
Session 2

Dynamos and Cycle Variability

https://doi.org/10.1017/S1743921312004619 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921312004619


Comparative Magnetic Minima:
Characterizing Quiet Times in the Sun and Stars
Proceedings IAU Symposium No. 286, 2011
C. H. Mandrini & D. F. Webb, eds.

c© International Astronomical Union 2012
doi:10.1017/S1743921312004619

Cycles and cycle modulations

Axel Brandenburg1,2 and Gustavo Guerrero1,3

1Nordita, Roslagstullsbacken 23, SE-10691 Stockholm, Sweden
email: brandenb@nordita.org

2Department of Astronomy, Stockholm University, SE-10691 Stockholm, Sweden
3Solar Physics, HEPL, Stanford University, Stanford, CA 94305-4085, USA

Abstract. Some selected concepts of the solar activity cycle are reviewed. Cycle modulations
through a stochastic α effect are being identified with limited scale separation ratios. Three-
dimensional turbulence simulations with helicity and shear are compared at two different scale
separation ratios. In both cases the level of fluctuations shows relatively little variation with the
dynamo cycle. Prospects for a shallow origin of sunspots are discussed in terms of the negative
effective magnetic pressure instability. Tilt angles of bipolar active regions are discussed as a
consequence of shear rather than the Coriolis force.
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1. Solar cycle
The solar cycle manifests itself through spots at the Sun’s surface. To understand

activity variations, we have to understand not only their source, but also the detailed
connection between variations in the strength of the dynamo and its effect on the number
and size of sunspots. In this paper, we address both aspects.

The physics of the solar cycle is not entirely clear. The models that work best are
not necessarily those that would emerge from first principles. Even the reason for the
equatorward migration of the activity belts is not completely clear. Following Parker’s
seminal paper of 1955, this migration seemed to be a simple property of an αΩ dynamo,
i.e., a dynamo that works with α effect and shear. What matters for equatorward migra-
tion is not the Ω gradient in the latitudinal direction, but that in the radial one, ∂Ω/∂r.
However, in the bulk of the convection zone, ∂Ω/∂r is mostly positive. This, together
with an α effect of positive sign in the northern hemisphere results in poleward migra-
tion (Yoshimura 1975), which is not what is observed. On the other hand, according to
the flux transport dynamos, magnetic fields are advected by the meridional circulation.
Assuming that there is a coherent circulation with equatorward migration at the bottom
of the convection zone, this would then turn the dynamo wave around so as to explain
the solar butterfly diagram and that sunspots emerge from progressively lower latitudes
(Choudhuri et al. 1995; Dikpati & Charbonneau 1999; Guerrero & de Gouveia Dal Pino
2008). This requires that most of the field resides at the bottom of the convection zone.
Moreover, the α effect is taken to be non-vanishing only near the very top of the convec-
tion zone, i.e., the mean electromotive force has to be written formally as a convolution
of the mean magnetic field with an integral kernel to account for this non-locality (see,
e.g., Brandenburg & Käpylä 2007). Furthermore, from the observed tilt angles of bipolar
regions it is inferred that the Sun’s magnetic field at the bottom of the convection zone
reaches strengths of the order of 100 kG (D’Silva & Choudhuri 1993), which is nearly 100
times over the equipartition value. Finally, there are assumptions about the turbulent
magnetic diffusivity. In all cases, the magnetic diffusivity in the evolution equation for
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the toroidal field in the bulk of the convection zone is rather small, below 1011 cm2 s−1

(see, e.g., Chatterjee & Choudhuri 2006). The magnetic diffusivity for the poloidal field
is assumed to be larger and similar to the values expected from mixing length theory
(see below).

In any case, these assumptions are hardly in agreement with standard formulae that
the magnetic diffusivity is given by 1

3 τu2
rms, where τ is the turnover time and urms is

the rms value of the turbulent velocity. The turnover time is τ = (urmskf )−1 , where kf
is the wavenumber of the energy-carrying eddies. This result for ηt is well confirmed by
simulations (Sur et al. 2008). For the Sun, mixing length theory appears to be reasonably
good and gives ηt ≈ (1...3) × 1012 cm2 s−1 . Also, in contrast to the assumptions of some
flux transport dynamo models, a strong degree of anisotropy of the η tensor is not
expected from theory (Brandenburg et al. 2012).

