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Felix Behrend was born at Berlin-Charlottenburg, Germany, on 
23 April, 1911, the eldest of four children of Dr. Felix W. Behrend and 
his wife Maria, nee Zöllner. Felix Behrend senior was a mathematics and 
physics master at the Herderschule, a noted "Reform-Realgymnasium" in 
one of the western suburbs of Berlin; he was a widely known educationalist, 
and later headmaster of an important school elsewhere in Berlin, until 
demoted and finally dismissed by the Nazis, partly because of some Jewish 
ancestry, partly because of his liberal political views. 

Felix Behrend junior also went to the Herderschule, and passed out 
of it in 1929, with high distinction, to study mathematics and theoretical 
physics at the Universities of Berlin and Hamburg. His chief teachers were 
I. Schur, E. Schmidt, E. Artin, H. Hopf and (for physics) E. Schrödinger. 
He also attended lectures in philosophy by W. Köhler and A. Görland. 
He soon showed himself a pure mathematician of originality and imagina
tion; his first three papers in the theory of numbers were published in quick 
succession before he was 23 years old. After taking, in 1933, his Dr. phil. 
at the University of Berlin, he emigrated from Nazi Germany in 1934, 
first to Cambridge, then to Zürich and Prague where he worked as an 
actuary at the Merkur life insurance company, at the same time continuing 
his research in pure mathematics. He took the degree of Doctor of Science 
at the Charles University of Prague in 1938 in the hope of becoming, 
eventually, a Privat-Dozent of that University; but Czechoslovakia became 
unsafe in 1939, and he returned to Zürich and then to England just before 
the outbreak of war. 

During the brief scare in the summer of 1940 when Holland was 
overrun by the German armies, Felix Behrend, like most adult male "enemy 
aliens" in Britain, whether friends of foes of Hitler, was interned, and not 
long afterwards he was transported to Australia. At the instance of G. H. 
Hardy, J. H. C. Whitehead, and other prominent British mathematicians, 
his release from internment was authorised before the end of 1940, but he 
chose not to return to Britain — the journey to Australia on the Dunera 
had been a harrowing experience. But this remaining time in the internment 
camps at Hay and Tatura was not lost; he gave courses of lectures in the 
"camp university", and awakened an abiding enthusiasm for mathematics in 
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several younger fellow internees, among them Walter F. Freiberger, F. I. 
Mautner, and J. R. M. Radok. The students were prepared for examinations 
of the University of Melbourne, without textbooks because none were 
available: in spite of this, or because of this, the teaching was highly suc
cessful. 

He was released from internment in 1942, and was appointed Tutor 
in Mathematics at the University of Melbourne. There he remained, being 
successively promoted Lecturer (1943), Senior Lecturer (1948), and As
sociate Professor (1954). In 1960 the University instituted a category of 
Personal Professorships, and he would have been a strong candidate for 
one of these; but the illness intervened that led to his premature death on 
27 May 1962, at the age of 51 years. He is survived by his widow Daisy, 
nee Pirnitzer, whom he had married in 1945, and their two daughters. 

Felix Behrend was, like his father, an outstanding teacher. He knew, 
and appreciated, both the British and Continental traditions, and was able 
to combine the best features of both. From time to time he carried respon
sibility for classes ranging from the elementary level to the most advanced; 
he discharged this to the full, with a sure feeling always for the level of his 
audience. For a number of years, also, he acted as Chairman of Examiners 
at the matriculation level; he knew about school work and took a construc
tive interest in it, and as an examiner he had a flair for asking the sort of 
question that was penetrating but remained of the fair standard. 

Among his recreations, classical music ranked high (he sang bass with 
the Philharmonic choir during his early years in Melbourne), but much 
the most important was creative writing. He had as a young man been 
deeply impressed by the novels of Thomas Mann, and he continued to admire 
him and to acknowledge him as his master; but in his later writings the 
influence of Thomas Mann becomes less noticeable, and his style more 
individual. Most of his essays and short stories were written in German 
and circulated privately among his friends. But he also wrote in English, 
and his last work, completed only shortly before his illness took its final 
turn, is a book, "Ulysses' Father", published shortly after his death: it is 
a children's book of very great charm, which should surely, like "Alice in 
Wonderland", captivate grown-ups, too. 

Felix Behrend was a man of integrity and modesty, enlivened at times 
by dry humour and suffused by a warm personality. He put down permanent 
roots in Australia, and enriched her by becoming her citizen. He will be 
remembered with respect, gratitude and affection. 

