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Abstract

In this paper, we introduce cell-forms on M0,n, which are top-dimensional differential
forms diverging along the boundary of exactly one cell (connected component) of the
real moduli space M0,n(R). We show that the cell-forms generate the top-dimensional
cohomology group of M0,n, so that there is a natural duality between cells and
cell-forms. In the heart of the paper, we determine an explicit basis for the subspace of
differential forms which converge along a given cell X. The elements of this basis are
called insertion forms; their integrals over X are real numbers, called cell-zeta values,
which generate a Q-algebra called the cell-zeta algebra. By a result of F. Brown, the
cell-zeta algebra is equal to the algebra of multizeta values. The cell-zeta values satisfy a
family of simple quadratic relations coming from the geometry of moduli spaces, which
leads to a natural definition of a formal version of the cell-zeta algebra, conjecturally
isomorphic to the formal multizeta algebra defined by the much-studied double shuffle
relations.

1. Introduction

Let n1, . . . , nr ∈ N and suppose that nr > 2. The multiple zeta values (MZVs),

ζ(n1, . . . , nr) =
∑

0<k1<···<kr

1
kn1

1 · · · k
nr
r
∈ R, (1.1)

were first defined by Euler, and have recently acquired much importance in their relation to
mixed Tate motives. It is conjectured that the periods of all mixed Tate motives over Z are
expressible in terms of such numbers. By an observation due to Kontsevich, every multiple zeta
value can be written as an iterated integral:∫

06t16···6t`61

dt1 · · · dt`
(ε1 − t1) · · · (ε` − t`)

, (1.2)

where εi ∈ {0, 1}, and ε1 = 1 and ε` = 0 to ensure convergence, and `= n1 + · · ·+ nr. The
iterated integral (1.2) can be considered as a period on M0,n (with n= `+ 3), or a period of
the motivic fundamental group of M0,4 = P1\{0, 1,∞}, whose de Rham cohomology H1(M0,4)
is spanned by the forms (dt)/t and (dt)/(1− t) [Del89, DG05]. One proves that the multiple zeta
values satisfy two sets of quadratic relations [Che77, Hof00], known as the regularized double
shuffle relations, and it has been conjectured that these generate all algebraic relations between
MZVs [Car00-01, Wal02]. This is the traditional point of view on multiple zeta values.

On the other hand, by a general construction due to Beilinson, one can view the iterated
integral (1.2) as a period integral in the ordinary sense, but this time of the `-dimensional affine
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scheme

M0,n ' (M0,4)`\{diagonals}= {(t1, . . . , t`) : ti 6= 0, 1 , ti 6= tj},
where n= `+ 3. This is the moduli space of curves of genus 0 with n ordered marked points.
Indeed, the open domain of integration X = {0< t1 < · · ·< t` < 1} is one of the connected
components of the set of real points M0,n(R), and the integrand of (1.2) is a regular algebraic
form in H`(M0,n) which converges on X. Thus, the study of multiple zeta values leads naturally
to the study of all periods on M0,n, which was initiated by Goncharov and Manin [Bro09, GM04].
These periods can be written∫

X
ω where ω ∈H`(M0,n) has no poles along X. (1.3)

The general philosophy of motives and their periods [KZ01] indicates that one should study
relations between all such integrals. This leads to the following problems.

(i) Construct a good basis of all logarithmic `-forms ω in H`(M0,n) whose integral over the
cell X converges.

(ii) Find all relations between the integrals
∫
X ω which arise from natural geometric

considerations on the moduli spaces M0,n.

In this paper, we give an explicit solution to (i), and a family of relations which conjecturally
answers (ii). Firstly, we give an explicit description of a basis of the subspace of H`(M0,n) of
forms convergent on the standard cell, in terms of the combinatorics of polygons. (Note that the
idea of connecting differential forms with combinatorial structures has previously been explored
from different aspects, in [GGL05, Ter02b] for example.) The corresponding integrals are more
general than (1.2), although Brown’s theorem [Bro09] proves that they do occur as Q-linear
combinations of multiple zeta values of the form (1.2).

For (ii), we explore a new family of quadratic relations, which we call product map relations,
because they arise from products of forgetful maps between moduli spaces. To this family we add
two other simpler families; one arising from the dihedral subgroup of automorphisms of M0,n

which stabilize X, and the other from a basic identity in the combinatorics of polygons. These
families are sufficiently intrinsic and general to motivate the following conjecture, which we have
verified computationally up through n= 9.

Conjecture. The three families of relations between integrals (given explicitly in
Definition 2.28) generate the complete set of relations between periods of the moduli spaces
M0,n.

1.1 Main results
We give a brief presentation of the main objects introduced in this paper, and the results obtained
using them.

Recall that Deligne–Mumford constructed a stable compactification M0,n of M0,n, such
that M0,n\M0,n is a smooth normal crossing divisor whose irreducible components correspond
bijectively to partitions of the set of n marked points into two subsets of cardinal greater than
or equal to two [DM69, Knu83]. The real part M0,n(R) of M0,n is not connected, but has n!/2n
connected components (open cells) corresponding to the different cyclic orders of the real points
0, t1, . . . , t`, 1,∞∈ P1(R), up to dihedral permutation [Dev99]. Thus, we can identify cells with
n-sided polygons with edges labeled by {0, t1, . . . , t`, 1,∞}. In the compactification M0,n(R),

732

https://doi.org/10.1112/S0010437X09004540 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X09004540


The algebra of cell-zeta values

the closed cells have the structure of associahedra or Stasheff polytopes; the boundary of a
given cell is a union of irreducible divisors corresponding to partitions given by the chords
(cf. Definition 3.3) in the associated polygon. The standard cell is the cell corresponding to the
standard order we denote δ, given by 0< t1 < · · ·< t` < 1. We write Mδ

0,n for the space

M0,n\{all boundary divisors of M0,n except those bounding the standard cell}.

This is a smooth affine scheme introduced in [Bro09].

1.1.1 Polygons. Since a cell of M0,n(R) is given by an ordering of {0, t1, . . . , t`, 1,∞} up
to dihedral permutation, we can identify it as above with an unoriented n-sided polygon with
edges indexed by the set {0, t1, . . . , t`, 1,∞}.

1.1.2 Cell-forms. A cell-form is a holomorphic differential `-form on M0,n with logarithmic
singularities along the boundary components of the stable compactification, having the property
that its singular locus forms the boundary of a single cell in the real moduli space M0,n(R).

Up to sign, the cell-form diverging on a given cell is obtained by taking the successive
differences of the edges of the polygon representing that cell (ignoring ∞) as factors in
the denominator. For example the cell corresponding to the cyclic order (0, 1, t1, t3,∞, t2) is
represented by the polygon on the left of the following figure, and the cell-form diverging along
it is given on the right.

t2

t1

t3

Let P denote the Q-vector space generated by oriented n-gons indexed by {0, 1, t1, . . . , t`, 1,∞}.
The orientation fixes the sign of the corresponding cell-form, and this gives a map

ρ : P →H`(M0,n). (1.4)

In Proposition 4.1 of § 4.1 we prove that this map is surjective and identify its kernel.
Section 3 is entirely devoted to a purely combinatorial reformulation, in terms of polygons which
simultaneously represent both cells and cell-forms on moduli space, of the familiar notions of
convergence, divergence and residues of differential forms along divisors.

1.1.3 Cell-form cohomology basis. We show that cell-forms provide a good framework
for studying the logarithmic differential forms on M0,n, starting with the following result
(Theorem 2.12), whose proof is based on Arnol’d’s well-known construction of a different basis
for the cohomology group H`(M0,n).

Theorem. The set of 01 cell-forms (those corresponding to polygons in which 0 appears next to 1
in the indexing of the edges) forms a basis for the cohomology group H`(M0,n) of top-dimensional
differential forms on the moduli space.

In particular, this shows that the cohomology group H`(M0,n) is canonically isomorphic to
the subspace of P of polygons having 0 adjacent to 1, providing a new approach.
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1.1.4 Insertion forms. Insertion forms (Definition 4.8) are particular linear combinations of
01 cell-forms having the property given in the following theorem (Theorem 4.9), one of the main
results of this paper.

Theorem. The insertion forms form a basis for the space of top-dimensional logarithmic
differential forms which converge on the closure of the standard cell of M0,n(R).

In other words, insertion forms give a basis for the cohomology group H`(Mδ
0,n) of (classes

of) forms having no poles along the boundary of the standard cell of M0,n(R), so that the
integral (1.3) converges, yielding a period.

The insertion forms are defined in Definition 4.8, but the definition is based on the essential
construction of Lyndon insertion words given in Definition 3.16 and studied throughout § 3.3.
The proof of this theorem uses all the polygon machinery developed in § 3.

1.1.5 Cell-zeta values. These are real numbers obtained by integrating insertion forms over
the standard cell as in (1.3). They are a generalization of multiple zeta values to a larger set of
periods on M0,n, such as ∫

0<t1<t2<t3<1

dt1 dt2 dt3
(1− t1)(t3 − t1)t2

.

Note that, unlike the multiple zeta values, this is not an iterated integral as in (1.2).

1.1.6 Product map relations between cell-zeta values. Via the pullback, the maps f :
M0,n→M0,r ×M0,s obtained by forgetting disjoint complementary subsets of the marked
points t1, . . . , t` yield expressions for products of cell-zeta values on M0,r and M0,s as linear
combinations of cell-zeta values on M0,n:∫

X1

ω1

∫
X2

ω2 =
∫
f−1(X1×X2)

f∗(ω1 ∧ ω2). (1.5)

There is a simple combinatorial algorithm to compute the multiplication law in terms of cell-
forms. This is a geometric analog of the familiar quadratic relations for multiple zeta values, and
is explained in § 2.3.4.

1.1.7 Dihedral relations between cell-zeta values. These relations between cell-zeta values
are given by ∫

X
ω =

∫
X
σ∗(ω), (1.6)

where σ is an automorphism of M0,n which maps the standard cell to itself: σ(X) =X, and thus
σ is a dihedral permutation of the marked points {0, 1, t1, . . . , t`,∞}.

1.1.8 The cell-zeta value algebra C. The multiplication laws associated to product maps (1.5)
make the space of all cell-zeta values on M0,n, n > 5, into a Q-algebra which we denote by C. By
Brown’s theorem [Bro09], which states essentially that all periods on M0,n are linear combinations
of multiple zeta values, together with Kontsevitch’s expression (1.2) of multiple zeta values, we
obtain the following result (Theorem 2.25).

Theorem. The cell-zeta value algebra C is equal to the algebra of multiple zeta values Z.
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1.1.9 The formal cell-zeta value algebra FC. By lifting the previous constructions to the
level of polygons along the map (1.4), we define in § 2.4 an algebra of formal cell-zeta
values which we denote by FC. It is generated by the Lyndon insertion words (see Definition 3.16),
which are formal sums of polygons corresponding to the insertion forms introduced above, subject
to combinatorial versions of the product map relations (1.5) and the dihedral relations (1.6).
We consider this analogous to the formal multizeta algebra FZ, generated by formal symbols
representing convergent multiple zeta values, subject only to the convergent double shuffle and
Hoffmann relations [Hof00]. The computer calculations in low weight described in § 4 motivated
us to make the following conjecture, which essentially says that the product map and dihedral
relations (plus another simple family coming from combinatorial identities on polygons, see
Definition 2.28 for the complete definition of the three families of relations) generate all relations
between periods of the moduli space.

Conjecture. The formal cell-zeta algebra FC is isomorphic to the formal multizeta algebra
FZ.

The paper is organized as follows. In § 2, we introduce cell-forms and polygons and define the
three families of relations. In § 3, we define Lyndon insertion words of polygons, which may be of
independent combinatorial interest. These are used to construct the insertion basis of convergent
forms in § 4. In § 4.4, we give complete computations of this basis and the corresponding product
map relations for M0,n, where n= 5, 6, 7.

In the remainder of this introduction we sketch the connections between the formal cell-zeta
value algebra and standard results and conjectures in the theory of multiple zeta values and
mixed Tate motives.

1.2 Relation to mixed Tate motives and conjectures

Let MT (Z) denote the category of mixed Tate motives which are unramified over Z
[DG05]. Let δ denote the standard cyclic structure on S = {1, . . . , n}, and let Bδ denote the
divisor which bounds the standard cell X. Let Aδ denote the set of all remaining divisors on
M0,S\M0,S , so that Mδ

0,S = M0,S\Aδ [Bro09]. We write

Mδ =H`(M0,n\Aδ, Bδ\(Bδ ∩Aδ)). (1.7)

By a result due to Goncharov and Manin [GM04], Mδ defines an element in MT (Z), and
therefore is equipped with an increasing weight filtration W . They show that grW` Mδ is
isomorphic to the de Rham cohomology H`(Mδ

0,n), and that grW0 Mδ is isomorphic to the dual
of the relative Betti homology H`(M0,n, Bδ).

Let M be any element in MT (Z). A framing for M consists of an integer n and non-zero
maps

v ∈Hom(Q(−n), grW2nM) and f ∈Hom(grW0 M,Q(0)). (1.8)

Two framed motives (M, v, f) and (M ′, v′, f ′) are said to be equivalent if there is a morphism
φ :M →M ′ such that φ ◦ v = v′ and f ′ ◦ φ= f . This generates an equivalence relation whose
equivalence classes are denoted [M, v, f ]. LetM(Z) denote the set of equivalence classes of framed
mixed Tate motives which are unramified over Z, as defined in [Gon01a]. It is a commutative,
graded Hopf algebra over Q.

735

https://doi.org/10.1112/S0010437X09004540 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X09004540


F. Brown, S. Carr and L. Schneps

To every convergent cohomology class ω ∈H`(Mδ
0,n) we associate the following `-framed

mixed Tate motive:

m(ω) = [Mδ, ω, [X]], (1.9)

where [X] denotes the relative homology class of the standard cell. This defines a map
FC →M(Z). The maximal period of m(ω) is exactly the cell-zeta value∫

X
ω.

Proposition 1.1. The dihedral symmetry relation and product map relations are motivic. In
other words,

m(σ∗(ω)) =m(ω),
m(ω1 · ω2) =m(ω1)⊗m(ω2),

for every dihedral symmetry σ of X, and for every modular shuffle product ω1 · ω2 of convergent
forms ω1, ω2 on M0,r, M0,s respectively.

The motivic nature of our constructions will be clear from the definitions. We therefore obtain
a well-defined map m from the algebra of formal cell-zeta numbers FC toM(Z). On M0,5, there
is a unique element ζ2 ∈ FC whose period is ζ(2), which maps to 0 in M(Z).

Conjecture 1.2. FC is a free Q[ζ2]-module, and the induced map

m : FC/ζ2FC −→ M̂(Z)

is an isomorphism.

Since the structure ofM(Z) is known, we are led to more precise conjectures on the structure
of the formal cell-zeta algebra. To motivate this, let L = Q[e3, e5, . . .] denote the free Lie algebra
generated by one element e2n+1 in each odd degree. Set

F = Q[e2]⊕ L.

The underlying graded vector space is generated by the following, in increasing weight:

e2; e3; e5; e7; [e3, e5]; e9; [e3, e7]; [e3, [e5, e3]], e11; [e3, e9], [e5, e7]; . . . .

Let UF denote the universal enveloping algebra of the Lie algebra F. Then, setting M̂(Z) =
M(Z)⊗Q Q[ζ2], it is known that M̂(Z) is dual to UF. From the explicit description of F

given above, one can deduce that the graded dimensions dk = dimQ grWk M̂(Z) satisfy Zagier’s
recurrence relation

dk = dk−2 + dk−3, (1.10)

with the initial conditions d0 = 1, d1 = 0, d2 = 1.

Conjecture 1.3. The dimension of the Q-vector space of formal cell-zeta values on M0,n,
modulo all linear relations obtained from the dihedral and modular shuffle relations, is equal
to d`, where n= `+ 3.