An alternate approach is to use turbulent transport coefficients from theory, which give
rise to what is called a distributed dynamo, i.e., the induction effects are non-vanishing
and distributed over the entire convection zone. In addition, there is the hypothesis that
the near-surface shear layer may be important for the equatorward migration (Branden-
burg 2005), but this has never been confirmed by simulations either. In any case, based
on such models one would not expect there to be a 100 kG magnetic field, but only a
much weaker field of around 0.3–1 kG. This calls then for an alternative explanation for
the magnetic field concentrations of up to 3 kG seen in sunspots and active regions. Var-
ious proposals were already discussed in Brandenburg (2005), and meanwhile there are
direct numerical simulations (DNS) confirming the validity of the physics assumed in one
of those proposals. This will be addressed in Section 3.

2. Cycle modulation
Early ideas for cycle modulations go back to Tavakol (1978) who argued that the solar

cycle may be a chaotic attractor. This explanation became very popular in the follow-
ing years (Ruzmaikin 1981; Weiss et al. 1984). These ideas were elaborated upon in the
framework of low-order truncations of mean-field dynamo models, having in mind that
the same idea applies also to the underlying fully nonlinear three-dimensional equations
of magnetohydrodynamics. Another line of thinking is that in mean-field theory (MFT)
the physics of the cycle models can be explained by random fluctuations in the turbulent
transport coefficients (Choudhuri et al. 1992; Moss et al. 1992; Schmitt et al. 1996; Bran-
denburg & Spiegel 2008). For high-dimensional attractors there is hardly any difference
between both approaches. A completely different proposal for cycle modulation is related
to variations in the meridional circulation (Nandy et al. 2011). This proposal still lacks
verification from DNS of a dynamo whose cycle period is indeed controlled by meridional
circulation. By contrast, fluctuations in the turbulent transport coefficients have indeed
been borne out by simulations (see Brandenburg et al. 2008).

To illustrate this, let us now consider a physical realization of a simple αΩ dynamo in
a periodic domain. In the language of MFT, this corresponds to solving the following set
of mean-field equations,

∂B

∂t
= ∇ ×

(
U × B + E − ηµ0J

)
(2.1)

in a Cartesian domain, (x, y, z), in one dimension, −π < z < π, where U = US ≡
(0, Sx, 0) is a linear shear flow velocity (assuming S = const), J = ∇ × B/µ0 is the
mean current density, µ0 is the vacuum permeability, η is the microphysical (molecular)
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magnetic diffusivity, and

E = αB − ηtµ0J (2.2)

is the mean electromotive force. In DNS, on the other hand, one solves directly the
equation

∂B

∂t
= ∇ × (U × B − ηµ0J) , (2.3)

together with corresponding equations governing the evolution of the turbulent velocity
U . Here, one often make the assumption of an isothermal gas with constant sound speed
cs . This will also be done in the present work.

In the following we present results of simulations using shearing–periodic boundary
conditions. To maintain the solenoidality of the magnetic field, we write B = ∇ × A
and solve for the magnetic vector potential A. Using in the following the velocity for the
deviations from the shear flow, U , our equations are

∂A

∂t
+ US · ∇A = −SAyx + U × B + η∇2A, (2.4)

DU

Dt
= −SUxy − c2

s ∇ ln ρ + f +
1
ρ

(J × B + ∇ · 2νρS) , (2.5)

D ln ρ

Dt
= −∇ · U , (2.6)

where D/Dt = ∂/∂t + (U + US ) ·∇ is the advective derivative with respect to the total
flow, U +US , ρ is the gas density, ν is the viscosity, Sij = 1

2 (Ui,j +Uj,i)− 1
3 δij∇ ·U is the

trace-less rate of strain matrix, and f is a forcing function that drives both turbulence and
a linear shear flow. Alternatively, turbulence can also be the result of some instability
(Rayleigh-Bénard instability, magneto-rotational instability, etc). In the following we
restrict ourselves to a random forcing function with wavevectors whose modulus is in a
narrow interval around an average wavenumber kf . This has the additional advantage
that we can arrange the forcing function such that it has a part that is fully helical, i.e.,
∇ × f = kff (the part driving the shear flow is of course non-helical). Because of the
presence of helicity, we should expect there to be an α effect operating in the system, but
if the number of turbulent eddies in the domain is not very large, there can be significant
fluctuations in the resulting α effect.

