introductory case, then
epidemics cannot occur. Replacement of cases is
described by the reproduction number of a disease
(R), which is the average number of secondary cases
occurring as a result of transmission from a single
infected person during his or her infectious period.

An immunization programme reduces the number
of susceptible individuals in the community and, since
transmission of disease occurs only to susceptible
individuals, immunization affects the ability of infec-
tives to replace themselves. There is a critical
immunization coverage above which each infected
person is replaced on average by less than one new
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case, which removes the potential of the disease to
cause epidemics. After a period, a successful immu-
nization programme results in little or no infection
with the target disease, with the consequence that
individuals can acquire immunity only by vaccination.
An immunization programme must therefore be
capable of preventing the occurrence of epidemics in
a population which would otherwise be completely
susceptible.

The replacement of cases in the particular situation
where all members of the community are susceptible is
described by the basic reproduction number (Ro).
Under the assumption that the community consists of
individuals randomly mixing with one another, the
minimum vaccination coverage needed to prevent
epidemics is related to the basic reproduction number
by the formula v* = 1 — 1 /Ro, where v* is the critical
vaccination coverage. This relationship was first
recognized by Smith [2, fig. 3] and derived by Becker
[3] and Dietz [4].

This concept of the reproduction number has
offered insights into the spread of epidemic diseases
and the immunization coverage required to prevent
them [5, 6]. However, in this form, it is based on the
idea that the community is composed of randomly
mixing individuals. In reality, the community is made
up of households, with higher levels of disease
transmission within households and lower levels of
transmission between households. The spread of a
disease is modified by this community structure, and
the aim of this paper is to explore the effects of
community structures on the transmission of disease
and on immunization programmes. We use an
approach based on the approximation of the early
stages of epidemic transmission by a branching
process [7, 8] to examine these effects.

We show that in a community of households the
replacement number of cases of an infectious disease
attributable to a single initial infective depends on the
household structure and increases with increasing
mean and variance of the number of susceptible
individuals per household (fis and cr| respectively).
We consider the effects of different levels of trans-
mission within households and the effects of indi-
viduals with different infectivity and/or susceptibility.
We examine the design and impact of immunization
strategies in a community of households it is possible
to design several different immunization strategies
with the same community coverage, but with different
effects on the parameters fis and a-%. For example, for
the same overall community coverage, immunization

may be accepted by all members of some households,
or some members of all households. These different
strategies have different impacts on the transmission
of infection, both between and within households, and
require different immunization coverages to prevent
epidemics. We consider estimation of the critical
immunization coverage in Section 7. Estimates of the
immunization coverage required to prevent epidemics
which have been determined from considering the
community to be made up of homogeneously mixing
individuals do not account for the impact of hous-
ehold structure and as a consequence differ from
them. These differences may be substantial and
estimates based on assumptions of uniform mixing
may therefore be misleading.

THE SPREAD OF INFECTION IN A
COMMUNITY OF HOUSEHOLDS

Infection in a community of households is transmitted
both between and within households. We assume that
infection is transmitted in the community by infected
individuals' making 'adequate contact' with other
individuals, that is, contact just sufficient to transmit
infection to a susceptible individual. Infection is
introduced into households by infected individuals
who have acquired infection in the community, and
transmission of disease then occurs within households
with infection of some or all susceptible household
members. We assume that there is no variation
between households of within-household transmis-
sibility, so that the probability of transmission to
susceptibles after introduction of disease into a
household is the same for all households.

Infection is thus spread from household to house-
hold and we can define a reproduction number for
infected households (i?H). The reproduction numbers
for individual infections and for infected households
are both epidemic threshold parameters and either
may be used to determine a critical immunization
coverage. However, for a community of households,
the reproduction number for infected households is
simpler mathematically [7], and is used here.

The reproduction number for infected households
is the product of the mean number of cases in a typical
infected household (v) and the mean number of
adequate contacts made in the community by each of
these cases with individuals from other households
(bc), so that RH = bcv [9]. The mean household
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outbreak size depends on the size of infected house-
holds and the extent of within-household transmission
to other susceptibles. We find

RH = —E(SCS), (1)

where /ix is the mean size of households and E(SCS)
is the mean of the product of S, the number of
susceptibles in the household of an individual ran-
domly chosen from the community, and Cs, the
eventual number of cases in that household if one of
its members is infected from outside [8]. A derivation
of this result is given in the Appendix.

The term S appears in this relation because the
probability of infection of a household is dependent
on the number of susceptible individuals in the
household. After the introduction of infection, the
eventual number of cases (Cs) within a household
then depends on the number of susceptible individuals
in the household and the extent of disease trans-
mission to them. Transmission within infected house-
holds may vary from complete, with infection of all
susceptible household members, to none, with only
the introductory case being infected, so that for a
household with S susceptible members, Cs may take
the values 1,2,..., S according to a probability
process.