We verified this conjecture for M0,n for n 6 9 by direct calculation (see § 4.4). When n= 9,
the dimension of the convergent cohomology H6(Mδ

0,9) is 1089, and after taking into account
all linear relations coming from dihedral and modular shuffle products, this reduces to a vector
space of dimension d6 = 2.
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To compare this picture with the classical picture of multiple zeta values, let FZ denote
the formal multizeta algebra. This is the quotient of the free Q-algebra generated by formal
symbols (1.2) modulo the regularized double shuffle relations. It has been conjectured that FZ is
isomorphic to M̂(Z), and proved (cf. [Ter02a]) that the dimensions d` are actually upper bounds
for the dimensions of the weight ` parts of FZ. This leads us to the second main conjecture.

Conjecture 1.4. The formal algebras FC and FZ are isomorphic.

Put more prosaically, this states that the formal ring of periods of M0,n modulo dihedral and
modular shuffle relations, is isomorphic to the formal ring of periods of the motivic fundamental
group of M0,4 modulo the regularized double shuffle relations.

By (1.2), we have a natural linear map FZ →FC. However, at present we cannot show
that it is an algebra homomorphism. Indeed, although it is easy to deduce the regularized shuffle
relation for the image of FZ in FC from the dihedral and modular shuffle relations, we are unable
to deduce the regularized stuffle relations. For further detail on this question, see Remark 2.29
below.

Remark 1.5. The motivic nature of the regularized double shuffle relations proved to be
somewhat difficult to establish [Gon01a, Gon01b, Ter02a]. It is interesting that the motivic
nature of the dihedral and modular shuffle relations we define here is immediate.

2. The cell-zeta value algebra associated to moduli spaces of curves

Let M0,n, n > 4 denote the moduli space of genus zero curves (Riemann spheres) with n ordered
marked points (z1, . . . , zn). This space is described by the set of n-tuples of distinct points
(z1, . . . , zn) modulo the equivalence relation given by the action of PSL2. Because this action
is triply transitive, there is a unique representative of each equivalence class such that z1 = 0,
zn−1 = 1, zn =∞. We define simplicial coordinates t1, . . . , t` on M0,n by setting

t1 = z2, t2 = z3, . . . , t` = zn−2, (2.1)

where `= n− 3 is the dimension of M0,n(C). This gives the familiar identification

M0,n
∼= {(t1, . . . , t`) ∈ (P1 − {0, 1,∞})` | ti 6= tj for all i 6= j}. (2.2)

2.1 Cell-forms
Definition 2.1. Let S = {1, . . . , n}. A cyclic structure γ on S is a cyclic ordering of the
elements of S or equivalently, an identification of the elements of S with the edges of an oriented
n-gon modulo rotations. A dihedral structure δ on S is an identification with the edges of an
unoriented n-gon modulo dihedral symmetries.

We can write a cyclic structure as an ordered n-tuple γ = (γ(1), γ(2), . . . , γ(n)) considered
up to cyclic rotations.

Definition 2.2. Let (z1, . . . , zn) = (0, t1, . . . , t`, 1,∞) be a representative of a point on M0,n

as above. Let γ be a cyclic structure on S, and let σ be the unique ordering of z1, . . . , zn
compatible with γ such that σ(n) = n. The cell-form corresponding to γ is defined to be the
differential `-form

ωγ = [zσ(1), zσ(2), . . . , zσ(n)] =
dt1 · · · dt`

(zσ(2) − zσ(1))(zσ(3) − zσ(2)) · · · (zσ(n−1) − zσ(n−2))
. (2.3)
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In other words, by writing the terms of ωγ = [zσ(1), . . . , zσ(n)] clockwise around a polygon, the
denominator of a cell-form is just the product of successive differences (zσ(i) − zσ(i−1)) with
the two factors containing ∞ simply left out.

Remark 2.3. To every dihedral structure there correspond two opposite cyclic structures. If
these are given by γ and τ , then we have

ωγ = (−1)nωτ . (2.4)

Example 2.4. Let n= 7, and S = {1, . . . , 7}. Consider the cyclic structure γ on S given by
the order 1635724. The unique ordering σ of S compatible with γ and having σ(n) = n, is the
ordering 2416357, which can be depicted by writing the elements zσ(1), . . . , zσ(7), or 0, 1, t2, t4,
∞, t1, t3 clockwise around a circle:

γ = (zσ(1), . . . , zσ(7)) = (t1, t3, 0, 1, t2, t4,∞).

The corresponding cell-form on M0,7 is

ωγ = [t1, t3, 0, 1, t2, t4,∞] =
dt1 dt2 dt3 dt4

(t3 − t1)(−t3)(t2 − 1)(t4 − t2)
.

The symmetric group S(S) acts on M0,n by permutation of the marked points. It therefore
acts both on the set of cyclic structures γ, and also on the ring of differential forms on M0,n.
These actions coincide for cell-forms.

For any cyclic structure γ on S, let Dγ ⊂S(S) denote the group of automorphisms of the
dihedral structure which underlies γ, which is a dihedral group of order 2n.

Lemma 2.5. For every cyclic structure γ on S, we have the formula:

σ∗(ωγ) = ωσ(γ) for all σ ∈S(S). (2.5)

Proof. Consider the logarithmic n-form on (P1)S∗ defined by the formula:

ω̃γ =
dz1 ∧ · · · ∧ dzn

(zγ(1) − zγ(2)) · · · (zγ(n) − zγ(1))
. (2.6)

It clearly satisfies σ∗(ω̃γ) = ω̃σ(γ) for all σ ∈Dγ . A simple calculation shows that ω̃γ is invariant
under the action of PSL2 by Möbius transformations. Let π : (P1)S∗ →M0,S denote the projection
map with fibres isomorphic to PSL2. There is a unique (up to scalar multiple in Q×) non-zero
invariant logarithmic 3-form v on PSL2(C) which is defined over Q. Then, by renormalizing v if
necessary, we have ωγ ∧ v = ω̃γ . In fact, ωγ is the unique `-form on M0,S satisfying this equation.
We deduce that σ∗(ωγ) = ωσ(γ) for all σ ∈Dγ . 2

Each dihedral structure η on S corresponds to a unique connected component of the real locus
M0,n(R), namely the component associated to the set of Riemann spheres with real marked points
(z1, . . . , zn) whose real ordering is given by η. We denote this component by XS,η or Xn,η. It
is an algebraic manifold with corners with the combinatorial structure of a Stasheff polytope,
so we often refer to it as a cell. A cyclic structure compatible with η corresponds to a choice of
orientation of this cell.

Definition 2.6. Let δ once and for all denote the cyclic order corresponding to the ordering
(1, 2, . . . , n). We call XS,δ =Xn,δ the standard cell. It is the set of points on M0,n given by real
marked points (0, t1, . . . , t`, 1,∞) in that cyclic order; in simplicial coordinates it is given by
the standard real simplex 0< t1 < · · ·< t` < 1.
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The distinguishing feature of cell-forms, from which they derive their name, is given in the
following proposition.

Proposition 2.7. Let η be a dihedral structure on S, and let γ be either of the two cyclic
substructures of η. Then the cell-form ωγ has simple poles along the boundary of the cell XS,η

and no poles anywhere else.

Proof. Let D ⊂M0,S\M0,S be a divisor given by a partition S = S1
∐
S2 such that |Si|> 1 for

i= 1, 2. In [Bro09], the following notation was introduced:

ID(i, j) = I({i, j} ⊂ S1) + I({i, j} ⊂ S2),

where I(A⊂B) is the indicator function which takes the value 1 if A is contained in B and 0
otherwise. Therefore ID(i, j) ∈ {0, 1}. Then we have

2 ordD(ωγ) = (`− 1)− ID(γ(1), γ(2))− ID(γ(2), γ(3))− · · · − ID(γ(n), γ(1)). (2.7)

To prove this, observe that ωγ = fγω0, where

fγ =
∏

i∈Z/nZ

(zi − zi+2)
(zγ(i) − zγ(i+1))

,

and

ω0 =
dt1 · · · dt`

t2(t3 − t1)(t4 − t2) · · · (t` − t`−2)(1− t`)
is the canonical volume form with no zeros or poles along the standard cell defined in [Bro09].
The proof of (2.7) follows on applying [Bro09, Proposition 7.5].

Now, (2.7) shows that ωγ has the worst singularities when the most possible ID(γ(i), γ(i+ 1))
are equal to 1. This happens when only two of them are equal to zero, namely

S1 = {γ(1), γ(2), . . . , γ(k)} and S2 = {γ(k + 1), γ(k + 2), . . . , γ(n)}, 2 6 k 6 n− 2.

In this case, (2.7) yields 2 ordDωγ = (`− 1)− (n− 2) =−2, so ordDωγ =−1. In all other cases
we must therefore have ordDωγ > 0. Thus the singular locus of ωγ is precisely given by the set
of divisors bounding the cell XS,η. 2

2.2 01 cell-forms and a basis of the cohomology of M0,n

We first derive some useful identities between certain rational functions. Let S = {1, . . . , n}
and let v1, . . . , vn denote coordinates on An. For every cyclic structure γ on S, let 〈γ〉=
〈vγ(1), . . . , vγ(n)〉 denote the rational function

1
(vγ(2) − vγ(1)) · · · (vγ(n) − vγ(n−1))(vγ(1) − vγ(n))

∈ Z
[
vi,

1
vi − vj

]
. (2.8)

We refer to such a function as a cell-function. We can extend its definition linearly to Q-linear
combinations of cyclic structures. Let X = {x1, . . . , xn} denote any alphabet on n symbols.
Recall that the shuffle product [Reu93] is defined on linear combinations of words on X by the
inductive formula

w x e= e x w and aw x a′w′ = a(w x a′w′) + a′(aw x w′), (2.9)

where w, w′ are any words in X and e denotes the empty or trivial word.
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Definition 2.8. Let A, B ⊂ S such that A ∩B = C = {c1, . . . , cr} with r > 1. Let γA be a cyclic
order on A such that the elements c1, . . . , cr appear in their standard cyclic order, and let γB
be a cyclic order on B with the same property. We write

γA = (c1, A1,2, c2, A2,3, . . . , cr, Ar,1) and γB = (c1, B1,2, c2, B2,3, . . . , cr, Br,1),

where the Ai,i+1, (respectively the Bi,i+1) together with C, form a partition of A (respectively B).
We denote the shuffle product of the two cell-functions 〈γA〉 and 〈γB〉 with respect to c1, . . . , cr
by

〈γA〉 x c1,...,cr〈γB〉
which is defined to be the sum of cell functions

〈c1, A1,2 x B1,2, c2, A2,3 x B2,3, . . . , cr, Ar,1 x Br,1〉. (2.10)

The shuffle product of two cell-functions is related to their actual product by the following
proposition.

Proposition 2.9. Let A, B ⊂ S, such that |A ∩B| > 2. Let γA, γB be cyclic structures on A, B
such that the cyclic structures on A ∩B induced by γA and γB coincide. If γA∩B denotes the
induced cyclic structure on A ∩B, we have

〈γA〉 · 〈γB〉
〈γA∩B〉

= 〈γA〉 x γA∩B 〈γB〉. (2.11)

Proof. Write the cell functions 〈γA〉 and 〈γB〉 as 〈ai1 , P1, ai2 , P2, . . . , air , Pr〉 and 〈ai1 , R1,
ai2 , R2, . . . , air , Rr〉, where Pi, Ri for 1 6 i 6 r are tuples of elements in S. Let ∆ab = (b− a).
We will first prove the result for r = 2 and P2, R2 = ∅:

∆ab∆ba〈a, p1, . . . , pk1 , b〉〈a, r1, . . . , rk2 , b〉= 〈a, (p1, . . . , pk1) x (r1, . . . , rk2), b〉. (2.12)

We prove this case by induction on k1 + k2. Trivially, for k1 + k2 = 0 we have

∆ab∆ba〈a, b〉〈a, b〉= 〈a, b〉.

Now assume the induction hypothesis that

∆ab∆ba〈a, p2, . . . , pk1 , b〉〈a, r1, . . . , rk2 , b〉= 〈a, ((p2, . . . , pk1) x (r1, . . . , rk2)), b〉

and

∆ab∆ba〈a, p1, . . . , pk1 , b〉〈a, r2, . . . , rk2 , b〉= 〈a, ((p1, . . . , pk1) x (r2, . . . , rk2)), b〉.

To lighten the notation, let p2, . . . , pk1 = p and r2, . . . , rk2 = r. By the shuffle recurrence
formula (2.9) and the induction hypothesis,

〈a, ((p1, p) x (r1, r)), b〉 = 〈a, p1, ((p) x (r1, r)), b〉+ 〈a, r1, ((p1, p) x (r)), b〉

=
∆p1b〈p1, ((p) x (r1, r)), b〉

∆ab∆ap1

+
∆r1b〈r1, ((p1, p) x (r)), b〉

∆ab∆ar1

=
∆p1b∆bp1∆p1b〈p1, p, b〉〈p1, r1, r, b〉

∆ab∆ap1

+
∆r1b∆br1∆r1b〈r1, p1, p, b〉〈r1, r, b〉

∆ab∆ar1

.

Using identities such as

〈p1, p, b〉=
∆ap1∆ba

∆bp1

〈a, p1, p, b〉,
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this is[∆2
p1b

∆bp1

∆ab∆ap1

∆ap1∆ba

∆bp1

∆ba∆ar1

∆bp1∆p1r1

+
∆2
r1b

∆br1

∆ab∆ar1

∆ap1∆ba

∆r1p1∆br1

∆ba∆ar1

∆br1

]
〈a, p1, p, b〉〈a, r1, r, b〉

= ∆ab

[
∆ar1∆bp1

∆p1r1

+
∆br1∆ap1

∆r1p1

]
〈a, p1, p, b〉〈a, r1, r, b〉= ∆ab∆ba〈a, p1, p, b〉〈a, r1, r, b〉.

The last equality is the Plücker relation ∆ar1∆bp1 −∆br1∆ap1 = ∆p1r1∆ba. This proves the
identity (2.12). Now, using the identity

〈ai1P1ai2P2 · · · airPr〉= ∆ai2ai1
〈ai1P1ai2〉 ×∆ai3ai2

〈ai2P2ai3〉 × · · · ×∆airai1
〈airPrai1〉,

the general case follows from (2.12). 2

Corollary 2.10. Let X and Y be disjoint sequences of indeterminates and let e be an
indeterminate not appearing in either X or Y . We have the following identity on cell functions:

〈(X, e) x e(Y, e)〉= 〈X x Y, e〉= 0. (2.13)

Proof. Write X = x1, x2, . . . , xn and Y = y1, y2, . . . , ym. By the recurrence formula for the
shuffle product and Proposition 2.9, we have

〈X x Y, e〉 = 〈x1, (x2, . . . , xn x y1, . . . , ym), e〉+ 〈y1, (x1, . . . , xn x y2, . . . , ym), e〉
= 〈X, e〉〈x1, Y, e〉(e− x1)(x1 − e) + 〈y1, X, e〉〈Y, e〉(y1 − e)(e− y1)

=
(e− x1)(x1 − e)

(x2 − x1) · · · (e− xn)(x1 − e) (y1 − x1)(y2 − y1) · · · (e− ym)(x1 − e)

+
(y1 − e)(e− y1)

(x1 − y1)(x2 − x1) · · · (e− xn)(y1 − e) (y2 − y1) · · · (e− ym)(y1 − e)

=
(−1) + (−1)2

(x2 − x1) · · · (e− xn) (y1 − x1)(y2 − y1) · · · (e− ym)
= 0. 2

By specialization, we can formally extend the definition of a cell function to the case where
some of the terms vi are constant, or one of the vi is infinite, by setting

〈v1, . . . , vi−1,∞, vi+1, . . . , vn〉
= lim
x→∞

x2〈v1, . . . , vi−1, x, vi+1, . . . , vn〉

=
1

(v2 − v1) · · · (vi−1 − vi−2)(vi+2 − vi+1) · · · (vn − vn−1)(v1 − vn)
.