Important control parameters are the magnetic Reynolds and Prandtl numbers, ReM =
urms/ηkf and PrM = ν/η. In addition, there is the non-dimensional shear parameter
defined here as Sh = S/urmskf . The smallest possible wavenumber in a triply-periodic
domain of size L×L×L is k1 = 2π/L. For the purpose of presenting exploratory results,
we restrict ourselves here to a resolution of 643 meshpoints. We use the fully compressible
Pencil Code† for all our calculations.

In Figure 1 we present the results of two simulations with scale separation ratios kf/k1
of 1.5 and 2.2. In both cases, kf/k1 is still relatively small, but the difference in the results
is already quite dramatic. For kf/k1 = 2.2 the cycle is more regular while for 1.5 it is quite
erratic. We show the toroidal field (i.e. the component By in the direction of the mean
shear flow) at an arbitrarily chosen mesh point as well as its squared value (which could
be taken as a proxy of the sunspot number), the mean magnetic energy in the full domain,
as well as its contributions from the mean and fluctuating fields. In all cases, the magnetic
field is normalized by the equipartition value, Beq =

√
µ0ρ0urms, where ρ0 = 〈ρ〉 is the

mean density, which is conserved for periodic and shearing–periodic boundary conditions.

† http://www.pencil-code.googlecode.com
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Figure 1. Time sequences of By , B2
y , 〈B2 〉 (solid line) together with 〈B2 〉 (dotted line), and

〈b2 〉. The field is always normalized by Beq . Here, ReM = 22 for kf /k1 = 1.5 (left column) and
ReM = 9 for kf /k1 = 2.2 (right column). In both cases, PrM = 5 and Sh ≈ −2.

Here, angle brackets denote volume averages and overbars are defined as xy averages, so

B(z, t) =
∫

B(x, y, z, t) dx dy/LxLy , (2.7)

which implies that

〈B2〉 = 〈B2〉 + 〈b2〉. (2.8)
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Figure 2. Time series of By /Beq for kf /k1 = 1.5 (left column) and kf /k1 = 2.2 (right column)
for different values of Sh. Again, ReM = 22 for kf /k1 = 1.5 (left column) and ReM = 9 for
kf /k1 = 2.2 (right column), and PrM = 5 in both cases. For kf /k1 = 2.2 the oscillations tend to
become less sinusoidal as Sh becomes larger, while for kf /k1 = 1.5 there are strong fluctuations
that tend to become somewhat weaker for larger values of Sh.

One sees that 〈b2〉 shows fluctuations that are not strongly correlated with the varia-
tions of the mean field (Figure 1). This is important because the lack of a correlation is
sometimes used to argue that the Sun’s small-scale magnetic field must be created by a
local small-scale dynamo and disconnected with the large-scale dynamo.

There are several other interesting differences between the two cases. The cycle period
is given by ωcyc ≈ ηtk

2
1 (Käpylä & Brandenburg 2009), and with ηt ≈ urms/3kf (Sur et al.

2008) we have ωcyc ≈ 1
3 urmskf (k1/kf )2 ; thus the normalized cycle period is Tcycurmskf ≈

2πurmskf/ωcyc ≈ 6π(kf/k1)2 ≈ 91 for kf/k1 = 2.2, which agrees with the result shown in
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the upper right panel of Figure 1. Next, for kf/k1 = 2.2 the mean magnetic energy and
〈B2〉 are about 4 times larger than for kf/k1 = 1.5. This value is larger than the one
expected from the theory where this ratio should be equal to the ratio of the respective
values of kf (Blackman & Brandenburg 2002), namely 2.2/1.5 ≈ 1.5.