We can more easily illustrate the effect of house-
holds on the spread of disease by assuming that
transmission within households is complete, so that
Cs = S, and for diseases such as measles and pertussis
complete infection of households is a good approxi-
mation [1, 10]. However, the effects hold more
generally, and we discuss the situation where within-
household transmission is less than complete below.
Where there is complete transmission, expression (1)
becomes

fix fix
(2)

where /is and as are the mean and standard deviation
respectively of the number of susceptible individuals
in a randomly chosen household. The term E(5^) in
this expression arises from the double effect of the
number of susceptibles in a household on trans-
mission, determining both the probability of house-
hold infection and the size of the subsequent
household outbreak.

A basic reproduction number for infected households

The basic reproduction number for infected house-
holds (RH0) obtains when all members of the com-
munity are susceptible. In this situation the number of
susceptibles within a household is equal to the
household size (/is = fiN and <rs = aN) and, where
there is complete transmission within households,

(3)

This relationship provides insight into the spread of
disease in the community and permits analysis of the
effects of immunization strategies. As with a uniformly
mixing population, immunization in a community of
households reduces the number of susceptible indi-
viduals, and to prevent epidemics, an immunization
programme must be able to reduce the replacement of
infectives to less than one when vaccination is the only
source of immunity. Equivalently, the replacement of
infected persons must be reduced so that RH is less
than one.

If all households are the same size (crN = 0), the
basic reproduction number is linearly dependent on
the mean household size. This is because transmission
occurs from individual to individual and infection of
any of the fiN susceptible individuals in a household
results in complete infection of that household. The
effect of the variance of household size on i?H0 arises
from the double effect of household size on trans-
mission. Since all household members are susceptible
(S = N) and E(A^) = /i2

N + <r2
N, if the mean household

size is held constant the variance increases with the
term E(S^) in expression (2). It is of interest to note
that this effect is similar to the effect due to the
variance of the rate of sexual partner change on the
spread of sexually transmissible diseases. This simi-
larity, for such different models, arises because both
models have incorporated some heterogeneity in the
potential to infect [17, equation (11.10)].

We illustrate the effects of the distribution of
household sizes on the basic reproduction number in
Figure 1. In this example we set bc = 1 and compute
RH0 for varying juN and <rN. For a given mean
household size RH0 increases with increasing values of
crN, particularly when the mean household size is
small. This means that a few large households, such as
schools or child care facilities, may have a large
impact on the transmission of communicable disease.
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Fig. 1. RH0 and the mean and standard deviation of
household size (S.D.). RH0 increases with increasing mean
and standard deviation of household size.

INCOMPLETE TRANSMISSION WITHIN
HOUSEHOLDS

For many diseases there is less than complete
transmission of infection within households. In this
situation, computation of the eventual number of
cases in each household requires the specification of
the various probabilities of within-household disease
transmission from individual to individual. As the
household size increases the expression for the
eventual number of cases becomes complicated, but
for smaller households simple expressions may be
written [11, 12].

We illustrate the effect of incomplete transmission
of infection within households for the case where
households consist of only one, two or three members
each. If all individuals are susceptible, we may write
expression (1) with an explicit term for E(SCS) (see
Appendix). Then

0-2 0-4 0-6 0-8 1
Standard deviation of household size

Fig. 2. RH0 and standard deviation of household size when
there is less than complete transmission of infection within
households. An example for households of sizes 1, 2 and 3.
The probability of transmission from a given infected
person to a given susceptible member within households is
set at p = {0, 0-3, 0-6, 1}. RH0 increases with increasing
standard deviation of household size for p > 0.

that the variance of household size lies in the range
0 ^ <r% < 1; if all households are of size 2, <r% = 0,
and if half the households are of size 1 and half of size
3, cr% = 1), we set bc = 1, and compute RH0 for several
values of p. When/? = 0 there is no transmission from
the introductory case to other household members
and /?H0 = bc. When p = 1 there is complete trans-
mission to all household members. For non-zero
values of p the dependence of RH0 on the mean and
variance of household size is maintained. The re-
production number increases with increasing variance
of household size whenever there is within-household
transmission, and this effect is greater for diseases
which have high levels of transmission within house-
holds.

.+2p + 2p2-2p3)], (4) A HETEROGENEOUS COMMUNITY

where h( is the proportion of households with i
members, and p is the probability of disease trans-
mission from a given infected person to a given
susceptible household member. When p = 1 (complete
transmission within households), this expression gives
the same result as expression (3). If the household
distribution and bc are held constant, RH0 increases as
the value of p increases.