This is the rational function obtained by omitting all terms containing ∞. By taking the
appropriate limit, it is clear that (2.11) and (2.13) are valid in this case too. In the case where
{v1, . . . , vn}= {0, 1, t1, . . . , t`,∞} we have the formula

[v1, . . . , vn] = 〈v1, . . . , vn〉 dt1 dt2 · · · dt`. (2.14)

Definition 2.11. A 01 cyclic (respectively dihedral) structure is a cyclic (respectively dihedral)
structure on S in which the numbers 1 and n− 1 are consecutive. Since z1 = 0 and zn−1 = 1, a 01
cyclic (or dihedral) structure is a set of orderings of the set {z1, . . . , zn}= {0, t1, . . . , t`, 1,∞},
in which the elements 0 and 1 are consecutive. In these terms, each dihedral structure can be
written as an ordering (0, 1, π) where π is some ordering of {t1, . . . , t`,∞}. To each such ordering
we associate a cell-function 〈0, 1, π〉, which is called a 01 cell-function.
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Since 01 cell-functions corresponding to different π are clearly different, it follows that there
exist exactly (n− 2)! distinct 01 cell-functions 〈0, 1, π〉. To these correspond (n− 2)! distinct 01
cell-forms ω(0,1,π) = 〈0, 1, π〉 dt1 · · · dt`.

Theorem 2.12. The set of 01 cell-forms ω(0,1,π), where π denotes any ordering of

{t1, . . . , t`,∞}, has cardinal (n− 2)! and forms a basis of H`(M0,n,Q).

Proof. The proof is based on the following well-known result due to Arnol’d [Arn69].

Theorem 2.13. A basis of H`(M0,n,Q) is given by the classes of the forms

Ω(ε) :=
dt1 · · · dt`

(t1 − ε1) · · · (t` − ε`)
, εi ∈ Ei, (2.15)

where E1 = {0, 1} and Ei = {0, 1, t1, . . . , ti−1} for 2 6 i 6 `.

It suffices to prove that each element Ω(ε) in (2.15) can be written as a linear combination
of 01 cell-forms. We begin by expressing a given rational function 1/((t1 − ε1) · · · (t` − ε`))
as a product of cell-functions and then apply Proposition 2.9. To every ti, we associate its
type τ(ti) ∈ {0, 1} (which depends on ε1, . . . , ε`) as follows. If εi = 0 then τ(ti) = 0; if εi = 1,
then τ(ti) = 1, but if εi 6= 0, 1 then εi = tj for some j < i, and the type of ti is defined to be equal
to the type of tj . Since the indices decrease, the type is well-defined.

We associate a cell-function Fi to each factor (ti − εi) in the denominator of Ω(ε) as follows:

Fi =


〈0, 1, ti,∞〉 if εi = 1,
−〈0, 1,∞, ti〉 if εi = 0,
〈0, 1, εi, ti,∞〉 if εi 6= 1 and the type τ(ti) = 1,
−〈0, 1,∞, ti, εi〉 if εi 6= 0 and the type τ(ti) = 0.

(2.16)

We have

Ω(ε) = ∆
∏̀
i=1

Fi,

where

∆ =
∏

j|εj 6=0,1

(−1)τ(εj)−1(εj − τ(εj))

is exactly the factor occurring when multiplying cell-functions as in Proposition 2.9. This
product can be expressed as a shuffle product, which is a sum of cell-functions. Furthermore
each one corresponds to a cell beginning 0, 1, . . . since this is the case for all of the Fi.
The 01-cell-forms thus span H`(M0,n,Q). Since there are exactly (n− 2)! of them, and since
dimH`(M0,n,Q) = (n− 2)!, they must form a basis. 2

2.3 Pairs of polygons and multiplication

Definition 2.14. Let S = {1, . . . , n}, and let PS denote the Q-vector space generated by the set
of cyclic structures γ on S, i.e. by planar polygons with n sides indexed by S. Let P̃S denote the
Q-vector space generated by the set of cyclic structures γ on S, modulo the relation γ = (−1)n←−γ ,
where←−γ denotes the cyclic structure with the opposite orientation to γ. Throughout this section
we will study P̃S , but the full vector space PS will be studied in § 3.
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2.3.1 Shuffles of polygons. Let T1, T2 denote two subsets of Z = {z1, . . . , zn} satisfying

T1 ∪ T2 = Z,

|T1 ∩ T2|= 3.
(2.17)

Let E = {zi1 , zi2 , zi3} denote the set of three points common to T1 and T2.

Definition 2.15. Consider elements γ1 and γ2 in P̃S coming from a choice of cyclic structure on
T1 and T2 respectively. For every such pair, define the shuffle relative to the set E of three points
of intersection, γ1 x Eγ2, by taking the unique liftings of γ1 and γ2 to elements γ̄1 and γ̄2 of PS
such that the cyclic order on E obtained by restricting the cyclic order γ̄1 on T1 (respectively γ̄2

on T2) is equal to the standard cyclic order on E, and setting

γ1 x Eγ2 =
∑
γ̄∈PS

γ̄|T1
=γ̄1,γ̄|T2

=γ̄2

γ, (2.18)

where γ denotes the image in P̃S of γ̄ ∈ PS .

We can write the shuffle with respect to three points using the following simple formula
(compare with (2.10)). If {z1, . . . , zn}= {0, 1,∞, t1, . . . , t`} with E = {0, 1,∞}, we write
γ1 = (0, A1,2, 1, A2,3,∞, A3,1) where T1 is the disjoint union of A1,2, A2,3, A3,1 and 0, 1,∞, and
γ2 = (0, B1,2, 1, B2,3,∞, B3,1), where T2 is the disjoint union of B1,2, B2,3, B3,1 and 0, 1,∞. Then
γ1 x Eγ2 is the sum of polygons in P̃S given by

γ = (0, A1,2 x B1,2, 1, A2,3 x B2,3,∞, A3,1 x B3,1).

Example 2.16. Let T1 = {0, 1,∞, t1, t3} and T2 = {0, 1,∞, t2}. Let γ1 and γ2 denote the
elements of P̃S given by cyclic orders (0, t1, 1, t3,∞) and (0,∞, t2, 1). Then we take the liftings
γ̄1 = (0, t1, 1, t3,∞), γ̄2 = (−1)4(0, 1, t2,∞), and we find that

γ1 x γ2 = (0, t1, 1, t2, t3,∞) + (0, t1, 1, t3, t2,∞) ∈ P̃S .

We will often write, for example, (0, t1, 1, t2 x t3,∞, t4) for the right-hand side.

2.3.2 Multiplying pairs of polygons: the modular shuffle relation. In this section, we consider
elements of P̃S ⊗ P̃S . We use the notation (γ, η) for γ ⊗ η where γ, η ∈ P̃S . When γ and η
are polygons (as opposed to linear combinations), we can associate a geometric meaning to a pair
of polygons as follows. The left-hand polygon γ, which we will write using round parentheses, for
example (0, t1, . . . , t`, 1,∞), is associated to the real cell Xγ of the moduli space M0,n associated
to the cyclic structure. The right-hand polygon η, which we will write using square brackets, for
example [0, t1, . . . , t`, 1,∞], is associated to the cell-form ωη associated to the cyclic structure.
The pair of polygons will be associated to the (possibly divergent) integral

∫
Xγ

ωη. This geometric
interpretation extends in the obvious way to all pairs of elements (γ, η). In the following section
we will investigate in detail the map from pairs of polygons to integrals.

Definition 2.17. Given sets T1, T2 as in (2.17), the modular shuffle product on the vector space
P̃S ⊗ P̃S is defined by

(γ1, η1) x (γ2, η2) = (γ1 x γ2, η1 x η2), (2.19)

for pairs of polygons (γ1, η1) x (γ2, η2), where γi and ηi are cyclic structures on Ti for i= 1, 2.
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Example 2.18. The following product of two polygon pairs is given by

((0, t1, 1,∞, t4), [0,∞, t1, t4, 1])((0, t2, 1, t3,∞), [0, t3, t2,∞, 1])
=−((0, t1 x t2, 1, t3,∞, t4), [0, t3, t2,∞, t1, t4, 1]).

Let us now explain the geometric meaning of the modular shuffle product (2.19), in terms of
integrals of forms on moduli space. Recall that a product map between moduli spaces was defined
in [Bro09] as follows. Let T1, T2 denote two subsets of Z = {z1, . . . , zn} as in (2.17). Then we
can consider the product of forgetful maps:

f = fT1 × fT2 : M0,n −→M0,T1 ×M0,T2 . (2.20)

The map f is a birational embedding because

dim M0,S = |S| − 3 = |T1| − 3 + |T2| − 3 = dim M0,T1 ×M0,T2 .

If f is a product map as above and zi, zj , zk are the three common points of T1 and T2,
use an element α ∈ PSL2 to map zi to 0, zj to 1 and zk to ∞. Let t1, . . . , t` denote the images
of z1, . . . , zn (excluding zi, zj , zk) under α. Given the indices i, j and k, the product map is
then determined by specifying a partition of {t1, . . . , t`} into S1 and S2. We use the notation
Ti = {0, 1,∞} ∪ Si for i= 1, 2.

The shuffle product formula (2.19) on pairs of polygons is motivated by the formula for
multiplying integrals given in the following proposition.

Proposition 2.19. Let S = {1, . . . , n}, and let T1 and T2 be subsets of S as in (2.17), of
orders r + 3 and s+ 3 respectively. Let ω1 (respectively ω2) be a cell-form on M0,r (respectively
on M0,s), and let γ1 and γ2 denote cyclic orderings on T1 and T2. Then the product rule for
integrals is given by the following formula, called the modular shuffle relation:∫

Xγ1

ω1

∫
Xγ2

ω2 =
∫
Xγ1 x γ2

ω1 x ω2, (2.21)

where ω1 x ω2 converges on the cell Xγ for each term γ in γ1 x γ2.

Proof. The subsets T1 and T2 correspond to a product map

f : M0,n→M0,r ×M0,s.

The pullback formula gives a multiplication law on the pair of integrals:∫
Xγ1

ω1

∫
Xγ2

ω2 =
∫
Xγ1×Xγ2

ω1 ∧ ω2 =
∫
f−1(Xγ1×Xγ2 )

f∗(ω1 ∧ ω2). (2.22)

The preimage f−1(Xγ1 ×Xγ2) decomposes into a disjoint union of cells of M0,n, which are
precisely the cells given by cyclic orders of γ1 x γ2. In other words,

f−1(Xγ1 ×Xγ2) =
∑

γ∈γ1 x γ2

Xγ ,

where the sum denotes a disjoint union. Now we can assume without loss of generality that
T1 = {0, 1,∞, t1, . . . , tk}, T2 = {0, 1,∞, tk+1, . . . , t`} and that δ1, δ2 are the cyclic structures on
T1, T2 corresponding to ω1, ω2, respectively, where δ1, δ2 restrict to the standard cyclic order
on 0, 1,∞. Then, in cell function notation,

f∗(ω1 ∧ ω2) = 〈δ1〉〈δ2〉 dt1 · · · dt` =
〈δ1 x {0,1,∞}δ2〉
〈0, 1,∞〉

dt1 · · · dt` = ω1 x ω2,
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by Proposition 2.9. Since ω1 and ω2 converge on the closed cells Xγ1 and Xγ2 respectively,
ω1 ∧ ω2 has no poles on the contractible set Xγ1 ×Xγ2 , and therefore ω1 x ω2 = f∗(ω1 ∧ ω2) has
no poles on the closure of f−1(Xγ1 ×Xγ2). However,

∑
γ∈γ1 x γ2

Xγ is a cellular decomposition
of f−1(Xγ1 ×Xγ2), so, in particular, ω1 x ω2 can have no poles along the closure of each cell Xγ ,
where γ ∈ γ1 x γ2. 2

2.3.3 S(n) action on pairs of polygons. The symmetric group S(n) acts on a pair of
polygons by permuting their labels in the obvious way, and this extends to the vector space
P̃S ⊗ P̃S by linearity. If τ : M0,n→M0,n is an element of S(n), then the corresponding action
on integrals is given by the pullback formula:∫

Xγ

ωη =
∫
τ(Xγ)

τ∗(ωη) =
∫
Xτ(γ)

ωτ(η). (2.23)

Suppose that τ belongs to the dihedral group which preserves the dihedral structure underlying
a cyclic structure γ. Let ε= 1 if τ preserves γ, and ε=−1 if τ reverses its orientation. We have
the following dihedral relation between convergent integrals:∫

Xγ

ωη = (−1)ε
∫
Xγ

τ∗(ωη) = (−1)ε
∫
Xγ

ωτ(η). (2.24)

Both the formulas (2.23) and (2.24) extend to linear combinations of integrals of cell-forms
as long as the linear combination converges over the integration domain. This convergence is not
a consideration when working with pairs of polygons rather than integrals.

Example 2.20. The form corresponding to ζ(2, 1) on M0,6 is

dt1 dt2 dt3
(1− t1)(1− t2)t3

= [0, 1, t1, t2,∞, t3] + [0, 1, t2, t1,∞, t3],

which gives ζ(2, 1) after integrating over the standard cell. By applying the rotation
(1, 2, 3, 4, 5, 6), a dihedral rotation of the standard cell, to this form, one obtains

[t1,∞, t2, t3, 0, 1] + [t1,∞, t3, t2, 0, 1] = [0, 1, t1,∞, t2, t3] + [0, 1, t1,∞, t3, t2]

=
dt1 dt2 dt3
(1− t1)t2t3

,

which gives ζ(3) after integrating over the standard cell. Therefore, we have the following relation
on linear combinations of pairs of polygons:

((0, t1, t2, t3, 1,∞), [0, 1, t1, t2,∞, t3] + [0, 1, t2, t1,∞, t3])
= ((0, t1, t2, t3, 1,∞), [0, 1, t1,∞, t2, t3] + [0, 1, t1,∞, t3, t2]) (2.25)

which on the level of integrals corresponds to

ζ(2, 1) =
∫
X3,δ

dt1 dt2 dt3
t3(1− t2)(1− t1)

=
∫
X3,δ

dt1 dt2 dt3
t3t2(1− t1)

= ζ(3).

Remark 2.21. This identity is an example of the well-known duality relation between multiple
zeta values given as follows. Every tuple (n1, . . . , nr) of positive integers with n1 > 1 is uniquely
associated to a word xn1−1y · · · xnr−1y in non-commutative variables x, y. Let (m1, . . . , ms) be
the tuple thus associated to the word xynr−1 · · · xyn1−1. The duality relation is

ζ(n1, . . . , nr) = ζ(m1, . . . , ms).
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This relation follows from the dihedral relation above, using the reflection permutation
corresponding to the reflection of the polygon (0, 1, t1, . . . , tn−3,∞) over the symmetry axis
through the side labeled ∞.

2.3.4 Standard pairs and the product map relations. A standard pair of polygons is a pair
(δ, η) where the left-hand polygon is the standard cyclic structure. Let S = {1, . . . , n}, and
T1 ∪ T2 = S with T1 ∩ T2 = {0, 1,∞} be as above, and let γ1 and γ2 be cyclic orders on T1

and T2. In the present section we show how for each such γ1, γ2, we can modify the modular
shuffle relation to construct a multiplication law on standard pairs.

Definition 2.22. Let δ1 and δ2 denote the standard orders on T1 and T2. Then there is a unique
permutation τi mapping δi to γi such that τi(0) = 0, for i= 1, 2. The multiplication law, denoted
by the symbol ×, and called the product map relation, is defined by

(δ1, ω1)× (δ2, ω2) = (γ1, τ1(ω1)) x (γ2, τ2(ω2))
= (γ1 x γ2, τ1(ω1) x τ2(ω2))

=
∑

γ∈γ1 x γ2

(δ, τ−1
γ (τ1(ω1) x τ2(ω2))), (2.26)

where for each γ ∈ γ1 x γ2, τγ is the unique permutation such that τγ(δ) = γ and τγ(0) = 0.

