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ABSTRACT. The task of interpreting p-mode spectra is complicated by the presence of a very 
large number of oscillation modes, each of which may appear (because of aliasing) in the power 
spectra corresponding to several values of / and m . Identifying peaks in a power spectrum with 
particular modes in an interactive fashion thus quickly becomes impractical. Here I describe an 
automated method for doing this identification. The method is based on an application of 
Bayes' theorem, which provides a simple way to use prior knowledge about the oscillation spec-
trum. The method takes as input the observed power spectra, and a model of the amplitudes 
and frequencies one expects to see. 

1. BASIC IDEAS ABOUT P R O B A B I L I T Y 

This introduction is based on the excellent discussion by R.T. Cox (1961). Suppose that 
A ,B ,C are statements that may be either true or false. Then 

Ρ (A \ C) 

is defined as the probability that A is true, given that G is true. Then all the usual formulae 
of probability theory may be derived from two relations: 

P(AB \C) = P(A \C)P(B \AC) {product rule) 

P{A/\B I C ) = P(A I C) + P(B \C)-P(AB \ C) (sum rule) 

where * denotes logical conjunction (AND), and Λ denotes the inclusive OR. In particular, 
Bayes' theorem comes from the product rule, and the fact that AB = Β Ά : 

Ρ {Α Β I C) = P(BA I C) 

Ρ (A I C)P(B I A C) = P{B \ C)P{A \BC) 

Leading to the final result: 

Ρ (A \ BC) = P(A \ C ) P

p
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Here we may interpret A as some inference in which we are interested, C is our initial 
information, on which we base our initial estimate of the probability that A is true, and Β is 
some new information, for example something we have observed. 

A useful special case of Bayes' theorem occurs if one is concerned with a number of infer-
ences Ai that are exhaustive and mutually exclusive, so that one and only one of the A{ can be 
true. Then one can show that 

P(B I C)=Y,P(B \Ai-C)P(Ai I C) , 
i 

and Bayes' theorem becomes 

, , v P(B \ArC)P(Ai I C) 
P(A{ \BC)= V I . 

ΣΡ{Β \AiC)P(Ai I C) 

2. P E A K I D E N T I F I C A T I O N S T R A T E G Y 

All of the above suggests the following Strategy for peak identification: 

For each observed peak in a power spectrum: 

(1) Identify a (hopefully small) set of possible causes A, for the peak in question. 

(2) Assign a priori probabilities to each of the Α,·, in whatever way seems reasonable 
(e.g., based on relative frequencies of occurrence in the spectrum taken as a whole). 

(3) For each observed fact Bj about the peak, and for each Α,·, estimate the proba-
bility that the observation could have occurred given that Α,· is true, i.e., estimate 

P ( B y \ArC) . 

(4) Use Bayes' theorem to update the probabilities for each A , . 

(5) Repeat (3) and (4) until all the observed facts are exhausted. 

(6) If, for some t, P (Ai \ Βχ'Β2'"Βη -C ) is large enough, identify Α,· as the cause of 
the observed peak. 

To implement this strategy, one must enumerate the possible causes for peaks, which 
requires a model of the expected frequencies and amplitudes of oscillation. One must also allow 
for peaks that do not correspond to oscillation modes, e.g. 1/day sidelobes and noise peaks, the 
model I use provides for the following sources: 

(1) Oscillation modes with / and m near the nominal values for that spectrum 
(within parity constraints). Frequencies are determined from a Duvall-law fit (with 
frequency-dependent a) to previous observations (Duvall 1982). Amplitudes depend 
on v, and on the expected response to the given / and m . 

(2) Sidelobes of all oscillation modes, with frequency separations that are multiples of 
1/day. Relative amplitudes of the sidelobes are determined from the observation 
window function. 

(3) Noise peaks, with typical amplitudes assumed independent of v. 
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(4) Sidelobes with typical frequency spacings of 1/T, where Τ is the total observing 
run length. 

Currently, the observed facts used to update probabilities are the following: 

(1) — : One can estimate probability distributions for this ratio for each of 
Powerm9M 

the possible causes, giving the probability that the peak height is equal to or greater 
than the observed power for each A{. For power spectra, these are appropriately 
modeled as exponential distributions. 

( 2 ) i /p^ - i/m,rfe( : The probability distribution for this difference depends on errors 
both in the observations and in the frequency model. Currently, model errors dom-
inate. I use a Gaussian distribution, with a width based on the scatter around the 
Duvall-law fit. 

(3) Neighboring Power: Define a "sidelobe index" 

L(T6uf \ {T6uf 

i.e.t a weighted mean of the power Π in the neighborhood of the observed peak, but 
not including it. Then one may estimate the probability of observing a sidelobe with 
power S as a function of the ratio S /$ . 

After the P(A{) have been updated to reflect all of the available information, one has 
final estimates of the probabilities that the observed facts could have been produced by each of 
the assumed causes. If one inference has a large enough probability of being correct (I typically 
choose a threshold Ρ > 0.95), then that identification of the power spectrum peak is adopted. 

Because the spatial filter responses overlap in / , and because 1/day sidelobes are always 
present, I then insist that each mode be confidently identified several times on several different 
spectra. The final estimates of mode frequency and amplitude are obtained by averaging the 
results for the various identifications. 

3. R E S U L T S A N D C O M M E N T S 

This technique (embodied in a program named IDMODE) appears to work reasonably well. 
Like most techniques, it has advantages and drawbacks. 

Among its advantages are: 
(1) When the data are good and the probability distributions have been chosen 
appropriately, it identifies modes correctly, at least as far as one can judge by eye. 

( 2 ) It refuses to commit itself to a mode identification unless the data warrant com-
mitment. This behavior is particularly apparent for large degrees, where the overlap 
between sidelobes of successive / values is particularly severe. 

(3) It behaves quite poorly if the probability distributions are poorly chosen. This 
calls direct attention to the importance of correctly estimating errors, and forces one 
to think hard about definitions, expectations, and uncertainties. All of these are 
good things. 
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(4) The form of the output data (estimated frequencies and amplitudes as functions 
of η ,/ ,m ) encourage statistical analysis, novel display methods, and comparison 
with theory. 

The method principal drawback is that it tends to see what it expects to see, in the sense that 
the mode identifications cannot differ by very much from the parameters allowed by the fre-
quency and amplitude model. A subtle effect of this problem is that regular behavior not 
parameterized in the model tends to be underestimated. The only guaranteed solution to this 
problem is to correct the model to reflect the quantities one wished to measure. However, it is 
worth noting that the Bayes' Theorem method closely mimics the thought processes of a person 
trying to identify power spectrum peaks by hand. I therefore speculate that similar bias exists 
in other methods of mode identification; an automated technique simply makes it easier to 
examine many cases, and thereby test for such problems. 
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