The effects of incomplete transmission within
households on the reproduction number are shown in
Figure 2. In this example the community is made up
of households of sizes 1, 2 and 3, with mean size 2 (so

We have considered so far the existence of only a
single type of individual, with susceptibility and
infectivity being the same for all individuals in the
community. For control of communicable disease
consideration of the existence of several types of
individuals is essential, since individuals have mark-
edly differing susceptibility and/or infectivity depend-
ing on age, school attendance, sex or other attributes.
For example, there is much greater intensity of disease
transmission in schools and child-care facilities [13].

If we classify individuals into several types by virtue
of their differing susceptibility or infectivity we can
generalize expression (1) to include the effects of these
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differences. In a community of several types of
individual, an infected person may be replaced by
cases of several different types depending on the
number of adequate contacts he or she makes with
each of the different types. The basic reproduction
number for infected households is determined by a
matrix describing disease transmission between all the
types. The typical element of this matrix, Mi}, is the
mean number of infected type j individuals attribu-
table to a single type i infective. We write

M,,= i^L (5)

where bik is the mean number of adequate contacts
made by type i individuals with type k individuals in
the community, /iN is the average number of
individuals of type k in a typical household, and
E(Sk C}) is the mean of the product of the number of
type k susceptibles and the eventual number of cases
of type j in a typical household where a type k
individual has been infected from outside. Note that
this expression for Mi} is similar to expression (1)
describing RH0 for the situation where there is only
one type in the community. The introduction of
different types of individual complicates the com-
putation of RH0. Since adequate contacts are now
made between different types in the community, there
are several values for bik, there are several numbers of
types of susceptible in each household (Sk) and there
are several numbers of types eventually infected within
households (C}). If there are p types of individual, a
matrix of the Mfl has p rows and p columns, and /?H0

may then be computed as the largest eigenvalue of this
matrix [8].

A practical example of the importance of the effects
of different types is the higher rate of infection of
children attending school or child-care facilities,
compared with other individuals in the community.
Using the formulation above, we can define children
as being one of two types: they either attend school or
child care, or they do not, and the mean number of
adequate contacts made between children attending
school is different from the number of contacts
between children where at least one member of the
possible pairs does not attend school. The repro-
duction number for infected households can then be
calculated and increases as the transmissibility of
disease among school children compared with other
children increases, increasing the difficulty of epidemic
prevention.

IMMUNIZATION STRATEGIES

The success of an immunization programme in
preventing epidemics depends on its ability to reduce
the replacement of infectious persons in a community
to a value less than one, and thus to eliminate the
epidemic potential of the target disease. The re-
production number for infected households with
vaccination, RHV, describes the replacement of infec-
ted households when the community is made up of
both susceptible and vaccinated individuals and is
computed in the same way as RH0, but accounting for
the effects of the immunization strategy on the number
and distribution of susceptible individuals. The critical
coverage to prevent epidemics is found by expressing
RHV in terms of v^, the proportion of individuals
vaccinated under strategy y , setting Rav = 1, and
solving for vy.

Immunization strategies achieve their effects solely
by reducing the number of susceptibles in the
community and thus reducing the term E(5'2) in
expression (2). In a community of households different
strategies may be designed which affect the number
and distribution of susceptible individuals in the
community and within households in different ways.
For the same community coverage overall, different
strategies may have different effects on [is and <r2

s and
therefore on E(5^). Due to these differences, the
critical immunization coverage required to prevent
epidemics varies with the immunization strategy
adopted. Strategies available include immunization of
each member of a proportion of households, immu-
nization of a fixed proportion of members of all
households, immunization of a proportion of ran-
domly selected individuals, or (where they occur)
selection of specific types of individuals. We consider
each of these strategies in turn for a community made
up of individuals all of the same type and then for a
community with different types of individuals.

In the following discussion we assume that the
vaccine is fully effective in preventing infection and
that there is complete transmission of the disease
within households. In practice, vaccination may not
confer complete protection, so the proportions vacci-
nated may require adjustment to give the proportions
effectively immunized.