Example 2.23. Let S = {0, 1,∞, t1, t2, t3, t4}, T1 = {0, 1,∞, t1, t4} and T2 = {0, 1,∞, t2, t3}.
Let the cyclic orders on T1 and T2 be given by γ1 = (0, t1, 1,∞, t4) and γ2 = (0, t2, 1, t3,∞).
Applying the product map relation to the pairs of polygons below yields

((0, t1, t4, 1,∞), [0, 1, t1,∞, t4])× ((0, t2, t3, 1,∞), [0, 1, t2,∞, t3])
= ((0, t1, 1,∞, t4), [0,∞, t1, t4, 1]) x ((0, t2, 1, t3,∞), [0, t3, t2,∞, 1])
=−((0, t1, t2, 1, t3,∞, t4), [0, t3, t2,∞, t1, t4, 1])
− ((0, t2, t1, 1, t3,∞, t4), [0, t3, t2,∞, t1, t4, 1])

= ((0, t1, t2, t3, t4, 1,∞), [0, t3,∞, t1, 1, t2, t4] + [0, t3,∞, t2, 1, t1, t4]). (2.27)

In terms of integrals, this corresponds to the relation

ζ(2)2 =
∫
X5,δ

dt1 dt4
(1− t1)t4

∫
X5,δ

dt2 dt3
(1− t2)t3

=
∫
X7,δ

dt1 dt2 dt3 dt4
t4(t4 − t2)(1− t2)(1− t1)t3

+
dt1 dt2 dt3 dt4

t4(t4 − t1)(1− t1)(1− t2)t3
. (2.28)

We will show in § 4.4 that the last two integrals evaluate to (7/10)ζ(2)2 and (3/10)ζ(2)2

respectively.

2.4 The algebra of cell-zeta values
Definition 2.24. Let C denote the Q-subvector space of R generated by the integrals

∫
Xn,δ

ω,
whereXn,δ denotes the standard cell of M0,n for n > 5 and ω is a holomorphic `-form on M0,n with
logarithmic singularities at infinity (thus a linear combination of 01 cell-forms) which converges
on Xn,δ. We call these numbers cell-zeta values. The existence of product map multiplication
laws in Proposition 2.19 imply that C is in fact a Q-algebra.

Theorem 2.25. The Q-algebra C of cell-zeta values is isomorphic to the Q-algebra Z of
multizeta values.
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Proof. Multizeta values are real numbers which can all be expressed as integrals
∫
Xn,δ

ω where
ω is an `-form of the form

ω = (−1)d
∏̀
i=1

dt

ti − εi
, (2.29)

where ε1 = 0, εi ∈ {0, 1} for 2 6 i 6 `− 1, ε` = 1, and d denotes the number of i such that εi = 1.
Since each such form converges on Xn,δ, the multizeta algebra Z is a subalgebra of C. The
converse is a consequence of the following theorem due to Brown [Bro09].

Theorem 2.26. If ω is a holomorphic `-form on M0,n with logarithmic singularities at infinity
and convergent on Xn,δ, then

∫
Xn,δ

ω is Q-linear combination of multizeta values.

Thus, C is also a subalgebra of Z, proving the equality. 2

The structure of the formal multizeta algebra, generated by symbols (formally representing
integrals of the form (2.29)) subject to relations such as shuffle and stuffle relations, has been
much studied. The present article provides a different approach to the study of this algebra, by
turning instead to the study of a formal version of C.

Definition 2.27. Let |S| > 5. The formal algebra of cell-zeta values FC is defined as follows.
Let A be the vector space of formal linear combinations of standard pairs of polygons in P̃S ⊗ P̃S∑

i

ai(δ, ωi)

such that the associated `-form
∑

i aiωi converges on the standard cell Xn,δ. Let FC denote the
quotient of A by the following families of relations.

Definition 2.28. The three families of relations defining FC are as follows.

– Product map relations. These relations were defined in § 2.3. For every choice of subsets
T1, T2 of S = {1, . . . , n} such that T1 ∪ T2 = S and |T1 ∩ T2|= 3, and every choice of cyclic
orders γ1, γ2 on T1, T2, formula (2.26) gives a multiplication law expressing the product of
any two standard pairs of polygons of sizes |T1| and |T2| as a linear combination of standard
pairs of polygons of size n.

– Dihedral relations. For σ in the dihedral group associated to δ, i.e. σ(δ) =±δ, there is a
dihedral relation (δ, ω) = (σ(δ), σ(ω)).

– Shuffles with respect to one element. The linear combinations of pairs of polygons
(δ, (A, e) x e(B, e)) where A and B are disjoint of length n− 1 are zero, as in (2.13).

With the goal of approaching the combinatorial conjectures given in the introduction, the
purpose of the following sections is to give an explicit combinatorial description of a set of
generators for FC. We do this in two steps. First we define the notion of a linear combination
of polygons convergent with respect to a chord of the standard polygon δ, and thence the notion of
a linear combination of polygon convergent with respect to the standard polygon. We exhibit an
explicit basis, the basis of Lyndon insertion words and shuffles for the subspace of such linear
combinations. In the subsequent section, we deduce from this a set of generators for the formal
cell-zeta value algebra FC and also, as a corollary, a basis for the subspace of the cohomology
space H`(M0,n) consisting of classes of forms converging on the standard cell.

Remark 2.29. One of the most intriguing and important questions concerning FC is the
conjectural isomorphism with the algebra of formal multizeta values FZ mentioned earlier
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in Conjecture 1.4. In fact, there is a very natural ‘candidate map’ from the generators of FZ to
elements of FC, coming from simply mapping the differential forms in (1.2) to the corresponding
form in the convergent cohomology group H`(Mδ

0,n) (an explicit expression in terms of the
basis is given in formula (4.7) below). However, in order to yield an algebra morphism, this
map would have to respect the regularized double shuffle relations on the multizeta values. The
shuffle relation is easy to obtain on the images, using the shuffle product maps corresponding
to the partition of (0, t1, . . . , t`, 1,∞) into (0, t1, . . . , tm, 1,∞) and (0, tm+1, . . . , t`, 1,∞) for
2 6m 6 `− 2 (cf. [Bro09]). Likewise, one could hope that the stuffle relations would follow from
the so-called stuffle product maps defined in [Bro09]. These maps can be expressed very simply in
terms of the cubical coordinates x1, . . . , x` defined by t1 = x1 · · · x`, t2 = x2 · · · x`, . . . , t` = x`,
as

(0, x1, . . . , x`, 1,∞) 7→ (0, x1, . . . , xm, 1,∞)× (0, xm+1, . . . , x`, 1,∞)

(it is easy to see that this is indeed a product map [Bro09]). However, computing the product
of two multizeta values as a sum using this product map yields a sum of cell-zeta values which
is not obviously equal to a sum of multiple zeta values (let alone the desired stuffle sum).

By a method due to Cartier, the stuffle relations on multizeta values written as integrals
of the differential forms ω in (1.2) written in cubical coordinates can be proved using variable
changes of the form ∫

[0,1]`
ω =

∫
[0,1]`

σ∗(ω) (2.30)

for σ any permutation of the ` coordinates x1, . . . , x`. We could choose to forcibly add the
relations (2.30), for all forms ω such that both ω and σ∗(ω) are defined on M0,n and convergent
on the standard cell. This would ensure the validity of the stuffle relations on multiple zeta values
inside FC. However, we have abstained from doing so in the hopes that some possibly weaker
conditions may be deduced from our relations and imply the stuffle, hence giving a morphism
FZ →FC with the definition of FC above. This certainly occurs experimentally up to n= 9.
The paper [Sou08] by Soudères takes up this question in the context of motivic multiple zeta
values.

Remark 2.30. By analogy with the situation for mixed Tate motives and formal multizeta values,
we expect that the formal cell-zeta value algebra will be a Hopf algebra. However, we have not
yet determined an explicit coproduct.

3. Polygons and convergence

The present section is devoted to redefining certain familiar geometric notions from the moduli
space situation: differential forms, divisors, convergence of forms on cells, divergence of forms
along divisors, residues, etc., in the completely combinatorial setting of polygons.

In this setting, the twin notions of cells and cell-forms are simultaneously replaced by
the single notion of a polygon, as explained in the previous sections. Boundary divisors then
correspond to chords of polygons, and the issues of divergence become entirely symmetric, with
a chord of one polygon being ‘a bad chord’ for another if the latter corresponds to a form
which diverges along the divisor represented by the bad chord. This language makes it much
easier to discuss residue calculations, convergence of linear combinations of polygons along bad
chords, and most importantly, convergence of linear combinations of polygons with respect to the
standard polygon δ. In the main result of this section, we exhibit an explicit basis for the space of
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linear combinations of polygons convergent with respect to the standard polygon, consisting
of linear combinations called Lyndon insertion words and Lyndon insertion shuffles. This result
will be key in the following section to determining an explicit basis for the space of holomorphic
differential `-forms on M0,n with logarithmic singularities at the boundary, that converge on the
standard cell δ. The integrals of these basis elements, baptized cell-zeta values, form the basic
generating set of our algebra of cell-zeta values, and it is the polygon construction given here that
allows us to define a set of formal cell-zeta values generating the corresponding, combinatorially
defined, formal cell-zeta algebra.

3.1 Bad chords and polygon convergence

For any finite set R of cardinality n, let PR denote the Q vector space of linear combinations
of polygons on R, i.e. cyclic structures on R, identified with planar polygons with edges indexed
by R, as in Definition 2.14 from § 2.3.

Let V denote the free polynomial shuffle algebra on the alphabet of positive integers, and let
V be the quotient of V by the relations w = 0 if w is a word in which any letter appears more
than once (these relations imply that w x w′ = 0 if w and w′ are not disjoint). A basis for V
is usually taken to be the set of all words w, but a theorem of Radford ([Rad79] or [Reu93],
Theorem 6.1(i)), gives an alternative basis for V which we use here.

Definition 3.1. Put the lexicographic ordering on the set of all words in a given ordered
alphabet A. A Lyndon word w in the alphabet is a word having the following property: for every
way of cutting the word w into two non-trivial pieces w1 and w2 (so w is the concatenation
w1w2), the word w2 is greater than w itself for the lexicographical order. The Lyndon basis for
the vector space generated by words in A is given by Lyndon words and shuffles of Lyndon
words.

Consider the image of the Lyndon basis of V under the quotient map V → V . The elements of
this basis which do not map to zero remain linearly independent in V , whose basis thus consists
of Lyndon words with distinct letters (such a word is Lyndon if and only if the smallest character
appears on the left) and shuffles of disjoint Lyndon words with distinct letters. Throughout this
section, we work in V , so that when we refer to a ‘word’, we automatically mean a word with
distinct letters, and shuffles of such words are zero unless the words are disjoint. Let VS be the
subspace of V spanned by the n! words of length n with distinct letters in the characters of
S = {1, . . . , n}. Then the Lyndon basis for VS is given by the (n− 1)! Lyndon words of degree
n and the (n− 1) · (n− 1)! shuffles of disjoint Lyndon words the union of whose letters is equal
to S.

Recall from Definition 2.14 that the vector space PS is generated by cyclic structures on
{1, . . . , n}, identified with planar n-polygons with edges indexed by S. If we consider (n+ 1)-
polygons with edges indexed by S ∪ {d} for some new letter d /∈ S, we have a natural isomorphism

VS
∼−−→PS∪{d} (3.1)

given by writing each cyclic structure on S ∪ {d} as a word on the letters of S followed by the
letter d.

Definition 3.2. Let IS ⊂ PS∪{d} be the subspace linearly generated by shuffles of polygons
(A x B, d), where A ∪B = S, A ∩B = ∅ and A, B 6= ∅. Here, a shuffle of polygons simply refers
to the linear combination of polygons indexed by the words in the shuffle sum (A x B, d).
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Then under the isomorphism (3.1), IS is identified with the subspace of VS generated by the
part of the Lyndon basis consisting of shuffles. By a slight abuse of notation, we use the same
notation IS for the corresponding subspaces of PS∪{d} and of VS .

Definition 3.3. Let D = S1 ∪ S2 denote a stable partition of S (partition into two disjoint
subsets of order greater than or equal to two). Let γ be a polygon on S. We say that the
partition D corresponds to a chord of γ if the polygon γ admits a chord which cuts γ into two
pieces indexed by S1 and S2. The sets S1, S2 are called blocks associated to the chord D. Thus,
a chord divides γ into two blocks, and the set of chords χ(γ) indexes the set of stable partitions
which are compatible with γ in the sense that the subsets S1 and S2 of the partition are blocks
of γ.

Definition 3.4. Let γ, η denote two polygons on S. We say that η is convergent relative to γ
if there are no stable partitions of S compatible with both γ and η:

χ(γ) ∩ χ(η) = ∅. (3.2)

In other words, there exists no block of γ having the same underlying set as a block of η. If η is a
polygon on S, then a block of η is said to be a consecutive block if its underlying set corresponds
to a block of the polygon with the standard cyclic order δ. The polygon η is said to be convergent
if it has no consecutive blocks at all, i.e., if it is convergent relative to δ. A polygon η ∈ PS∪{d} is
said to be convergent if it has no chords partitioning S ∪ {d} into disjoint subsets S1 ∪ S2 such
that S1 is a consecutive subset of S = {1, . . . , n}.

Definition 3.5. We now adapt the definition of convergence for polygons in PS∪{d} to the
corresponding words in VS . A convergent word in the alphabet S is a word having no subword
which forms a consecutive block. In other words, if w = ai1ai2 · · · air , then w is convergent if it
has no subword aijaij+1 · · · aik such that the underlying set {aij , aij+1 , . . . , aik}= {i, i+ 1, . . . ,
i+ r} ⊂ {1, . . . , n}. A convergent word is in fact the image in VS of a convergent polygon in
PS∪{d} under the isomorphism (3.1).

Example 3.6. When 1 6 n 6 4 there are no convergent polygons in PS . For n= 5, there is only
one convergent polygon up to sign, given by γ = (13524). The other convergent cyclic structure
(14253) is just the cyclic structure (13524) written backwards. When n= 6, there are three
convergent polygons up to sign:

(135264), (152463), (142635).

There are 23 convergent polygons for n= 7. Note that when n= 8, the dihedral structure
η = (24136857) is not convergent even though no neighboring numbers are adjacent, because
{1, 2, 3, 4} forms a consecutive block for both η and δ.

Remark 3.7. The enumeration of permutations satisfying the single condition that no two
adjacent elements in γ should be consecutive (the case k = 2) is known as the dinner table problem
and is a classic problem in enumerative combinatorics. The more general problem of convergent
words (arbitrary k) seems not to have been studied previously. The problems coincide for n 6 7,
but the counterexample for n= 8 above shows that the problems are not equivalent for n > 8.

3.2 Residues of polygons along chords
In this section, we give a combinatorial definition on polygons generalizing the notion of the
residue of a differential form at a boundary divisor along which it diverges.
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Definition 3.8 (Polygon residues). For every stable partition D of S given by S = S1 ∪ S2, we
define a residue map on polygons

RespD : PS −→PS1∪{d} ⊗Q PS2∪{d}

as follows. Let η be a polygon in PS . If the partition D corresponds to a chord of η, then it cuts
η into two subpolygons ηi (i= 1, 2) whose edges are indexed by the set Si and an edge labeled
d corresponding to the chord D. We set

RespD(η) =

{
η1 ⊗ η2 if D is a chord of η,
0 if D is not a chord of η.

(3.3)

More generally, we can define the residue for several disjoint chords simultaneously. Let
S = S1 ∪ · · · ∪ Sr+1 be a partition of S into r + 1 disjoint subsets with r > 2. For 1 6 i 6 r, let
Di be the partition of S into the two subsets (S1 ∪ · · · Si) ∪ (Si+1 ∪ · · · ∪ Sr+1). For any polygon
η ∈ PS , we say that η admits the chords D1, . . . , Dr if there exist r chords of η, disjoint except
possibly for endpoints, partitioning the edges of η into the sets S1, . . . , Sr+1. If η admits the
chords D1, . . . , Dr, then these chords cut η into r + 1 subpolygons η1, . . . , ηr+1. Let Ti denote
the set indexing the edges of ηi, so that each Ti is a union of Si and elements of the set {d1, . . . , dr}
of indices of the chords. The composed residue map

RespD1,...,Dr
: PS →PT1 ⊗ · · · ⊗ PTr

is defined as follows:

RespD1,...,Dr
(η) =

{
η1 ⊗ · · · ⊗ ηr+1 if η admits D1, . . . , Dr as disjoint chords,
0 if η does not admit D1, . . . , Dr.