Next, we ask how the properties of the dynamo change as it becomes more supercritical.
This is shown in Figure 2 where we plot time series of By/Beq for kf/k1 = 1.5 and
kf/k1 = 2.2 for different values of Sh. Note that for kf/k1 = 2.2 the oscillations become
less sinusoidal as Sh becomes larger, while for kf/k1 = 1.5 there are strong fluctuations
that become somewhat weaker for larger values of Sh.

A more quantitative way of assessing the properties of the large-scale dynamo is by
looking at the scaling of the magnetic energy of the mean field and the cycle frequency
as a function of the nominal dynamo number, D = CαCS , where

Cα = α/ηTk1 = ιεfkf/k1 , CS = S/ηTk1 = 3ι Sh (kf/k1)2 , (2.9)

are non-dimensional numbers measuring the expected value of the α effect (assuming
α ≈ 1

3 τ〈ω · u〉, ηt ≈ 1
3 τ〈u2〉, with τ = (urmskf )−1 and 〈ω · u〉 ≈ kf 〈u2〉), as well as the

shear or Ω effect. In these approximations, ηT = η + ηt is the expected total magnetic
diffusivity and ι = (1 + 3/ReM )−1 is a correction factor that takes into account finite
conductivity effects resulting from the fact that ηt �= ηT. The results are shown in
Figure 3.

For kf/k1 = 1.5, the scaling of 〈B2〉/B2
eq with D suggests that the critical value is

between 1 and 2, i.e., somewhat smaller than the theoretical value of 2 (Brandenburg &
Subramanian 2005). For kf/k1 = 2.2 the critical value is < 1. The cycle frequencies are
approximately independent of D, except that for kf/k1 = 1.5 there is a sharp drop for
D > 10. Owing to fluctuations, a Fourier spectrum of the time series is not sharp but
has a certain width. We determine the quality or width, w0 , by fitting the spectrum to a
Gaussian proportional to P (ω) ∼ exp[−(ω − ω0)2/2w2

0 ]. Also the values of w0 , shown in
the last panel of Figure 3, are approximately independent of D. For kf/k1 = 2.2, w0 is
substantially smaller than for kf/k1 = 1.5. This indicates that the cycle period is better
defined for larger scale separation ratios.

3. Active regions and their inclination angle
One should expect that the sunspot number depends in a complicated way on the

magnetic field strength. If sunspots are indeed relatively shallow phenomena, the field
must be locally concentrated to field strengths of up to 3 kG. A candidate for a mechanism
that can concentrate mean fields of ∼ 300G, which is about 10% of the local equipartition
field strength, is the negative effective magnetic pressure instability (NEMPI). This is
a remarkable phenomenon resulting from the suppression of turbulent pressure by a
moderately strong large-scale magnetic field. This suppression is stronger than the added
magnetic pressure from the mean field itself, so the net effect is a negative one.

The fact that this phenomenon can lead to an instability in a stratified layer was first
found in mean-field models (Brandenburg et al. 2010, 2012; Käpylä et al. 2012), and more
recently in DNS (Brandenburg et al. 2011). However, NEMPI has not yet been able to
explain flux concentration in the direction along the mean magnetic field, i.e., the large-
scale structures remain essentially axisymmetric. To discuss the theoretical origin of this,
we need to look at the underlying mean-field theory. Similar to the effective magnetic
diffusivity in the mean electromotive force, the sum of Reynolds and Maxwell stresses
from the small-scale field depends on the mean magnetic field in a way that looks like
a Maxwell stress from the mean field, but with renormalized coefficients. The concept
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Figure 3. Scaling of the relative magnetic energy of the mean field, 〈B2 〉/B2
eq , normalized

cycle frequency, and normalized quality versus dynamo D = Cα CS .

of expressing the Reynolds stress from the fluctuating velocities, uiuj , by the mean flow
U is of course familiar and leads to the usual turbulent viscosity term, −νt(Ui,j + Uj,i).
However, in the presence of a mean magnetic field, symmetry arguments allow one to
write down additional components, in particular those proportional to δijB

2 and BiBj .
The sum of Reynolds and Maxwell stresses from the fluctuating velocity and magnetic
fields is given by