Strategy •'/ Hh, immunization by household

If we immunize on a household basis, by selecting a
proportion, vH, of households and vaccinating a
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proportion, vp, of members of each selected house-
hold, the overall coverage in the community is given
by the product vH vF. Only whole numbers of
household members can be immunized, and because
the household sizes are relatively small, vF can take
only certain values. In contrast, vH is only minimally
constrained in this way because the community is
made up of a large number of households. For a
typical household under this strategy, EiS2) in
expression (2) becomes

There are two extreme forms of this strategy. Under
strategy £fH we vaccinate all members of the selected
households, so that vF = 1, and we reduce the number
of susceptibles in the immunized households to
zero. A proportion (1 — vH) of all households then
contains only susceptible individuals, and
E(S'2) = (1 — VH)E(JV2). By substitution into equation
(2) we obtain

We set RHV = 1 and solve for vH to compute v£, the
critical proportion of households that needs to be
immunized to prevent epidemics for this strategy, as

Under strategy y H , contacts in the community made
by infectious individuals with members of immunized
households result in no further infection, while
contacts with members of unimmunized households
result in infection of entire households. Since
immunized households are entirely immune they can
sustain no within-household transmission, with the
result that the relationship v* = 1 — 1//?HO is also true
when the level of within-household transmission in
unimmunized households is less than complete.

The other extreme household strategy we label y F .
Here we immunize a fraction vF of members of all
households (vH = 1). This strategy reduces the number
of susceptible individuals in each household, but
leaves all households open to infection. However, the
chance of infection of a household and transmission
within households after the introduction of infection
is reduced by the limited number of susceptibles.

Under strategy <fY, E(S2) = (1 - vF)2E(A^). The
critical coverage of vaccination is found, as before, by
substitution and

By setting /?HV = 1 and solving for vF we find

Where the community is made up of large households,
so that the values that vF may take are not so
constrained by household size, £fF is a more efficient
strategy than SfK, since it requires a smaller pro-
portion of the community to be immunized to prevent
epidemics. It is more efficient because it exploits the
double effect of partial immunization of households
on transmission, the strategy not only reduces
transmission between individuals in the community,
and thus transmission between households, but also
reduces within-household transmission.

Strategy •'/',, immunization of randomly selected
individuals

Suppose individuals in the community choose to
accept vaccination independently, in contrast to
strategy y H F where immunization is accepted on a
household basis. Such a strategy, which we label Sfv

introduces variation in the immunized proportion of
each household's members and an additional binomial
variance term is required. Under this strategy,

and

where v: is the proportion of individuals immunized,
fiN is the mean household size and bc is the number of
adequate contacts made by an infected person during
the infectious period in the community. The critical
coverage required to prevent epidemics is dependent
on both RH0 and bc and is computed by setting
RHV = 1 and solving the resulting quadratic equation
for vt.

Comparison of strategies

Strategies may be compared by computing the critical
immunization coverage of the community required to
prevent epidemics under each strategy. If the com-
munity is made up of large households and only a
single type of individual, £fF is the most efficient of the
strategies discussed, requiring the lowest coverage in
the community. However, since only whole numbers
of individuals can be immunized the efficiency of Sf F
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Fig. 3. Critical immunization coverage and i?H0 for
immunization strategies ¥v £fY and £PH when all house-
holds are of size 3. Under strategy £fH all members of some
households are immunized, under Sf 'F some members of all
households are immunized and under Sfx individuals are
immunized independently. Under £fF, v* = 1 — \/y/RH0,
the broken line (labelled £f¥ (theory)) shows the solution to
this equation, the line labelled SfT shows the practical
application of the strategy.

can be realized for only a few values of RH0. The
critical immunization coverages under strategies SfF,
SfH and yi for varying values of /?H0 in a community
of households all of size 3, are illustrated in Figure 3.
The critical coverages for strategies yx and £fY are
both affected by the distribution of household sizes in
the community. Under Sfv the critical coverage
depends on RH0 and bc (which are related to the
distribution of household sizes by expression (3)), and
under y F, vF may take only the values 0, f, § or 1. The
pbroken line in Figure 3 shows v* = l — l/y/Rm,
which sets a bound for the performance of y F when
households are large.

IMMUNIZATION IN CHILD CARE
FACILITIES AND SCHOOLS

Children attending child care facilities and schools are
often at higher risk of communicable diseases than the
rest of the population and ensuring that these children
are vaccinated before enrolment would appear to be
an attractive strategy for preventing epidemics. We
consider how this observation may be accommodated
in the present formulation, where the community
consists of households whose members may be of
different types. Children attending child care centres
or schools may be considered in two ways; these
facilities may be considered as large households with
high or complete infection of household members [7],
or alternatively, children attending these institutions

may be characterized as a separate type, defined by
greater infectivity and/or susceptibility (that is, a
greater number of adequate contacts is made with
their own type during the infectious period) compared
with other persons in the community [8].

In a community made up of individuals of types
1,2,...,p an additional strategy, y j ; in which a
proportion of individuals of type j is immunized
independently, may be described as a variant of
strategy y t . We assume in this discussion that the
fraction of adequate contacts made by an infected
person of type i with individuals of type k is in
proportion to the frequency of type k in the
community so that in expression (5) bik = /iN b//iN,
where b is the total number of potentially infectious
contacts made by an infected person, /iN is the mean
number of type k individuals per household, and /iN is
the mean household size.