(3.4)

Examples 3.9. In this example, n= 12 and the partition of S given by D1, D2, D3 and D4 is
S1 = {1, 2, 3}, S2 = {4, 10, 11, 12}, S3 = {5, 9}, S4 = {6}, S5 = {7, 8}.

d1
d1 d1

d2
d2

d3

d3 d4

d4

d2

d3

d4

We have

T1 = S1 ∪ {d1}, T2 = S2 ∪ {d1, d2},
T3 = S3 ∪ {d2, d3}, T4 = S4 ∪ {d3, d4}, T5 = S5 ∪ {d4}.

The composed residue map RespD1,D2,D3,D4
maps the standard polygon

δ = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)

to the tensor product of the five subpolygons shown in the figure.

The definition of the residue allows us to extend the definition of convergence of a polygon
to linear combinations of polygons.
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Definition 3.10 (Polygon divergence along the standard polygon: bad chords). Let E be a
partition of S ∪ {d} into two subsets, one of which is a consecutive subset T = {i, i+ 1, . . . , i+ j}
of S for the standard order, and let η be a polygon. We say that E is a bad chord for η, or
equivalently η is a bad polygon for E, if E ∈ χ(η) (this expresses the idea that the cell-form
corresponding to η diverges along the boundary divisor, corresponding to E, of the standard
cell δ). If η =

∑
i aiηi, then we say that E is a bad chord for η if any ηi is a bad polygon for E.

Definition 3.11 (Polygon convergence along the standard polygon). The linear combination
η =

∑
i aiηi is said to converge along the chord E of the standard polygon (or along the

corresponding consecutive subset T ) if the residue satisfies

RespE(η) ∈ IT ⊗ PS\T∪{d}∪{e}, (3.5)

where IT is as in Definition 3.2. A linear combination η is convergent (along the standard polygon)
if it converges along all of its bad chords.

The goal of the following section is to define a set of particular linear combinations of polygons,
the Lyndon insertion words and Lyndon insertion shuffles, which are convergent, and show that
they are linearly independent. In the section after that, we will prove that this set forms a basis
for the convergent subspace of PS∪{d}.

3.3 The Lyndon insertion subspace
Definition 3.12. Let a 1n-word be a word of length n in the distinct letters of S = {1, . . . , n}
in which the letter 1 appears just to the left of the letter n, and let WS ⊂ VS ' PS∪{d} denote
the subspace generated by these words. The space WS is of dimension (n− 1)!.

The following lemma will show that VS =WS ⊕ IS , where IS is the subspace of shuffles of
Definition 3.2.

Lemma 3.13. Fix two elements a1 and a2 of S = {1, . . . , n}. Let

τ =
∑
i

ciηi ∈ VS ,

where the ηi run over the words of length n in VS such that a1 is the leftmost character of ηi
(respectively the ηi run over the words where a1 appears just to the left of a2 in ηi). Then τ ∈ IS
if and only if ci = 0 for all i.

Proof. The assumption τ ∈ IS means that we can write τ =
∑

i ciui x vi for non-empty words
ui and vi. Considering this in the space PS∪{d} isomorphic to VS , it is a sum of cyclic
structures

∑
i ci(ui, d) x (vi, d) shuffled with respect to the point d. Choose any bijection

ρ : {1, . . . , n, d}→ {0, 1,∞, t1, . . . , tn−2} which maps d to 0 and a1 to 1 (respectively which
maps a1 to 0 and a2 to 1). Define a linear map from PS∪{d} to Hn−2(M0,n+1) by first
renumbering the indices (1, . . . , n, d) of each polygon η ∈ PS∪{d} as (0, 1,∞, t1, . . . , tn−2) via ρ,
then mapping the renumbered polygon to the corresponding cell-form (same cyclic order).
By hypothesis, τ =

∑
i ciηi maps to a sum ωτ =

∑
i ciωηi of 01-cell-forms. Since τ is a shuffle

with respect to one point, we know by (2.13) that ωτ = 0. However, the 01 cell-forms ωηi are
linearly independent by Theorem 2.12. Therefore each ci = 0. 2

Recall that the shuffles of disjoint Lyndon words form a basis for IS ; we call them Lyndon
shuffles. A convergent Lyndon shuffle is a shuffle of convergent Lyndon words.
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Definition 3.14. We will recursively define the set LS of Lyndon insertion shuffles in IS . If
S = {1}, then LS = ∅. If S = {1, 2} then LS = {1 x 2}. In general, if D is any (lexicographically
ordered) alphabet on m letters and S = {1, . . . , m}, we define LD to be the image of LS under
the order-preserving bijection S→D corresponding to the ordering of D.

Assume now that S = {1, . . . , n} with n > 2, and that we have constructed all of the sets
L{1,...,i} with i < n. Let us construct LS . The elements of these sets are constructed by taking
convergent Lyndon shuffles on a smaller alphabet, and making ‘insertions’ into every letter
except for the leftmost letter of each Lyndon word in the shuffle, according to the following
explicit procedure. Let T = {a1, . . . , ak} be an alphabet with 3 6 k 6 n letters, ordered by the
lexicographical ordering a1 < · · ·< ak, and choose a convergent Lyndon shuffle γ of length k in
the letters of T . Write γ as a shuffle of s > 1 convergent Lyndon words in disjoint letters:

γ = (ai1 · · · aik1 ) x (aik1+1
· · · aik2 ) x · · · x (aiks−1+1

· · · aiks )

where 1 6 k1 < k2 < · · ·< ks = k. Choose integers v1, . . . , vk > 1 such that
∑

i vi = n and such
that for each of the indices l = i1, ik1+1, . . . , iks−1+1 of the leftmost characters of the s convergent
Lyndon words in γ, we have vl = 1. For 1 6 i 6 k, let Di denote an alphabet {bi1, . . . , bivi}. When
vi = 1, insert bi1 into the place of the letter ai in γ; when vi > 1, choose any element Vi from LDi ,
and insert this Vi into the place of the letter ai.

The result is a sum of words in the alphabet
⋃k
i=1 Di. Note that this alphabet is of cardinal

n and equipped with a natural lexicographical ordering given by the ordering D1, . . . , Dk and
the orderings within each alphabet Di. We can therefore renumber this alphabet as 1, . . . , n.
Since it is a sum of shuffles, the renumbered element lies in IS , and we call it a Lyndon insertion
shuffle on S. The original convergent Lyndon shuffle γ on T is called the framing; together
with the integers vi, we call this the fixed structure of the insertion shuffle. We define LS to
be the set of all Lyndon insertion shuffles on S, constructed by varying the choice of 3 6 k 6 n,
the convergent Lyndon shuffle γ on k letters, the numbers v1, . . . , vk and the elements Vi for
each vi > 1 in every possible way.

In the special case where k = n, we have vi = 1 for 1 6 i 6 k and there are no non-trivial
insertions. The corresponding elements of LS are thus just convergent Lyndon shuffles.

Example 3.15. We have

L{1,2} = {1 x 2},
L{1,2,3} = {1 x 2 x 3, 2 x 13},
L{1,2,3,4} = {1 x 2 x 3 x 4, 13 x 2 x 4, 14 x 2 x 3, 24 x 1 x 3,

3 x 142, 13 x 24, 1(3 x 4) x 2}.

The last element of L{1,2,3,4} is obtained by taking T = {1, 2, 3} and γ = 13 x 2. We can only
insert in the place of the character 3 since 1 and 2 are leftmost letters of the Lyndon words
in 13 x 2. As for what can be inserted in the place of 3, the only possible choices are k = 1,
v1 = 2, D1 = {b1, b2}, and V1 = b1 x b2, the unique element of LD1 . The natural ordering on the
alphabet {T\3} ∪D1 is given by (1, 2, b1, b2) since b1 x b2 is inserted in the place of 3, so we
renumber b1 as 3 and b2 as 4, obtaining the new element

1(3 x 4) x 2 = 134 x 2 + 143 x 2 = 2134 + 1234 + 1324 + 1342 + 2143 + 1243 + 1423 + 1432.
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For n= 5, L{1,2,3,4,5} has 34 elements. Of these, 25 are convergent Lyndon shuffles which we
do not list. The remaining nine elements are obtained by insertions into the smaller convergent
Lyndon shuffles: they are given by

2 x 1(4 x 35), 2 x 1(3 x 4 x 5) insertions into 2 x 13,
3 x 1(4 x 5)2, 4 x 15(2 x 3) insertions into 3 x 142,
13 x 2(4 x 5), 1(3 x 4) x 25 insertions into 13 x 24,
1(3 x 4) x 2 x 5 insertion into 13 x 2 x 4,
1(4 x 5) x 2 x 3 insertion into 14 x 2 x 3,
2(4 x 5) x 1 x 3 insertion into 24 x 1 x 3.

Definition 3.16. We now define a complementary set, the set WS of Lyndon insertion words.
Let a special convergent word w ∈ VS denote a convergent word of length n in S such that
in the lexicographical ordering (1, . . . , n, d), the polygon (cyclic structure) η = (w, d) satisfies
χ(δ) ∩ χ(η) = ∅; in other words, the polygon η has no chords in common with the standard
polygon. This condition is a little stronger than asking w to be a convergent word (for instance,
13524 is a convergent word but not a special convergent word, since 13524d has a bad chord
{2, 3, 4, 5}). The first elements of WS are given by the special convergent 1n-words. The
remaining elements of WS are the Lyndon insertion words constructed as follows. Take a special
convergent word w′ in a smaller alphabet T = {a1, . . . , ak} with k < n such that a1 appears just
to the left of ak−1, and choose positive integers v1, . . . , vk such that v1 = vk = 1 and

∑
i vi = n.

As above, we let Di = {bi1, . . . , bivi} for 1 6 i 6 k, and choose an element Di of LDi for each i such
that vi > 1. For i such that vi = 1, insert bi1 in the place of ai in w′, and, for i such that vi > 1,
insert Di in the place of ai. We obtain a sum of words w′′ in the letters ∪Di. This alphabet has a
natural lexicographic ordering D1, . . . , Dk as above, so we can renumber its letters from 1 to n,
which transforms w′′ into a sum of words w ∈ VS called a Lyndon insertion word. Note that by
construction, the result is still a sum of 1n-words. The set WS consists of the special convergent
words and the Lyndon insertion words.

Remark 3.17. It follows from Lemma 3.13 that the intersection of the subspace 〈WS〉 in VS with
the subspace IS of shuffles is equal to zero.

Example 3.18. We have

W{1,2} = ∅, W{1,2,3} = ∅, W{1,2,3,4} = {3142},
W{1,2,3,4,5} = {24153, 31524, (3 x 4)152, 415(2 x 3)}.

The last two elements of W{1,2,3,4,5} are obtained by taking v1 = 1, v2 = 1, v3 = 2, v4 = 1 and
v1 = 1, v2 = 2, v3 = 1, v4 = 1 and creating the corresponding Lyndon insertion word with respect
to 3142.

Theorem 3.19. The set WS ∪ LS of Lyndon insertion words and shuffles is linearly
independent.

Proof. We will prove the result by induction on n. Since LS ⊂ IS and we saw by Lemma 3.13
that the space generated by WS has zero intersection with IS , we only have to show that that
both WS and LS are linearly independent sets. We begin with LS . Since L{1,2} contains a single
element, we may assume that n > 2.

Let W =A1 x · · · x Ar be a Lyndon shuffle, with r > 1. We define its fixed structure as
follows. Replace every maximal consecutive block (not contained in any larger consecutive block)
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in each Ai by a single letter. Then W becomes a convergent Lyndon shuffle W ′ in a smaller
alphabet T ′ on k letters, which is equipped with an inherited lexicographical ordering. If
T = {1, . . . , k}, then under the order-respecting bijection T ′→ T , W ′ is mapped to a convergent
Lyndon shuffle V in T , called the framing of W . The fixed structure is given by the framing
together with the set of integers {vi | 1 6 i 6 k} defined by vi = 1 if that letter in T does not
correspond to a maximal block, and vi is the length of the maximal block if it does. Thus we
have v1 + · · ·+ vk = n. We can extend this definition to the fixed structure of a Lyndon insertion
shuffle, since by definition this is a linear combination of Lyndon shuffles all having the same
fixed structure, and we recover the framing and fixed structure of the insertion shuffle given in
the definition.

Example 3.20. If W is the Lyndon shuffle 1546 x 237, we replace the consecutive blocks 23
and 546 by letters b1 and b2, obtaining the convergent shuffle W ′ = 1b2 x b17 in the alphabet
T ′ = {1, b1, b2, 7}; renumbering this as 1, 2, 3, 4 we obtain V = 13 x 24 ∈ L{1,2,3,4}. The fixed
structure is given by 13 x 24 and integers v1 = 1, v2 = 2, v3 = 3, v4 = 1.

The Lyndon insertion shuffles (1, (3 x 4)) x (2, 5) and (1, 3) x (2, (4 x 5)) have the same
framing 13 x 24, but since (v1, v2, v3, v4) = (1, 1, 2, 1) for the first one and (1, 1, 1, 2) for
the second, they do not have the same fixed structure. The Lyndon insertion shuffles
(1, (5) x (3, 4, 6)) x (2, 7) and (1, (3, 5) x (4, 6)) x (2, 7) have the same associated framing
13 x 24 and the same integers (v1, v2, v3, v4) = (1, 1, 4, 1). so they have the same fixed structure.

For any fixed structure, given by a convergent Lyndon shuffle γ on an alphabet T of length
k and associated integers v1, . . . , vk with v1 + · · ·+ vk = n, let L(γ, v1, . . . , vk) be the subspace
of VS spanned by Lyndon shuffles with that fixed structure. Since Lyndon shuffles are linearly
independent, we have

VS =
⊕

L(γ, v1, . . . , vk).

Now, as we saw above, a Lyndon insertion shuffle is a linear combination of Lyndon shuffles
all having the same fixed structure, so every element of WS ∪ LS lies in exactly one subspace
L(γ, v1, . . . , vk). Thus, to prove that the elements of LS are linearly independent, it is only
necessary to prove the linear independence of Lyndon insertion shuffles with the same fixed
structure. If all of the vi = 1, then the fixed structure is just a single convergent Lyndon shuffle
on S, and these are linearly independent. Therefore, let (γ, v1, . . . , vk) be a fixed structure with
not all of the vi equal to 1, and let ω =

∑
q cqωq be a linear combination of Lyndon insertion

shuffles of fixed structure γ, v1, . . . , vk.
Break up the tuple (1, . . . , n) into k successive tuples

B1 = (1, . . . , v1), B2 = (v1 + 1, . . . , v1 + v2), . . . , Bk = (v1 + · · ·+ vk−1 + 1, . . . , n).

Let i1, . . . , im be the indices such that Bi1 , . . . , Bim are the tuples of length greater
than 1. These tuples correspond to the insertions in the Lyndon insertion shuffles of type
(γ, v1, . . . , vk). For 1 6 j 6m, let Tj = {Bij} ∪ {dj}. This element dj is the index of the chord
Dj corresponding to the consecutive subset Bij , which is a chord of the standard polygon and
also of every term of ω. The chords D1, . . . , Dr are disjoint and cut each term of ω into
m+ 1 subpolygons, m of which are indexed by Tj , and the last one of which is indexed by
T ′ = S\{Bi1 ∪ · · · ∪Bim} ∪ {d1, . . . , dm}. Thus we can take the composed residue map

RespD1,...,Dm
(ω) ∈ PT1 ⊗ · · · ⊗ PTm ⊗ PT ′ .