Behrend was an unusually versatile mathematician, full of ideas, which 
were always expounded with an elegant and well judged economy of style. 
In his earlier years he published chiefly on Theory of Numbers, and in his 
later years on Foundations and Topological Spaces (axiomatics), but there 
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is throughout a sprinkling of papers on Analysis and Geometry, and there 
is one paper, of great interest, on Algebraic Equations. One is tempted to 
speculate on what unity of motive may have underlain this diversity; 
there is a genuine breadth of interest and, it seems, a passion for problem-
solving; but it is possible that the deep disturbances of his life during the 
pre-war and war years — he was six times uprooted — may have prevented 
the concentration of his energies into one deep channel. His work was, in 
the main, in territory already explored, where he worked usually "from 
first principles" by the injection of some new idea or device; a knowledgeable 
critic has remarked how often Behrend was able to find a new approach 
to questions already deeply studied — an approach which, when one sees 
it, is recognizable as relevant and fruitful. 

THEORY OF NUMBERS [2, 3, 5, 8, 10, 11,13,18]. Behrend wrote his doctoral 
thesis on abundant numbers, i.e. those positive integers N for which the 
sum of the divisors (including 1 and « ) is not less than 2«. He first proved 
that the number A (») of abundant numbers less than N satisfies A (») < 0.47«; 
the factor 0.47 was established by an asymptotic estimate valid for n > 6230, 
supplemented by a direct count for « 6230. He then showed that, for all 
sufficiently large N, 

0.241« < A(N) < 0.314», 

and he had a proof (unpublished) that A(N)JN tends to a limit as N oo. 
His results led to much further work by Davenport, Chowla and Erdos 
on this topic. 

The remaining papers in this series are on the density (relative to 
the sequence of all positive integers) of the sequence of primes and of 
sequences that are to some extent analogous thereto, such as those which 
contain no set of terms in arithmetic progression. For a sequence of numbers 
not exceeding X, let RK(X) be the largest number of terms such that no K 
of them are consecutive members of an arithmetic progression. In [8] 
Behrend proved that RK(X)FX has a limit PK as X -*• oo, and that for all X, 
RK(X) > PKX; and further, that as K ->- oo, PK has a limit, which limit must 
be either 0 or 1. In [13], by improving on a method used by Salem and 
Spencer, he proved that for every positive S, 

log R3(N) _ VS log 2+E 

log N V\OGN 

provided N 5; » 0 (e) . This problem has attracted the attention of several 
powerful mathematicians; in 1960 Davenport told us that, as far as he 
knew, Behrend's results still then "held the record". 

On the frequency of the primes, Behrend in [10, 11] added improve-
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merits to ideas and methods of Broderick and Landau. By strictly "elemen
tary" means he proved that, for N _ 2, 

\N < N(N)X(N) < 3N, 

where N(N) is the number of primes not exceeding N and X(N) = 2i 1/v> 
also that, for any positive E, 

(log 2—E)N < N[N)X(N) < (2 log 2+E)N 

provided FT > « 0 (e) . 
In [18] he proved that 

7 > ! , • • •, AN, BLT • • •, 6m) = T(ALT • • ; AJTFA, • • ; BJ, 

where T(P, Q, • • •, R) is the density of the set of all integers not divisible 
by any of P, Q, • • •, R. Heilbronn and Rohrbach had previously proved what 
is essentially the case M = 1 of this. 

ALGEBRA. Let F,(XLF • • ; XR; YLT • • •, Y,), V = 1, • • •, N be N polynomials 
which are homogeneous in both the x and the Y, the degrees in each set 
being odd. This system of polynomials is called "definite" if the equations 
/ , = 0 have no real solutions other than the trivial ones XT = 0 and YT = 0; 
for example the system FT = X1Y1—X2YI, F2 = X1Y2-\-X2Y1 is definite. For 
given values of R, S there is a smallest value of » for which a definite system 
of such polynomials exists, and the question is to determine this value 
N(R, S), or to find criteria for it. There are crude estimates 

max (R, S) s£ N(R, S) ^ R+S—1 

and by an essentially topological argument, E. Stiefel and H. Hopf established 
the deeper result, that for the system of N polynomials to be definite it 
is necessary that all the binomial coefficients (£) for which «—R < K < S 
be even. It is stated by Hopf (MATH. REV. 1, 36 (1940)) that he, and others, 
had tried without success to find a purely algebraic proof of this result. 
In [9] Behrend showed how this could be done, by using the ideas in al
gebraic geometry of van der Waerden which were at this time new. For the 
bi-linear case Behrend gave also another proof, resting on the apolarity 
theory of Reye; and he found the exact value of N(R, R) for R = 8, and 
improved inequalities for 9 _ R ^ 17. 