If transmissibility of disease among school children
is higher than in the rest of the community a higher
overall immunization coverage is usually required to
prevent epidemics than would be the case if all
children were equally susceptible and/or infectious.
We give an example to illustrate the effects of
differential transmission of disease among school
children on the critical immunization coverage.

Suppose one third of the households in a com-
munity comprise two school children and two thirds
consist of one school child and one child not attending
school. We label the school children as type 1 and the
others as type 2. The mean size of the households (fiN)
is 2, and it follows that the mean number of school
children per household is given by /iN = 1|, and
fiN = f. The transmissibility of disease among these
groups of children is described by the number of
adequate contacts made by an infected person of each
type with the same or other types during the infectious
period. We consider infectious school children to make
an additional a contacts with other school children
compared with contacts where at least one of the pair
is not a school child. The number of infectious
contacts between school children is bxl which we set as
^n = Aiv b/ftN + a, and if the disease is less infectious
among school children a < 0. Other permutations of
contacts are

b12 = b2i =—-b and b21 = — l b ,

and for this example we set b = 0-75. This may be
interpreted to mean that an infected school child
makes 0-5 + a contacts with other school children and
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Fig. 4. Critical immunization coverages under immunization
strategies Sfv Sfx, Sf2, £fF and £fH in a community of
households all of size two which includes schools. Children
mix in proportion to their numbers in the community, but
school children make an additional a contacts with other
school children. Strategies Sfx and 9>

i consist of independent
immunization of school children and children who do not
attend school, respectively.

0-25 contacts with non-school children, so that the
total number of contacts made by infected persons of
this type is 0-75 + a. Non-school children also make a
total of 0-75 contacts with both types, and when a = 0,
in a fully susceptible community, there are equal mean
numbers of infections transmitted in the community
by school children and non-school children.

The number of susceptibles of each type per
household (S1 and S2) depends on the immunization
strategy, as described previously. We assume tran-
smission within households to be complete, so that in
expression (5), E(Sk C}) = E(Sk S}). The reproduction
number for infected households under a vaccination
programme (RHV) is the larger eigenvalue of the 2 x 2
matrix made up of the elements Mtj. The critical
immunization coverage under each of the strategies
(vj) is then computed by solving for vy when
RHV = 1.

We consider the immunization strategies £fx, £fv

£fv £f¥ and y H and compute the critical immu-
nization coverage for each, varying transmissibility
among school children (Fig. 4). The critical immuniza-
tion coverage required to prevent epidemics depends
on the strategy adopted and is affected by the
additional transmissibility of the disease between
school children.

When a > 0 transmissibility from school child to
school child in the community is greater than
transmissibility between other permutations of chil-
dren. When — 0-5 ^ a < 0, transmissibility among
school children is less than among other permutations,

and if a — —0-5 transmission in the community
between school children does not occur at all. In the
range of transmissibility from school child to school
child satisfying — 0-5 < a < — 0-4 the disease fades
out, since under these conditions RH0 < 1.

Solution of the equation v* = 1 — 1/V^HO results in
lower values for v* than the critical immunization
coverage for other strategies. However, since only
whole numbers of children can be vaccinated, vF is
restricted to the values 0, 0-5 or 1 and the efficiency of
this strategy compares poorly with other strategies for
most values of a. Strategy y H is the least efficient of
the other strategies, requiring a higher critical immu-
nization coverage for all values of a.

We consider three strategies of independent im-
munization of individuals. Under strategy yv indi-
viduals of both types are selected for immunization at
random, under Sfv school children are targeted and
immunized independently, and strategy 9\ consists of
independent immunization of children not at school.
For diseases which are highly transmissible in school
settings, yx is the most efficient strategy. Strategy 5^2

is capable of preventing epidemics only when transmis-
sibility from school child to school child is low,
satisfying a =% 0-167. At the level of transmissibility in
school where a = 0-167, all children not attending
school must be vaccinated to prevent epidemics. Since
non-school children make up a third of the popu-
lation, this is equivalent to a community coverage of
0-333.

For transmissibility in schools satisfying the con-
dition — 0-4 ̂  a < 0-049, strategy Hft is more efficient
than yx. This is something of a paradox for the range
0 < a < 0-049, since under these conditions transmis-
sibility at school is higher, and there are more school
children in this community than children not attend-
ing school. The explanation for this counter-intuitive
result is that independent immunization of a number
of non-school children reduces the mean and variance
of the number of susceptibles per household to a
greater extent than immunization of the same number
of school children. Immunization of school children
will result in immunization of two children in some
households, so that in households where this occurs
two vaccinations prevent within-household trans-
mission in only one household. Immunization of two
non-school children always results in immunization in
two households. The household effects are so strong
that, up to a point, they outweigh the effects of the
additional transmission between school children.