Let us compute this residue.
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The alphabet T ′ is of length k and has a natural ordering corresponding to a bijection
{1, . . . , k}→ T ′. Let γ′ be the image of γ under this bijection, i.e. the framing. Let P q1 , . . . , P

q
m

be the insertions corresponding to the m tuples Bi1 , . . . , Bim in each term of ω =
∑

q cqωq. Each
P qj lies in LBij . The image of the composed residue map is then

RespD1,...,Dm
(ω) =

∑
q

cq(P
q
1 , d1)⊗ · · · ⊗ (P qm, dm)⊗ γ′. (3.6)

Now assume that ω =
∑

q cqωq = 0, and let us show that each cq = 0. We have∑
q

cq(P
q
1 , d1)⊗ · · · ⊗ (P qm, dm)⊗ γ′ = 0,

and, since γ′ is fixed, we have∑
q

cq(P
q
1 , d1)⊗ · · · ⊗ (P qm, dm) = 0.

However, for 1 6 j 6m, the P qj lie in LBij and thus, by the induction hypothesis, the distinct
P qj for fixed j and varying q are linearly independent. Since di is the largest element in the
lexicographic alphabet Ti, the sums (P qj , dj) are also linearly independent for fixed j and
varying q, because if

∑
q eq(P

q
j , dj) = 0 then

∑
q eqP

q
j = 0 simply by erasing dj . The tensor

products are therefore also linearly independent, so we must have cq = 0 for all q. This proves
that LS is a linearly independent set.

We now prove that WS is a linearly independent set. For this, we construct the framing
and fixed structure of a Lyndon insertion word of length n in WS just as above, by replacing
consecutive blocks with single letters, obtaining a word in a smaller alphabet T ′ and a set
of integers corresponding to the lengths of the consecutive blocks. For instance, replacing the
consecutive block (3 x 4) in the Lyndon insertion word (3 x 4)152 by the letter b1 gives a
convergent word b1152 in the alphabet (1, 2, b1, 5); renumbering this as (1, 2, 3, 4) gives the
framing as 3124 and the associated integers as v1 = 2, v2 = 1, v3 = 2, v4 = 1. For every fixed
structure of this type, now given as a convergent word γ of length k < n together with integers
v1, . . . , vk, we let W (γ, v1, . . . , vk) denote the subspace of VS generated by Lyndon insertion
words with the fixed structure (γ, v1, . . . , vk). As above, the spaces W (γ, v1, . . . , vk) do not
intersect, soWS =⊕W (γ, v1, . . . , vk), and we have only to show that the set of Lyndon insertion
words with a given fixed structure is a linearly independent set. Hence assume that we have
some linear combination

∑
q cqwq = 0, where the wq are all Lyndon insertion words of given

fixed structure (γ, v1, . . . , vk). If k = n, then these insertion words are just words, so they are
linearly independent and cq = 0 for all q. Hence assume that at least one vi > 1. We proceed
exactly as above. Breaking up the tuple (1, . . . , n) into tuples B1, . . . , Bk as above, and letting
D1, . . . , Dm, Tj and T ′ denote the same objects as before, we compute the composed residue of∑

q cqwq and obtain (3.6). Then because all of the insertions P qi lie in LBij and we know that
these sets are linearly independent, we find as above that cq = 0 for all q. 2

3.4 Convergent linear combinations of polygons

Definition 3.21. Let S = {1, . . . , n}. Let JS be the subspace of PS∪{d} spanned by the set LS
of Lyndon insertion shuffles, and let KS be the subspace of PS∪{d} spanned by the set WS of
Lyndon insertion words.
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We prove the main convergence results in two separate theorems, concerning the subspaces
IS and WS of VS ' PS∪{d} respectively (cf. Definitions 3.2 and 3.12).

Theorem 3.22. An element ω ∈ IS ⊂ PS∪{d} is convergent if and only if ω ∈ JS .

Proof. Step 1. The easy direction. One direction of this theorem is easy. Since JS is spanned
by Lyndon insertion shuffles, which lie in IS , we only need to show that any Lyndon insertion
shuffle is convergent. If it is a shuffle of convergent Lyndon words, then there are no consecutive
blocks in any of the words. Therefore if the letters of any consecutive subset T of S appear as
a block in any term of ω, it must be because they appeared in more than one of the convergent
words which are shuffled together. Hence these letters appear as a shuffle, so the residue lies in
IT ⊗ PS\T∪{d}, which by Definition 3.11 means that ω is convergent. Now, if we are dealing with
a Lyndon insertion shuffle with non-trivial insertions, then there are two kinds of bad chords:
those corresponding to these insertions, and those corresponding to consecutive subsets of the
insertion sets, as illustrated in the following example.

Example 3.23. Let

ω = ((2 x 1(4 x 35)), d) = 2 x (1435 + 1345 + 1354)
= 21435 + 12435 + 14235 + 14325 + 14352 + 21345 + 12345 + 13245

+ 13425 + 13452 + 21354 + 12354 + 13254 + 13524 + 13542, (3.7)

where we write ω in VS rather than PS∪d to avoid adding the index d to the end of every word
above. The sequence (4 x 35) is inserted into the Lyndon shuffle (2 x 13) in the place of the 3.
The bad chord 345 corresponds to the insertion, and the bad chords 34 and 45 appear in certain
terms of the shuffle within the insertion. For the latter type, since they appear inside an insertion
which is itself a shuffle, their letters only appear in shuffle combinations within the insertion (for
instance 1435 + 1345 = 1(3 x 4)5 in the example above), so the residue along these chords is a
shuffle.

However, also, for the bad chords corresponding to an insertion set, the insertion itself lies in
LT ⊂ IT , and is precisely one factor of the residue, which is thus also a shuffle. For example, the
residue in the example above along the chord E = 345 comes from considering only the terms
in (3.7) which have {3, 4, 5} as a consecutive subset, i.e. the terms which are polygons admitting
the chord 345, namely

ω = 21435 + 12435 + 14352 + 21345 + 12345 + 13452 + 21354 + 12354 + 13542
= 21(435 + 345 + 354) + 12(435 + 345 + 354) + 1(435 + 345 + 354)2
= 21(4 x 35) + 12(4 x 35) + 1(4 x 35)2

and the residue is thus simply

Res345(ω) = (4 x 35)⊗ (21e+ 12e+ 1e2),

where e labels the chord E, and the insertion itself is the left-hand factor. Since insertions always
lie in LT , they are always shuffles, therefore ω converges along the corresponding chords.
Step 2. The other direction: induction hypothesis and base case. Assume now that ω is convergent
and lies in IS , so that we can write ω =

∑
i aiωi where each ωi = (Ai1 x · · · x Airi , d) is a Lyndon

shuffle, ri > 1. We say that a consecutive block appearing in any Aij is maximal if the same block
does not appear in that factor or in any other factor inside a bigger consecutive block. Factors
may appear which contain more than one consecutive block, but the maximal blocks are disjoint.
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We prove the result by induction on the length of the alphabet S = {1, . . . , n}. The smallest
case is n= 3, since for n= 2 the polygons are triangles and have no chords. For n= 3, let

ω = c1(12 x 3, d) + c2(13 x 2, d) + c3(1 x 2 x 3, d) + c4(23 x 1, d)

be a linear combination of all the Lyndon shuffles for n= 3. The bad chords are E = {1, 2},
F = {2, 3}. We have

RespE(ω) = c1(1, 2, e)⊗ (e x 3, d) + c2(1 x 2, e)⊗ (e, 3, d)
+ c3(1 x 2, e)⊗ (e x 3, d) + c4(1 x 2, e)⊗ (e, 3, d).

For this to converge means that the left-hand parts of the two right-hand tensor factors (e, 3, d)
and (e x 3, d) must lie in I{1,2}. Since three of the four left-hand parts already lie in I{1,2}, the
fourth one must as well, which must mean that c1 = 0. This is the condition for ω to converge
on E. Now let us consider F = {2, 3}. We have

RespF (ω) = c1(2 x 3, f)⊗ (1, f, d) + c2(2 x 3, f)⊗ (1, f, d)
+ c3(2 x 3, e)⊗ (1 x f, d) + c4(2, 3, f)⊗ (1 x f, d).

This gives c4 = 0 as the condition for ω to converge on F . Therefore, we find that ω is a linear
combination of 13 x 2 and 1 x 2 x 3, which are exactly the elements of the basis L{1,2,3} of JS .
This settles the base case n= 3.

The induction hypothesis is that for every alphabet S′ = {1, . . . , i} with i < n, if ω ∈ IS′ is
convergent, then ω ∈ JS′ .
Step 3. Construction of the insertion terms (S[i], e) ∈ IT . Now let S = {1, . . . , n} and assume
that ω ∈ IS is convergent. Write ω as a linear combination of Lyndon shuffles

ω =
∑
i

ciωi =
∑
i

ci(Ai1 x Ai2 x · · ·Airi , d).

If no consecutive block appears in any Aij , then ω is a linear combination of convergent Lyndon
words, so it is in JS by definition. Assume some consecutive blocks do appear, and consider
a maximal consecutive block T , corresponding to a bad chord E. Decompose ω = γ1 + γ2

where γk is the sum
∑

i∈Ik ciωi, with I1 the set of indices i for which T appears as a block
in some Aij , which by reordering shuffled pieces we may assume to be Ai1, and I2 is the set of
indices for which T does not appear as a block in any Aij . Then because letters of T appear
scattered in different Aij in each term of γ2, any time they appear as a block in a term of γ2, they
must appear in several terms as a shuffle combination, so RespE(γ2) ∈ IT ⊗ PS\T∪{e}∪{d}. Thus
γ2 converges along E. Since we are assuming that ω is convergent, γ1 must then also converge,
so we must have

RespE(γ1) ∈ IT ⊗ PS\T∪{d}∪{e}. (3.8)

For each i ∈ I1, write Ai1 =Bi
1Y

iCi1, where Y i consists of the letters of T in some order and
Bi

1 is a (possibly empty) Lyndon word.
We have

RespE(γ1) =
∑
i∈I1

ci(Y i, e)⊗ (Bi
1eC

i
1 x Ai2 x · · · x Airi , d). (3.9)

Note that the alphabet (S\T ) ∪ {e} corresponding to all of the right-hand factors has the
lexicographic ordering inherited from S by deleting the consecutive block of letters T and
replacing it with the unique character e. Thus, all of the words appearing in the shuffles of
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the right-hand factors are Lyndon words. Indeed, the Aij , j > 1, are Lyndon by definition, the
words Bi

1eC
i
1 with non-empty Bi

1 are Lyndon because of the assumption that Ai1 =Bi
1Y

iCi1 is a
Lyndon word and therefore the smallest character appears on the left of Bi

1, and the words eCi1
which appear when Bi

1 is empty are Lyndon because Ai1 = Y iCi1 is Lyndon and the characters
of Y i (i.e. those of T ) are consecutive, so they are all smaller than those appearing in Ci1; thus
e is less than any character of Ci1 in the inherited ordering. Thus, all of the right-hand factors
of (3.9) are Lyndon shuffles.

Putting an equivalence relation on I1 by letting i∼ i′ if the right-hand factors of (3.9) are
equal, and letting [i] denote the equivalence classes for this relation, we write the residue as

RespE(γ1) =
∑

[i]⊂I1

(∑
i∈[i]

ci(Y i, e)
)
⊗ (B[i]

1 eC
[i]
1 x A

[i]
2 x · · · x A[i]

r[i]
, d). (3.10)

Since the right-hand factors in the sum over [i] are distinct Lyndon shuffles, the set of right-hand
factors forms a linearly independent set. Therefore by (3.8), we must have

(S[i], e) =
∑
i∈[i]

ci(Y i, e) ∈ IT (3.11)

for each [i]⊂ I1.

Let us show that (S[i], e) = 0 whenever B[i]
1 is empty. For all i ∈ I1 such that Bi

1 is empty,
we have Ai1 = Y iCi1, and since these are all Lyndon words, the smallest character of T , say a, is
always on the left of Y i, so we can write Y i = aY i

0 and Ai1 = aY i
0C

i
1 for all such i. Then for an

equivalence class [i] of such i, the (S[i], e) of (3.11) can be written

(S[i], e) =
∑
i∈[i]

ci(Y i, e) =
∑
i∈[i]

ci(aY i
0 , e) ∈ IT .

However, by Lemma 3.13, a sum of words all having the same character (here a) on the left and
the same character (here e) on the right cannot be a shuffle unless it is zero, so (S[i], e) = 0 if

B
[i]
1 is empty.

Step 4. Proof that the insertion terms (S[i], e) lie in JT . For this, we first need to show that
(S[i], e) converges on every subchord of E, i.e. every consecutive subset inside the set T , before
applying the induction hypothesis. Let E′ be a subchord of E, corresponding to a consecutive
block T ′ strictly contained in T .

Decompose the set of indices I1 into two subsets I3 and I4, where I3 contains the indices
i ∈ I1 such that T ′ appears as a consecutive block inside the block T appearing in Ai1, and I4

contains the indices i ∈ I1 such that the letters of T ′ do not appear consecutively inside the
block T . Similarly, partition I2, the set of indices in the sum ω =

∑
i ciωi for which T does not

appear as a block in Ai1, into two sets I5 and I6, where I5 contains the indices i ∈ I2 such that
T ′ appears as a block in some Aij which we may assume to be Ai1, and I6 contains the indices
i ∈ I2 of the terms in which T ′ does not appear as a block in any Aij . We have corresponding
decompositions γ1 = γ3 + γ4, γ2 = γ5 + γ6.

As before, T ′ must appear as a shuffle in γ6, so γ6 converges along E′. As for γ4, since T ′

does not appear as either a block or a shuffle, the residue along E′ is 0. Since, by assumption,
ω = γ3 + γ4 + γ5 + γ6 converges along E′, we see that γ3 + γ5 must converge along E′. Let us
show that in fact both γ3 and γ5 converge along E′.
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Write Ai1 =RiZiSi for every i ∈ I3 ∪ I5, where Zi is a word in the letters of T ′. Note that
Ri is Lyndon, and non-empty by the identical reasoning to that used above to show that Bi

1 is
non-empty. Then for k = 3, 5, we have

RespE′(γk) =
∑
i∈Ik

ci(Zi, e′)⊗ (Rie′Si x Ai2 x · · · x Airi , d). (3.12)

For k = 3, 5, put the equivalence relation on Ik for which i∼ i′ if the right-hand factors of (3.12)
are equal, and let 〈i〉 denote the equivalence classes for this relation. Note that because for i ∈ I3,
T ′ appears as a block of T , the word Bi

1 must appear as the left-hand part of Ri, and the word Ci1
must appear as the right-hand part of Si. Therefore, in particular, the new equivalence relation is
strictly finer than the old, i.e. the equivalence class [i] breaks up into a finite union of equivalence
classes 〈i〉. The residues for k = 3, 5 can now be written

RespE′(γk) =
∑
〈i〉⊂Ik

(∑
i∈〈i〉

ci(Zi, e′)
)
⊗ (R〈i〉e′S〈i〉 x A

〈i〉
2 x · · · x A〈i〉r〈i〉). (3.13)

Then since the right-hand factors for each k are distinct Lyndon shuffles, they are linearly
independent. Furthermore, none of the right-hand factors occurring in the sum for k = 3 can
ever occur in the sum for k = 5 for the following reason: the Lyndon words Rie′Si appearing for
k = 3 all have the letters of T\T ′ grouped around e′, whereas none of the Lyndon words Rie′Si

have this property. Therefore all the right-hand factors from the residues of γ3 and γ5 together
form a linearly independent set, so we find that all the left-hand factors∑

i∈〈i〉⊂Ik

(Zi, e′) ∈ IT ′ , (3.14)

so that both γ3 and γ5 converge along E′. In particular, this means that both γ1 and γ2 converge
along E′.

Now, to determine that the (S[i], e) of (3.11) converge along E′, we will use (3.10) to compute
the composed residue map RespE,E′(γ1). We are only concerned with the set of indices I1 = I3 ∪ I4

in (3.10). For each i ∈ I3, write Y i = U iZiV i where Zi is a word in the letters of T ′, so that
Ri =BiU i, Si = V iCi, and Ai1 =BiU iZiV iCi. Then by (3.12), we have

RespE(γ1) =
∑

[i]∈I3

(∑
i∈[i]

ci(U iZiV i, e)
)
⊗ (B[i]

1 eC
[i]
1 x A

[i]
2 x · · · x A[i]

r[i]
, d)

+
∑

[i]∈I4

(∑
i∈[i]

ci(Y i, e)
)
⊗ (B[i]

1 eC
[i]
1 x A

[i]
2 x · · · x A[i]

r[i]
, d).