Π
f
ij ≡ ρ uiuj − bibj /µ0 + 1

2 b2/µ0 , (3.1)

where the superscript f indicates contributions from the fluctuating field. Expressing
Π

f
ij in terms of the mean field, the leading terms are (Kleeorin et al. 1990; Kleeorin &
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Rogachevskii 1994; Kleeorin et al. 1996; Rogachevskii & Kleeorin 2007)

Π
f
ij = qsBiBj/µ0 − 1

2 qpδijB
2/µ0 + ... (3.2)

where the dots indicate the presence of additional terms that enter when the effects
of stratification affect the anisotropy of the turbulence further. Note in particular the
definition of the signs of the terms involving the functions qs(B) and qp(B). This becomes
obvious when writing down the mean Maxwell stress resulting from both mean and
fluctuating fields, i.e.,

−BiBj/µ0 + 1
2 δijB

2/µ0 + Π
f
ij = −(1 − qs)BiBj/µ0 + 1

2 (1 − qp)δijB
2/µ0 + ... (3.3)

A broad range of different DNS have now confirmed that qp is positive for ReM > 1,
but qs is small and negative. A positive value of qs (but with large error bars) was orig-
inally reported for unstratified turbulence (Brandenburg et al. 2010). Later, stratified
simulations with isothermal stable stratification (Brandenburg et al. 2012) and convec-
tively unstable stratification (Käpylä et al. 2012) showed that it is small and negative.
Nevertheless, qp(B) is consistently positive provided ReM > 1 and B/Beq is below a
certain critical value that is around 0.5. This implies that it is probably not possible
to produce flux concentrations stronger than half the equipartition field strength. So,
making sunspots with this mechanism alone is maybe unlikely.

The significance of a positive qs value comes from mean-field simulations with qs > 0
indicating the formation of three-dimensional (non-axisymmetric) flux concentrations
(Brandenburg et al. 2010). This result was later identified to be a direct consequence of
having qs > 0 (Kemel et al. 2012). Before making any further conclusions, it is important
to assess the effect of other terms that have been neglected. Two of them are related to
the vertical stratification, i.e. terms proportional to gigj and giBj + gjBi with g being
gravity. The coefficient of the former term seems to be small (Brandenburg et al. 2012;
Käpylä et al. 2012) and the second only has an effect when there is a vertical imposed
field. However, there could be other terms such as JiJj as well as JiBj and JjBi that
have not yet been looked at.

Yet another alternative for causing flux concentrations is the suppression of turbulent
(convective) heat transport which might even be strong enough to explain the formation
of sunspots (Kitchatinov & Mazur 2000). It is conceivable that effects from heat transport
become more important near the surface, so that a combination of the negative effective
magnetic pressure and the suppression of turbulent heat transport are needed. Another
advantage of the latter is that this mechanism works for vertical fields and is isotropic with
respect to the horizontal plane, so one should expect the formation of three-dimensional
non-axisymmetric structures.

Once a bipolar active region is formed, we must ask ourselves how to explain the
observed tilt angle. This question cannot be answered within the framework of NEMPI
alone, but it requires a connection with the underlying dynamo. Here, we can refer to
the work of Brandenburg (2005) where bipolar regions occur occasionally at the surface
of a domain in which shear-driven turbulent dynamo action was found to operate; see
Figure 4. The reason for the tilt is here not the Coriolis force, as is usually assumed, but
shear; see also Kosovichev & Stenflo (2008). In the simulations of Brandenburg (2005),
shear was admittedly rather strong compared with the turbulent velocity, so the effect is
exaggerated compared to what we should expect to happen in the Sun. However, even
then there are a few other problems. One of them is that the bipolar regions appear
usually quite far away from each other (Figure 4). This may not be realistic. On the
other hand, it is not clear how to scale this model to the Sun. In this model, the scale
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Figure 4. Magnetograms of the radial field at the outer surface on the northern hemisphere at
different times for a simulation presented in Brandenburg (2005). Light shades correspond to
field vectors pointing out of the domain, and dark shades correspond to vectors pointing into
the domain. The elongated rings highlight the positions of bipolar regions. Note the clockwise
tilt relative to the y (or toroidal) direction, and the systematic sequence of polarities (white left
and dark right) corresponding to By > 0. Here, the z direction corresponds to latitude.

separation ratio is rather small, so the extent of the bipolar regions is comparable to a
few times the convective eddy size, which, for the solar surface, is not very big (a few
Mm). However, on that small scale one would not expect the effects of differential shear
to be very important.