There are two other ways in which the importance
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of child care centres and schools for the control of
infectious disease may be illustrated. First, they may
be considered to be large 'households'. In a com-
munity made up of many small households (perhaps
families) and a few large boarding schools, there is a
large variance of household size and consequently a
large reproduction number (Fig. 1). Secondly, children
attending these institutions establish epidemiological
links between households. Members of households
with at least one child attending the same school are
in effect members of a large ' household' made up of
the school and the linked households [7]. Immuni-
zation of children before enrolling at school, not only
reduces the number of susceptibles in schools but also
breaks the links between households; whereas immu-
nization of children at home, leaves these large
epidemiological groupings intact, with the possibility
of widespread transmission.

ESTIMATING THE IMMUNIZATION
COVERAGE REQUIRED TO PREVENT
EPIDEMICS

A practical problem for the control of vaccine-
preventable disease is the estimation of the critical
coverage of immunization needed to prevent epi-
demics. An approach is to make estimates from an
analysis of the spread of disease in past epidemics.
One method is based on the assumption that disease is
spread by uniform mixing in the community, another
on the assumption that the household structure of the
community influences the spread of disease as de-
scribed above. These assumptions lead to different
estimates of the critical immunization coverage and
the differences may be important for disease control.
In this section we assume that transmission of
infection within households is not necessarily com-
plete.

If we assume that a disease spreads only by random
mixing of individuals and that the household structure
of the community does not influence transmission, the
critical immunization coverage to prevent epidemics
may be estimated from/;, the fraction of individuals
eventually infected in a previous epidemic. In a fully
susceptible community, we estimate Ro by

° (I"/:)

[14, 15] and the critical immunization coverage by

0 0-2 04 0-6 0-8 1
Fraction infected (Fj)

Fig. 5. Estimates of critical immunization coverages under
different immunization strategies from analysis of past
epidemics. In this example all households are of size 3. The
mean size of household outbreaks (v) may range from 1-3,
and therefore estimates of the critical immunization cover-
age based on the assumption of household infection fall in
ranges. Dotted lines show v* = l — l/\/RH0, t>ut m ^ s

community vr may take only the values 0, f, § or 1, since only
whole numbers of household members can be immunized.
When v is at a minimum, v£ = v,*; and when v = 3,
v | = v<">*, the curves for these values have been shifted left
slightly.

household structure of the community, we can
estimate RH0 from the proportions of households of
each size eventually infected during an epidemic. In a
simpler case, where the community is made up of
households all of the same size, the basic reproduction
number for households may be estimated from the
proportion of households infected during an epidemic
C/H)by

H 0 ~

If we assume that disease transmission depends on the

[15]. We estimate the critical immunization coverage
by substituting RH0 into the relevant equations for
the immunization strategy under consideration. For
strategy S?H, v* = l - l / i ? H 0 ; for strategy 5%.,
v* = 1 — \/\/RH0,

 a nd f°r ^\ w e estimate the critical
immunization coverage from the solution of the
quadratic equation

(l-vI)
2

JRHO + vI( l -v I)*c= 1.

with bc = Rna/v, where v is the mean size of household
outbreaks.

Different estimates of the critical immunization
coverage result from the different assumptions made
about the effect of household structure of the
community on disease transmission. We compare the
results of these approaches by considering an example
(Fig. 5). Suppose an epidemic of a vaccine-preventable
disease occurs in a community where all individuals

https://doi.org/10.1017/S0950268800059100 Published online by Cambridge University Press

https://doi.org/10.1017/S0950268800059100


452 R. Hall and N. G. Becker

were initially susceptible and are members of house-
holds each with three members. The epidemic results
in the infection of a fraction, fv of the community.

After the epidemic, disease surveillance data allow
the computation fv but the fraction of households
infected is not known. If infection of a household
results in transmission of disease to all household
members, / „ =fr However, if a disease is not
transmitted from the introductory case to other
members of the household, /H = ju,Nf1, until all
households are infected. When all households are
infected, further increase in/ : must mean that disease
has been transmitted from the introductory case to
other household members. Generally, the fraction of
households eventually infected is related to the
fraction of individuals eventually infected by
/H

 =
 /1N/I/P' where /iN is the mean household size and

the mean size of a household outbreak satisfies
1 ^ v < nN.