The terms for i ∈ I4 converge along T ′, so they vanish when taking the composed residue, and
we find

RespE,E′(γ1) =
∑

[i]∈I3

(∑
i∈[i]

ci(Zi, e′)⊗ (U ie′V i, e)
)
⊗ (B[i]

1 eC
[i]
1 x A

[i]
2 x · · · x A[i]

r[i]
, d).

Since, for each [i]⊂ I3, the right-hand factors are as usual distinct and linearly independent, this
means that, for each [i]⊂ I3,

RespE′(S[i], e) =
∑
i∈[i]

ci(Zi, e′)⊗ (U ie′V i, e) ∈ PT ′∪{e′} ⊗ PT\T ′∪{e′}∪{e}.
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Now, the equivalence relation on i ∈ [i]⊂ I3 given by i∼ i′ if U i = U i
′

and V i = V i′ is the same
as the equivalence relation i∼ i′ if Ri =Ri

′
and Si = Si

′
since Ri =BiU i and Si = V iCi. Hence

the classes 〈i〉 correspond to sets of i for which U i and V i are identical. Thus, for each [i]⊂ I3,
we can write

RespE′(S[i], e) =
∑
〈i〉⊂[i]

(∑
i∈〈i〉

ci(Zi, e′)
)
⊗ (U 〈i〉e′V 〈i〉, e),

where the right-hand factors are all distinct words. Then (3.14) shows that this sum lies
in IT ′ ⊗ PT\T ′∪{e′}∪{e}, so in fact (S[i], e) converges along E′. For [i]⊂ I4, we have saw that
RespE′((S[i], e)) = 0 since T ′ never occurs as a block for i ∈ I4. Thus (S[i], e) converges along E′

for all [i]⊂ I1.
Since we have just shown that (S[i], e) converges along every subchord E′ of E, i.e. along the

chords corresponding to every consecutive subblock T ′ of T , we see that each term (S[i], e) is
convergent along all its bad chords. Thus, by the induction hypothesis, (S[i], e) ∈ JT .
Step 5. Construction of the insertions. The above construction shows that we can write
ω = γ1 + γ2 with

γ1 =
∑

[i]∈I1

c[i](B
[i]S[i]C

[i] x A
[i]
2 x · · · x A[i]

ri , d)

with S[i] ∈ JT . This means that the maximal block T , which appeared only in γ1, has been
replaced by an insertion in the sense of the definition of Lyndon insertion shuffles. To conclude
the proof of the theorem, we successively replace each of the maximal blocks in ω by insertion
terms in the same way, in any order, since maximal blocks are disjoint. The final result displays ω
as a linear combination of convergent Lyndon shuffles and Lyndon insertion shuffles, so ω ∈ JS . 2

The following theorem is the exact analogy of the previous one, but with the actual shuffles in
IS replaced by the words in WS that have 1 just to the left of n, and the set of Lyndon insertion
shuffles replaced by Lyndon insertion words, which considerably simplifies the proof.

Theorem 3.24. Let η ∈WS ⊂ PS∪{d}. Then η is convergent if and only if η ∈KS = 〈WS〉.

Proof. The proof that ω ∈KS is convergent is exactly as at the beginning of the proof of the
previous theorem. Therefore, consider the other direction. Let ω ∈WS , so that we can write

ω =
∑
i

aiηi

where each ηi is a 1n-polygon (a 1n-word concatenated with d), and assume ω is convergent.
The only possible bad chords for ω are the consecutive blocks appearing in the ηi. Let T be a
subset of S corresponding to a maximal consecutive block.

Lemma 3.25. No maximal consecutive block having non-trivial intersection with {1, n} can
appear in any of the 1n-words ηi of ω.

Proof. If T is a maximal block containing both 1 and n, then T = {1, . . . , n} which does not
correspond to a chord.

Assume now that T = {m, . . . , n} with m> 1. Write ηi = (Ki, 1, n, Zi, H i, d) where Zi is an
ordering of {m, . . . , n− 1}. Let E be the chord corresponding to T . We have

RespE

(∑
i

aiηi

)
=
∑
i

ai(n, Zi, e)⊗ (Ki, 1, e, H i, d).
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Convergence implies that for any constant words K, H, the sum∑
i|Ki=K,Hi=H

ai(n, Zi, e) ∈ IT . (3.15)

However, by Lemma 3.13, it is impossible for a sum of words all having the same character on
the left to be equal to a shuffle.

The case where T = {1, . . . , m} with m< n is identical, except for an easy adaptation of
Lemma 3.13 to show that a sum of words all having the same character on the right cannot be
equal to a shuffle. 2

Now we can complete the proof of the theorem. Let ω =
∑

i aiηi be a sum of 1n-words
which converges, and consider a maximal consecutive block T ⊂ {2, . . . , n− 1}. Let I1 be the
set of indices i such that ηi contains the block T and I2 the other indices. For i ∈ I1, write
ηi = (Ki, Zi, H i, d) where Zi is an ordering of T . Then

RespT (ω) =
∑
i∈I1

ai(Zi, e)⊗ (Ki, e, H i, d).

Let i∼ i′ be the equivalence relation on I1 given by Ki =Ki′ and H i =H i′ . Then

RespT (ω) =
∑

[i]∈I1

(∑
i∈[i]

ai(Zi, e)
)
⊗ (K [i], e, H [i], d),

and the right-hand factors are all distinct (linearly independent) words, so by the assumption
that ω convergence along E, we have

(S[i], e) =
∑
i∈[i]

ai(Zi, e) ∈ IT

for each [i]⊂ I1. Therefore we can write ω as

ω =
∑

[i]⊂I1

ai(K [i], S[i], H
[i], d) +

∑
i∈I2

aiηi,

with the maximal block T replaced by the insertion S[i]. We prove that S[i] ∈ JT exactly as in
the proof of the previous theorem: considering a maximal consecutive block T ′ ⊂ T occurring
in a factor of S[i], one shows that S[i] converges along T ′ if and only if ω converges along T ′.
Since ω does converge by assumption, S[i] also converges, and since this holds for all consecutive
blocks T ′ ⊂ T , S[i] converges on all its subdivisors and therefore S[i] ∈ JS = 〈LS〉. Finally, one
deals with the disjoint maximal blocks appearing in ω one at a time until no blocks at all remain,
expressing ω explicitly as a linear combination of Lyndon insertion words. 2

3.5 A summary of the results in this section
We introduced the following spaces, where S = {1, . . . , n}:

– VS : the Q-vector space generated by words in S having distinct letters;
– IS : the Q-vector space generated by shuffles of disjoint words of VS (Definition 3.2);
– LS : the set of Lyndon insertion shuffles (Definition 3.14), which are linearly independent

(Theorem 3.19);
– JS : the subspace of IS spanned by LS , which forms the set of convergent elements of IS

(Theorem 3.22);
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– WS : the Q-vector space generated by words in VS , so that by Radford’s theorem, we have
VS = IS ⊕WS ;

– WS : the set of Lyndon insertion words (Definition 3.16), which are linearly independent
(Theorem 3.19);

– KS : the subspace spanned by WS , which forms the set of convergent elements of WS

(Theorem 3.24).

4. Explicit generators for FC and H`(Mδ
0,n)

In this section, we show that the map from polygons to cell-forms is surjective, and compute
its kernel. From this and the previous section, we will conclude that the pairs (δ, ω), where ω
runs through the set WS of Lyndon insertion words for n > 5, form a generating set for the
formal cell-zeta algebra FC. In the final section, we show that the images of the elements of WS

in the cohomology H`(M0,n) yield an explicit basis for the convergent cohomology H`(Mδ
0,n),

determine its dimension, and compute the cohomology basis explicitly for small values of n.
We recall that Mδ

0,n is defined in § 1.1, and that by the ‘convergent cohomology’, we mean the
cohomology classes of `-forms with logarithmic singularities which converge on the closure of
the standard cell.

4.1 From polygons to cell-forms
Let S = {1, . . . , n}. The bijection ρ : S ∪ {d}→ {0, t1, . . . , t`+1, 1,∞} given by associating the
elements 1, . . . , n, d to 0, t1, . . . , t`+1, 1,∞ respectively, induces a map f from polygons to
cell-forms:

η = (σ(1), . . . , σ(n), d)
f−−→ ωη = [ρ(σ(1)), . . . , ρ(σ(n)),∞].

The map f extends by linearity to a map from PS∪{d} to the cohomology group
Hn−2(M0,n+1). The purpose of this section is to prove that f is a surjection, and to determine
its kernel.

Recall that IS ⊂ PS∪{d} denotes the subvector space of PS∪{d} spanned by the shuffles with
respect to the element d, namely by the linear combinations of polygons

(S1 x S2, d)

for all partitions S1
∐
S2 of S.

Proposition 4.1. Let S = {1, . . . , n}. Then the cell-form map

f : PS∪{d} −→Hn−2(M0,n+1)

is surjective with kernel equal to the subspace IS .

Proof. The surjectivity is an immediate consequence of the fact that 01 cell-forms form a basis
of Hn−2(M0,n+1) (Theorem 2.12), since all such cell-forms are the images under f of polygons
having the edge labeled 1 next to the one labeled n.

Now, IS lies in the kernel of f by the corollary to Proposition 2.9. Hence it only remains to
show that the kernel of f is equal to IS . However, this is a consequence of counting the dimensions
of both sides. By Theorem 2.12, we know that the dimension of Hn−2(M0,n+1) is equal to (n− 1)!
As for the dimension of PS∪{d}/IS , recall from the beginning of § 3 that PS∪{d} ' VS , which can
be identified with the graded n part of the quotient of the polynomial algebra on S by the relation
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w = 0 for all words w containing repeated letters. Thus VS is the vector space spanned by words
on n distinct letters, so it is of dimension n! However, instead of taking a basis of words, we can
take the Lyndon basis of Lyndon words (words with distinct characters whose smallest character
is on the left) and shuffles of Lyndon words. The subspace IS is exactly generated by the shuffles,
so the dimension of the quotient is given by the number of Lyndon words on S, namely (n− 1)!
Therefore PS∪{d}/IS 'Hn−2(M0,n+1). 2

Remark 4.2. The above proof has an interesting consequence. Since the map from polygons to
differential forms does not depend on the role of d, the kernel cannot depend on d, and any
other element of S ∪ {d} could play the same role. Therefore IS , which is defined as the space
generated by shuffles with respect to the element d, is equal to the space generated by shuffles
of elements of S ∪ {d} with respect to any element of S; it is simply the subspace generated by
shuffles with respect to one element of S ∪ {d}.

Corollary 4.3. Let WS ⊂ PS∪{d} be the subset of polygons corresponding to 1n-words
(concatenated with d). Then

f :WS 'Hn−2(M0,n+1).

Proof. The proof follows from the fact that PS∪{d} =WS ⊕ IS . 2

4.2 Generators for FC
By definition, FC is generated by all linear combinations of pairs of polygons

∑
i ai(δ, ωi) whose

associated differential form converges on the standard cell, but modulo the relation (among
others) that shuffles are equal to zero. In other words, since PS∪{d} =WS ⊕ IS , we can redefine
FC to be generated by linear combinations

∑
i ai(δ, ωi) such that

∑
i aiωi ∈WS and such that

the associated differential form converges on the standard cell.

The following proposition states that the notion of the residue of a polygon and the residue
of the corresponding cell-form coincide. In order to state it, we must recall that one can define
the map

ρ : PS −→ Ω`(M0,S),

from polygons labeled by S to cell-forms in a coordinate-free way (one can do this directly from
equation (2.6)). In § 1, this map was defined in explicit coordinates by fixing any three marked
points at 0, 1 and ∞. This essence of Lemma 2.5 is that ρ is independent of the choice of three
marked points, and is thus coordinate-free.

Proposition 4.4. Let S = {1, . . . , n} and letD be a stable partition S1 ∪ S2 of S corresponding
to a boundary divisor of M0,n, with |S1|= r and |S2|= s. Let ρ denote the usual map from
polygons to cell-forms. Then the following diagram is commutative.

PS
ρ //

RespD
��

H`(M0,n)

ResD
��

PS1∪{d} ⊗ PS2∪{d}
ρ⊗ρ // Hr−2(M0,r+1)⊗Hs−2(M0,s+1)

In other words, the usual residue of differential forms corresponds to the combinatorial residue
of polygons.
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Proof. Let η ∈ PS be a polygon, and let ωη be the associated cell-form. If D is not compatible
with ωη, then ωη has no pole on D by Proposition 2.7, so ResD(ω) = 0.

We shall work in explicit coordinates, bearing in mind that this does not affect the answer, by
the remarks above. Therefore assume that η is the polygon numbered with the standard cyclic
order on {1, . . . , n}, and that D is compatible with η. The corresponding cell-form is given in
simplicial coordinates by [0, t1, . . . , t`, 1,∞]. By applying a cyclic rotation, we can assume that
D corresponds to the partition

S1 = {1, 2, 3, . . . , k + 1} and S2 = {k + 2, . . . , n− 1, n}

for some 1 6 k 6 `. In simplicial coordinates, D corresponds to the blow-up of the cycle
0 = t1 = · · ·= tk. We compute the residue of ωη along D by applying the variable change
t1 = x1 · · · x`, . . . , t`−1 = x`−1x`, t` = x` to the form ωη = [0, t1, . . . , t`, 1,∞]. The standard cell
Xη is given by {0< x1, . . . , x` < 1}. In these coordinates, the divisor D is given by {xk = 0},
and the form ωη becomes

ωη =
dx1 · · · dx`

x1(1− x1) · · · x`(1− x`)
. (4.1)

The residue of ωη along xk = 0 is given by

dx1 · · · dxk−1

x1(1− x1) · · · xk−1(1− xk−1)
⊗ dxk+1 · · · dx`
xk+1(1− xk+1) · · · x`(1− x`)

. (4.2)

Changing back to simplicial coordinates via x1 = a1/a2, . . . , xk−2 = ak−2/ak−1, xk−1 = ak−1,
and x` = b`, x`−1 = b`−1/b`, . . . , xk+1 = bk/bk+1 defines simplicial coordinates on D ∼= M0,r+1 ×
M0,s+1. The standard cells induced by η are (0, a1, . . . , ak−1, 1,∞) on M0,r+1 and
(0, bk, . . . , b`, 1,∞) on M0,s+1. If we compute (4.2) in these new coordinates, it gives precisely

[0, a1, . . . , ak−1, 1,∞]⊗ [0, bk, . . . , b`, 1,∞],

which is the tensor product of the cell-forms corresponding to the standard cyclic orders η1, η2

on S1 ∪ {d} and S2 ∪ {d} induced by η. Therefore ρ(RespDη) = ResDωη.
To conclude the proof of the proposition, it is enough to notice that applying σ ∈S(n) to

the formula ResDωη = ωη1 ⊗ ωη2 yields

Resσ(D)σ
∗(ωη) = Resσ(D)ωσ(η) = σ∗(ωη1)⊗ σ∗(ωη2) = ωσ(η1) ⊗ ωσ(η2).

Here, σ(ηi) is the cyclic order induced by σ(η) on the set σ(S1) ∪ {σ(d)}, where σ(d) corresponds
to the partition S = σ(S1) ∪ σ(S2). Thus ρ(Respσ(D)σ(η)) = Resσ(D)ωσ(η) for all σ ∈S(n), which
proves that ρ(RespDγ) = ResDωγ for all cyclic structures γ ∈ PS , and all divisors D. 2

Corollary 4.5. A linear combination η =
∑

i aiηi ∈WS ⊂ PS∪{d} converges with respect to
the standard polygon if and only if its associated form ωη converges on the standard cell.