Another issue is that in the model of Brandenburg (2005), bipolar regions occur only
occasionally. To illustrate this, we show in Figure 5 the resulting magnetograms for three
times that are separated by about 2 turnover times. Clearly, other structures can appear
too and the field is not always bipolar.
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Figure 5. Similar to Figure 4a, showing also the results 4 and 2 turnover times earlier. The
last panel is identical to Figure 4a.

4. Conclusions
It is clear that the magnetohydrodynamics of mean magnetic and velocity fields is

quite rich and full of important effects. The standard idea that sunspots and bipolar
regions form as a result of an instability in the tachocline (Gilman & Dikpati 2000;
Cally et al. 2003; Parfrey & Menou 2007) may need to be re-examined in view of several
new alternative proposals being on the horizon. In addition to comparing models with
observations at the solar surface, there are ways of comparison both beneath the surface
and above. Particularly exciting are the recent determinations of Ilonidis et al. (2011) of
some sort of activity at ≈ 60Mm depth. It is also of interest to explain magnetic activity
in the solar wind, and especially its magnetic helicity which has recently been found to
be bi-helical, i.e., of opposite signs at large and small length scales (Brandenburg et al.
2011) and positive at small length scales in the north. This is particularly interesting,
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because such a result has recently been reproduced by distributed dynamo simulations
of Warnecke et al. (2011) who also find positive magnetic helicity at small length scales
in the north. More detailed and varied comparisons between the different approaches are
thus required to fully understand the Sun’s activity cycles and their long term variations.
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Discussion

Andrés Muñoz-Jaramillo: If sunspots are produced at the surface, which processes
would lead to their decay?

Axel Brandenburg: I think it could be the continued submersion of magnetic struc-
tures. The system remains time-dependent and new structures will form near the surface,
while old ones disappear from view.

Janet Luhmann: Axel, you are one of the few dynamo modelers that include the corona
and larger heliosphere in your models and thinking. How important is that to the results
of the models, and do models not including that aspect have compromised results?

Axel Brandenburg: The magnetic helicity flux divergence is crucial for alleviating
catastrophic alpha quenching; see the next talk by Candaleresi et al. (2011). Helicity
fluxes through surface carry about 30% of the total; the rest goes through the equator.
The observed magnetic helicity spectra support our understanding in terms of the mag-
netic helicity evolution equation. Models not including helicity fluxes suffer artificially
strong catastrophic quenching, but only if their magnetic Reynolds numbers are really
large and magnetic helicity evolution is actually included, which is often not the case
either.

Arnab Choudhuri: Flux rise simulations based on the idea that the toroidal field
forms in the tachocline explained Joy’s law other characteristics of sunspot graphs. Can
these results be recovered if sunspots form from near-surface fields?

Axel Brandenburg: The tilt angles of near-surface produced flux concentrations is
determined by latitudinal shear, as was demonstrated by Brandenburg (2005). Models
with the same shear, but different helicity, give still the same tilt angles

Dibyendu Nandy: For the near-surface shallow dynamo to work, you need processes
that are slow enough to store, amplify, and transport fields on 11 year timescales. How-
ever, in the upper convection zone, eddy turnover timescales are short. Can you comment
on how you reconcile this with your shallow dynamo?

Axel Brandenburg: Magnetic helicity conservation is generally responsible for pro-
longing the time scales. In fact, the partial alleviation of catastrophic quenching by
magnetic helicity fluxes means that the timescales are not infinite. The dynamo period
is proportional to (α∂Ω/∂r)−1/2 , so α quenching prolongs the period. As far as active
region formation by NEMPI is concerned, the relevant time scale was shown to be longer
than the eddy turnover time by a factor that is equal to the square of the scale separation
ratio (Brandenburg et al. 2011).
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