As a consequence there is a range of values of i?H0

depending on the extent of transmission within
households. The upper bound is found when there is
minimum within-household transmission, and the
lower bound is found when v = /iN. Since RH0 has a
range of values, the estimated critical immunization
coverage also has a range of values. Note that this
range arises because we have observed only/j, if both
/, and v are known, we obtain unique values for RH0,
v*, v*, and vf.

If we assume that disease transmission results from
uniform mixing of individuals in the community and
that the household structure of the community is of
no consequence, for each/t we obtain a single estimate
of Ro and of the critical immunization coverage (the
thick line in Fig. 5). We label the strategy arrived at
under these assumptions yju ) .

If, however, we assume a community of households
and that disease transmission occurs as described
here, the mean size of the household outbreaks
lies in a range 1 ^ v ^ 3, depending on the charac-
teristics of the disease. For diseases such as measles,
which are highly infectious within households, v will
approach 3, for other diseases v may be less. As
discussed above, for a given value of v, strategy
y H requires higher immunization coverage to prevent
epidemics than y , . Theoretically, strategy y F is the
most efficient, with a lower critical immunization
coverage than either y H or y t . However, because vF

in this community may take only the values 0, \, § or
1, the greater efficiency of y F is realized only under
some conditions.

An important comparison is between strategies y j u )

and y t . Under both strategies individuals are immu-
nized independently, but y x assumes that disease
transmission is dependent on household structure,
whereas y<u) does not. For a given fv we find a single
estimate of v<u>* and a range of estimates of vf
depending on the extent of within-household trans-
mission. For a disease with a high level of transmission
within households the estimate of v{u)* is greater than
the estimate of vf. This result means that estimates of
the critical immunization coverage based on assump-
tions of uniform mixing are overestimates of the
coverage required to prevent epidemics of diseases
such as measles with intense within-household trans-
mission.

DISCUSSION

Immunization has been one of the most successful
interventions yet devised for the prevention of disease
and the eradication of smallpox and the proposed
eradication of polio show the potential of vaccination
as a disease control strategy. However, control of
highly infectious diseases such as measles has proved
to be much more difficult. Models of disease trans-
mission can play an important role in the under-
standing of communicable disease epidemiology and
may suggest reasons for the success or failure of
immunization programmes. Such models have a
practical use in the planning of immunization strat-
egies, an example being the recent British measles
campaign, where all children were offered measles-
containing vaccine after a model had forecast a major
epidemic [16].

A limitation of many models of communicable
disease transmission to date has been an assumption
that the community is made up of homogeneous
individuals mixing randomly with each other. This is
not a realistic picture of the community and the
importance of community structure and heterogeneity
of the community for disease transmission has been
widely recognized [6], but analytical approaches have
proved difficult. Differences between age groups have
been summarized in the ' Who acquires infection from
whom' matrix of Anderson and May [17] and results
of simulations incorporating community structure
have been published [18]. A model of disease
transmission which clarified the relationships between
community structure, the presence of different types
of individual (defined by greater or lesser infectivity
and/or susceptibility), and the spread of infectious
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disease would be of value in the design of disease
control programmes. For public health planners,
quantification of predicted outcomes under different
conditions would permit rational choices between
strategies.

The approach we have adopted assumes that a
disease, after introduction into a household, is
transmitted to some or all other susceptible household
members. Each infected member then makes a number
of contacts in the community, transmitting diseases to
susceptible individuals, who introduce infection to
their own households. We make the assumption that
individuals live in well-defined households and that
transmissibility between any infectious susceptible
pair within a household is the same for all households.
In practice, however, this may not be true and
transmission of disease may vary between' household-
like' settings, such as families at home, schools, or
workplaces. With these assumptions, the reproduction
number for infected households is found to depend on
the mean and variance of the number of susceptibles
per household. The household structure of a com-
munity thus becomes a maj or consideration for planning
disease control programmes. The mean household
size in a community made up of many small and a few
large households may be small, but the wide range of
sizes may result in a large variance. One of the reasons
for the impact of schools and child care facilities on
the spread of infectious disease is that they may be
considered as large 'households' and add greatly to
the variance, if not the mean, of household size.

In a community of households, as distinct from a
community of randomly mixing homogeneous indivi-
duals, several immunization strategies are possible.
Immunization in a community of households reduces
the number of susceptibles and changes the mean and
variance of the number of susceptibles per household.
The extent of these changes depends on the immu-
nization strategy adopted and results in differences in
efficiency for disease control between strategies. For
highly infectious diseases, where disease elimination
goals require highly efficient immunization strategies,
a greater understanding of the role of households in
transmission processes may help in control.