Proof. We first show that

RespD(η) ∈ IS1 ⊗ PS2∪{d} + PS1∪{d} ⊗ IS2 (4.3)

if and only if ωη converges along the corresponding divisor D in the boundary of the standard
cell. If (4.3) holds, then, by Proposition 4.1 together with the previous proposition, ResD(ωη) = 0.
Conversely, if ResD(ωη) = 0 for a divisor D in the boundary of the standard cell, then, by the pre-
vious proposition, RespD(η) ∈ Ker(ρ⊗ ρ), which is exactly equal to IS1 ⊗ PS2∪{d} + PS1∪{d} ⊗ IS2 .

We now show that (4.3) is equivalent to the convergence of η. However, since η ∈WS , the
argument of Lemma 3.25 implies that (4.3) holds automatically for any D which intersects {1, n}
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non-trivially. If D intersects {1, n} trivially, then we can assume that {1, n} ⊂ S2. In that case,
the fact that WS2 ∩ IS2 = 0 (Lemma 3.13) implies that (4.3) is equivalent to the apparently
stronger condition

RespD(η) ∈ IS1 ⊗ PS2∪{d},

and thus η converges along S1 in the sense of definition (3.5). This holds for all divisors D and
thus completes the proof of the corollary. 2

Corollary 4.6. The Lyndon insertion words ofWS form a generating set for FC. Furthermore,
FC is defined by subjecting this generating set to only two sets of relations (cf. Definition 2.28):

– dihedral relations;

– product map relations.

Remark 4.7. The third relation from Definition 2.28 is not needed because we have restricted
attention from all linear combinations of pairs of polygons to only those in the basis WS , where
such shuffles do not occur.

4.3 The insertion basis for H`(Mδ
0,n)

Definition 4.8. Let an insertion form be the sum of 01-cell-forms obtained by renumbering
the Lyndon insertion words of WS via (1, . . . , n, d)→ (0, t1, . . . , t`+1, 1,∞).

Theorem 4.9. The insertion forms form a basis for Hn−2(Mδ
0,n+1).

This is an immediate corollary of all the preceding results.
It is interesting to attempt to determine the dimension of the spaces H`(Mδ

0,n). The most
important numbers needed to compute these are the numbers c0(n) of special convergent words
(convergent 01 cell-forms) on M0,n. These can be computed by counting the number of polygons
indexed by symbols (0, t1, . . . , t`, 1,∞) (or (1, . . . , n)) which are convergent with respect to the
standard cyclic order and also have the index 0 next to 1 (or 1 next to n− 1); in other words,
the number of cyclic orders having 0 next to 1 and in which no k consecutive labels occur as a
single block of k consecutive elements of the cyclic order. By direct counting, we find c0(4) = 0,
c0(5) = 1, c0(6) = 2, c0(7) = 11, c0(8) = 64, c0(9) = 461.

Proposition 4.10. Set I1 = 1, and let Ir denote the cardinal of the set L{1,...,r} for r > 2 given

in Definition 3.14. The dimensions dn = dimH`(Mδ
0,n) are given by

dn =
n∑
r=5

∑
i1+···+ir−3=n−3

Ii1 · · · Iirc0(r), (4.4)

where the inner sum is over all partitions of (n− 3) into (r − 3) strictly positive integers. This
formula can be written as follows in terms of generating series. Let

I(x) =
∞∑
n=1

Inx
n = x+ x2 + 2x3 + 7x4 + · · · ,

and let

C(x) =
∞∑
r=5

c0(r)xr−3 = x2 + 2x3 + 11x4 + 64x5 + · · · .

Then if D(x) =
∑∞

n=5 dnx
n−3, we have the identity

D(x) = C(I(x)).
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Proof. This recursive counting formula is a direct consequence of the definition, counting all
possible ways of making insertions into the c0(r) convergent 01-cell-forms for 5 6 r 6 n. 2

Remark 4.11. We have I1 = I2 = 1, I3 = 2, I4 = 7, I5 = 34, I6 = 206 (see Example 3.15). The
formula gives

d5 = I2
1c0(5) = 1,

d6 = I1I2c0(5) + I2I1c0(5) + I3
1c0(6) = 1 + 1 + 2 = 4,

d7 = I1I3c0(5) + I2
2c0(5) + I3I1c0(5) + I2

1I2c0(6) + I1I2I1c0(6) + I2I
2
1c0(6) + c0(7)

= 5c0(5) + 3c0(6) + c0(7) = 5 + 6 + 11 = 22.

In the forthcoming preprint [BB08], the following remarkably simple identity concerning the dn
is proven. Let E(x) = x− x2 −

∑∞
n=4 dnx

n−1, and set F (x) =
∑∞

n=1(n− 1)!xn. Then

E(F (x)) = x,

in other words E(x) is the formal inversion of the power series F (x).

While the present paper was in the final stages of correction, a preprint [ST08] appeared in
which a sequence of numbers dn, of which the first ones are equal to the dn defined above, are
discovered and interpreted in terms of free Lie operads. In this paper, the authors give the same
expression for the generating series of their dn as the inverse of F (x), thus their result provides
a new interpretation of the dimensions dn.

Note that the formula (4.4) gives the dimensions as sums of positive terms. A very different
formula for dimH`(Mδ

0,n) is given in [BB08] using point-counting methods. The relations between
the proof in [ST08], the geometry of moduli spaces, the intermediate power series I(x) and C(x),
and the counting method in [BB08], will be discussed in a forthcoming paper.

4.4 The insertion basis for M0,n, 5 6 n 6 9

In this section we list the insertion bases in low weights. In the case M0,5, there is a single
convergent cell-form:

ω = [0, 1, t1,∞, t2]. (4.5)

The corresponding period integral is the cell-zeta value:

ζ(ω) =
∫

(0,t1,t2,1,∞)
[0, 1, t1,∞, t2] =

∫
06t16t261

dt1 dt2
(1− t1)t2

= ζ(2).

Here we use the notation of round brackets for cells in the moduli space M0,n introduced in § 2.3.4:
the cell (0, t1, t2, 1,∞) is the same as the cell X5,δ corresponding to the standard dihedral order
on the set {0, t1, t2, 1,∞}. Since C0(5) is one-dimensional, the space of periods in weight two,
namely the weight two graded part C2 of the algebra of cell-zeta values C of § 2.4, is just the
one-dimensional space spanned by

∫
X5,δ

ω = ζ(2).

4.4.1 The case M0,6. The space C(6) is four-dimensional, generated by two 01-convergent
cell-forms (the first row in the table below) and two forms (the second row in the table below)
which come from inserting L1,2 = {1 x 2} and L2,3 = {2 x 3} into the unique convergent 01-cell-
form on M0,5 (4.5). The position of the point ∞ plays a special role. It gives rise to another
grading, corresponding to the two columns in the table below, since ∞ can only occur in two
positions.
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C0(6) ω1,1 = [0, 1, t2,∞, t1, t3] ω1,2 = [0, 1, t1, t3,∞, t2]
C1(6) ω2,1 = [0, 1, t1,∞, t2 x t3] ω2,2 = [0, 1, t1 x t2,∞, t3]

We therefore have four generators in weight three. There are no product relations on M0,6,
so in order to compute the space of cell-zeta values, we need only compute the action of
the dihedral group on the four differential forms. In particular, the order six cyclic generator
0 7→ t1 7→ t2 7→ t3 7→ 1 7→∞ 7→ 0 sends

ω1,1 7→ −ω2,1 − ω2,2, ω1,2 7→ ω1,1, ω2,1 7→ −ω1,2 − ω2,1, ω2,2 7→ ω2,1.

Thus, letting X denote the standard cell X6,δ = (0, t1, t2, t3, 1,∞), we have
∫
X ω1,1 =

∫
X ω1,2,∫

X ω2,1 =
∫
X ω2,2 and 2

∫
X ω2,2 =

∫
X ω1,2, so in fact the periods form a single orbit under the

action of the cyclic group of order six on H`(Mδ
0,S). We deduce that the space of periods of

weight three is of dimension one, generated for instance by
∫
ω2,1. Since ω2,1 is the standard

form for ζ(3), we have

ζ(0, 1, t2,∞, t1, t3) =
∫
X

dt1 dt2 dt3
(1− t2)(t1 − t3)t3

= 2 ζ(3),

ζ(0, 1, t1, t3,∞, t2) =
∫
X

dt1 dt2 dt3
(1− t1)(t1 − t3)t2

= 2 ζ(3),

ζ(0, 1, t1,∞, t2 x t3) =
∫
X

dt1 dt2 dt3
(1− t1)t2t3

= ζ(3),

ζ(0, 1, t1 x t2,∞, t3) =
∫
X

dt1 dt2 dt3
(1− t1)(1− t2)t3

= ζ(3).

Note that ω2,2 is the standard form usually associated to ζ(2, 1), so that we have recovered the
well-known identity ζ(2, 1) = ζ(3), which is normally obtained using stuffle, shuffle and Hoffmann
relations on multizetas.

4.4.2 The case M0,7. The insertion basis is listed in the following table. It consists of 22
forms, eleven of which lie in C0(7), six of which come from making one insertion into a convergent
01 cell-form from C0(6) (using L1,2 = {1 x 2} and L2,3 = {2 x 3}), and five of which come from
making two insertions into the unique convergent 01 cell-form from C0(5) (which also uses
L1,2,3 = {1 x 2 x 3, 2 x 13} and L2,3,4 = {2 x 3 x 4, 3 x 24}).

C0(7) [0, 1, t2,∞, t3, t1, t4] [0, 1, t1, t3,∞, t2, t4] [0, 1, t1, t4, t2,∞, t3]
[0, 1, t2,∞, t4, t1, t3] [0, 1, t1, t3,∞, t4, t2] [0, 1, t2, t4, t1,∞, t3]
[0, 1, t3,∞, t1, t4, t2] [0, 1, t2, t4,∞, t1, t3] [0, 1, t3, t1, t4,∞, t2]

[0, 1, t3, t1,∞, t2, t4]
[0, 1, t3, t1,∞, t4, t2]

C1(7) [0, 1, t2,∞, t1, t3 x t4] [0, 1, t1, t4,∞, t2 x t3] [0, 1, t1 x t2, t4,∞, t3]
[0, 1, t3,∞, t1 x t2, t4] [0, 1, t2 x t3,∞, t1, t4] [0, 1, t1, t3 x t4,∞, t2]

C2(7) [0, 1, t1,∞, t3 x (t2, t4)] [0, 1, t1 x t2,∞, t3 x t4] [0, 1, t2 x (t1, t3),∞, t4]
[0, 1, t1,∞, t2 x t3 x t4] [0, 1, t1 x t2 x t3,∞, t4]
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The standard multizeta forms can be decomposed into sums of insertion forms as follows:

dt1 dt2 dt3 dt4
(1− t1)t2t3t4

= [0, 1, t1,∞, t2 x t3 x t4],

dt1 dt2 dt3 dt4
(1− t1)(1− t2)t3t4

= [0, 1, t1 x t2,∞, t3 x t4],

dt1 dt2 dt3 dt4
(1− t1)t2(1− t3)t4

= [0, 1, t1, t3,∞, t2, t4] + [0, 1, t1, t3,∞, t4, t2]

+ [0, 1, t3, t1,∞, t2, t4] + [0, 1, t3, t1,∞, t4, t2],

dt1 dt2 dt3 dt4
(1− t1)(1− t2)(1− t3)t4

= [0, 1, t1 x t2 x t3,∞, t4].

(4.6)

In general, the standard multizeta form having factors (1− ti1), . . . , (1− tir) (with i1 = 1) and
tj1 , . . . , tjs (with js = n) in the denominator is equal to the shuffle form

[0, 1, ti1 x · · · x tir ,∞, tj1 x · · · x tjs ], (4.7)

so to decompose it into insertion forms it is simply necessary to decompose the shuffles
ti1 x · · · x tir and tj1 x · · · x tjs into linear combinations of Lyndon insertion shuffles.

Computer computation confirms that the space of periods on M0,7 is of dimension one and
is generated by ζ(2)2. Indeed, up to dihedral equivalence, there are six product maps on M0,7,
given by 

(0, t1, t2, t3, t4, 1,∞) 7→ (0, t1, t2, 1,∞)× (0, t3, t4, 1,∞),
(0, t1, t2, 1, t3, t4,∞) 7→ (0, t1, t2, 1,∞)× (0, 1, t3, t4,∞),
(0, t1, t2, 1, t3,∞, t4) 7→ (0, t1, t2, 1,∞)× (0, 1, t3,∞, t4),
(0, t1, t2, 1, t3,∞, t4) 7→ (0, t1, 1, t3,∞)× (0, t2, 1,∞, t4),
(0, t1, t2, t3, 1, t4,∞) 7→ (0, t1, t2, 1,∞)× (0, t3, 1, t4,∞),
(0, t1, t2, 1, t3, t4,∞) 7→ (0, t1, 1, t3,∞)× (0, t2, 1, t4,∞).

(4.8)

Following the algorithm from § 2.3.4, we have six associated relations between the integrals of
the 22 cell-forms. Then, explicitly computing the dihedral action on the forms yields a further
set of linear equations, and it is a simple matter to solve the entire system of equations to recover
the one-dimensional solution. It also provides the value of each integral of an insertion form as
a rational multiple of any given one; for instance all the values can be computed as rational
multiples of ζ(2)2. In particular, we easily recover the usual identities

ζ(4) = 2
5ζ(2)2, ζ(3, 1) = 1

10ζ(2)2, ζ(2, 2) = 3
10ζ(2)2, ζ(2, 1, 1) = 2

5ζ(2)2.

4.4.3 The cases M0,8 and M0,9. There are 64 convergent 01 cell-forms in on M0,8, and the
dimension of H5(Mδ

0,8) is 144. The remaining 80 forms are obtained by Lyndon insertion shuffles
as follows:

– 44 forms obtained by making the four insertions,

(t1 x t2, t3, t4, t5), (t1, t2 x t3, t4, t5), (t1, t2, t3 x t4, t5), (t1, t2, t3, t4 x t5),

into the eleven 01 cell-forms of M0,7;
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– 12 forms obtained by the six insertion possibilities,

(t1 x t2 x t3, t4, t5), (t2 x t1t3, t4, t5), (t1, t2 x t3 x t4, t5),
(t1, t3 x t2t4, t5), (t1, t2, t3 x t4 x t5), (t1, t2, t4 x t3t5),

into the two 01 cell-forms of M0,6;

– six forms obtained by the three insertion possibilities

(t1 x t2, t3 x t4, t5), (t1 x t2, t3, t4 x t5), (t1, t2 x t3, t4 x t5),

into the two 01 cell-forms of M0,6;

– four forms obtained by the four insertions,

(t1 x t2 x t3, t4 x t5), (t2 x t1t3, t4 x t5),
(t1 x t2, t3 x t4 x t5), (t1 x t2, t4 x t3t5),

into the single 01 cell-form of M0,5;

– 14 forms obtained by the 14 insertions,

(t1t3 x t2t4, t5), (t3 x t1t4t2, t5), (t1t3 x t2 x t4, t5), (t1t4 x t2 x t3, t5),
(t2t4 x t1 x t3, t5), (t2 x t1(t3 x t4), t5), (t1 x t2 x t3 x t4, t5),

(t1, t2t4 x t3t5), (t1, t4 x t2t5t3), (t1, t2t4 x t3 x t5), (t1, t2t5 x t3 x t4),
(t1, t3t5 x t2 x t4), (t1, t3 x t2(t4 x t5)), (t1, t2 x t3 x t4 x t5),

into the single 01 cell-form of M0,5.

The case of M0,9 is too large to give explicitly. There are 461 convergent 01 cell-forms,
and dimH6(Mδ

0,9) = 1089. An interesting phenomenon occurs first in the case M0,9; namely,
this is the first value of n for which convergent (but not 01) cell-forms do not generate the
cohomology. The 1463 convergent cell-forms for M0,9 generate a subspace of dimension 1088.

For 5 6 n 6 9, computer computations have confirmed the main conjecture, namely: for n 6 9,
the weight n− 3 part FCn−3 of the formal cell-zeta algebra FC is of dimension dn−3, where dn
is given by the Zagier formula dn = dn−2 + dn−3 with d0 = 1, d1 = 0, d2 = 1.
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