Immunization programmes generally target all
children in a community and coverage is usually
measured as the proportion of all individuals who
have been vaccinated. The distribution of vaccinees in
households is usually not known. Since the differences
in effectiveness between immunization strategies in a
community of households are so marked, data on

immunization coverage by household are important
to indicate which immunization strategy has, in effect,
been adopted. It is possible that parents accept
vaccination of children in a family on an all-or-none
basis, corresponding to strategy SfH, where all
members of a selection of households are immunized,
and this strategy has a relatively low efficiency.

There is intense transmission of many infectious
diseases in schools and child care facilities and
ensuring that all children attending these facilities are
immunized is a highly efficient strategy. Furthermore,
implementation of school entry immunization require-
ments is not logistically difficult compared with other
immunization strategies.

Many countries have now adopted disease control
goals which include the elimination of highly in-
fectious vaccine-preventable diseases such as measles.
The achievement of very high immunization coverage
levels has been proposed in order to meet these
objectives. Estimates of the critical immunization
coverage made under the assumption that the com-
munity structure does not affect transmission differ
from estimates made assuming a community of
households. For diseases which are highly infectious
within households, estimates based on models with
the assumption that transmission occurs solely by
random mixing in a homogeneous community are
higher than estimates made based on models assuming
that household structure affects transmission. For the
control of diseases such as measles this may mean that
a lower level of immunization coverage is required
than is currently considered necessary, provided that
appropriate immunization strategies are used.

An understanding of the effects of heterogeneity
and community structure on the impact of immu-
nization programmes should help define such ap-
propriate strategies. Heterogeneity and community
structure are important determinants of disease
transmission and have a large impact on the difficulty
of disease control and are factors which need to be
considered in the design of immunization pro-
grammes.

APPENDIX

Derivation of the reproduction number for infected
households

We begin by finding the mean number of infected
households that are generated by a typical infected
household.
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It is assumed that members of a household go out,
and make contacts, independently of each other. Let
bc be the mean number of contacts an infected
individual makes with individuals from other house-
holds during the course of the infectious period. Then,
given the eventual number X of infected persons in the
household, the mean number of infected households
generated by this infected household is bc X. To make
this a typical household we simply take the mean over
X. Let vc be the probability that a contact (made
during the early stages of the epidemic) between an
infected person and an individual selected at random
from the population leads to a household outbreak of
c eventual cases. The mean replacement number for a
typical infected household is then given by

(6)

That this quantity gives RH, the reproduction number
for infected households is shown in (7), below.

We now show that this expression is the same as
equation (1). The probability nc depends on both the
household structure of the community and the
transmission of the disease within households. Let hns

be the proportion of households of size n having
initially s susceptible members and let jiN denote the
mean household size.

It follows that

where the term nhns/fiN is the probability that the
contact is with an individual from a household of size
n having (initially) s susceptible members, the term s/n
is the probability that the contacted household
member is susceptible and nc\ns denotes the probability
that there will be c eventual cases in a household with
n members in which one of the s initial susceptibles is
infected from outside the household.

Therefore

schn (7)
lN n s - 1 c -1

When transmission within households is always
complete nclns = 1 for c = s and zero otherwise. When
within-household transmission is not always complete
the computation of nclns requires specification of the
probabilities of transmission from infected to sus-
ceptible household members. As an illustration of the
latter, suppose that the community has only house-

holds of size 1, 2 and 3. Assume also that initially
every individual is susceptible, so that
h11 + h22 + h33 = 1. If we denote the probability of
infection of a given household member by an infected
member of the same household by p and write q for
1 —p, we have

72133 ^3133 = P\ 1 -

under the Reed-Frost assumptions [12, table 2.4].
Substituting these into (7) gives

2-2p3)].

This is equation (4), where we have written h, for hit.

Types of infected households

It is not clear that equation (6) gives the reproduction
number for infected households, because infected
households are not homogeneous so that the mean
replacement number may not be the quantity that
determines whether epidemics are possible. The
potential to generate other infected households
depends on the number of eventual cases in the
household. To account for this heterogeneity we
introduce types of infected households. An infected
household is said to be of type i if there i eventual
cases in the household.

Let wJ3
H) denote the mean number of infected

households of type j generated by the / infectives of a
household of type /, at the beginning of the epidemic
when the depletion of susceptible households is
negligible. The early proliferation of infected house-
holds is described by a multi-type branching process
with mean matrix given by

1

2

N

1
bc7T1

2bcn1

Nbcn1

bcn2

2brn9

Nbcn2

N

2bcnN

The basic reproduction number is the largest eigen-
value of this matrix. Because the rows of this matrix
are proportional to each other makes it easy to show
that the largest eigenvalue is

cnc.
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The simple structure of the mean matrix is what
causes the mean given in (6) to be identical with the
largest eigenvalue of the above mean matrix.
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