ANALYSIS. [1, 4, 15, 16, 17, 26]. These are short papers on isolated 
topics. [4] gives an elegant proof that any bounded set of points in RM 

which is the union of a set of convex sets K has a determinate Jordan 
content, provided that for some fixed positive e each K contains an M-
sphere of radius S. [17] and [26] generalize Weierstrass's construction of 
continuous non-differentiable functions. 
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GEOMETRY [6, 7, 12, 20, 28]. From the metric invariants, such as the 
diameter, circumference, area, of a plane convex region, Behrend simply 
defines affine invariants by choosing a suitable function of two of the 
quantities, and considering its least upper bound as the region is subjected 
to affine transformations. In [6] he investigates such invariants on the 
supposition that the convex region has a centre of symmetry, in [7] he 
extends his results considerably by dropping this restriction. Roughly 
speaking it turns out that all plane convex regions with centre fall, in 
regard to the affine invariants Behrend considers, between the ellipses and 
the parallelograms as extremes; and those without assumption of a centre 
between the ellipses and the triangles. The numerous results are almost 
without precedent, and barely any have been improved or generalized 
since: Only Fritz John, with whom Behrend had discussed the problems 
when they met at Cambridge, had some partially sharper results and 
some partial extensions to more than 2 dimensions, arrived at by quite 
different methods [Duke Math. J. 2, 447—452 (1936); University of Ken
tucky Research Club Bulletin 6, 26 (1940); ibid. 8, 8-11 (1942)]. The 
stimulus of Behrend's work can also be found in B. H. Neumann's papers 
in J. London Math. Soc. 14, 262—272 (1939), and ibid. 20, 226-237 (1946). 
However, a full generalization of Behrend's results in [7] to more than 2 
dimensions has not, as far as we know, been carried out yet. 

In [20], Behrend returns to a problem that had exercized him already 
as a student, namely the best upper bound CN for the radius of an re-dimen
sional sphere into which a closed polygon can be squeezed if it starts and 
ends in the centre, and the sides (taken as given vectors all of at most 
unit length) may be permuted. It had been proved by Ernst Steinitz [J. 
reine angew. Math. 143, 128-175 (1913); ibid. 144, 1-40 (1914)] that 
such a bound CN — depending only on the number of dimensions but not 
on the number of sides of the polygon — exists; and he had shown the 
inequality 

CN^2(N+L). 

Other authors had obtained slightly better estimates for CN when N ̂  4. 
Behrend uses a refinement of Steinitz' method to prove a very much better 
estimate, namely 

CN<N 

for N ̂  3, and C3 = (5+2^/3)*. 
In [12] and [28], Behrend returned to a problem that had caught his 

fancy early in his student days, namely the construction of finite models 
in euclidean 3-space of the real projective plane; [28], written during his 
final illness and published posthumously, gives a simple parametric repre
sentation of the Klein bottle. 
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Topology. [23] gives a simple method of obtaining for any uniform 

space S a uniform structure which is totally bounded and compatible with 
the topology of S. This result is useful because then, if the space is separated, 
its completion is compact. In [24] a related question is subjected to deeper 
study; four different but equivalent criteria are given for the uniformizability 
of a topological space S. They are intrinsic in that they use no mappings 
of S into comparison spaces, such as the real line, and in this respect they 
improve upon a criterion of Bourbaki. If such a space 5 is a 7Vspace, 
it is compactifiable, whence Behrend's criteria at once give corresponding 
criteria for compactifiability. 

Foundations. [19, 21, 22, 27]. During the last ten years Behrend became 
increasingly interested in questions of axiomatics, especially in axiom 
systems for "natural" mathematical disciplines, like real analysis [22], real 
vector spaces [27], magnitudes [22], [21]. Although much work had already 
been done in this field, Behrend brought new ideas to it. The fundamental 
notions he uses are familiar: binary or ternary relations (order or between-
ness) and binary operations (addition or multiplication); but the axioms 
are new, and their independence is studied as well as their sufficiency for 
the purpose in hand; and one aim is always to match the naturalness of the 
discipline with the naturalness of the axioms. 

Behrend's ideas also proved fruitful for others: out of a question posed 
in [21] there arose the very delicate investigation of sesquilateral division 
semigroups by P. M. Cohn [J. London Math. Soc. 31, 181 — 191 (1956); 
Proc. London Math. Soc. (3) 8, 466—480 (1958)]; and paper [27] is im
mediately followed by a paper in which W. Greve, at Behrend's suggestion 
and in close connection with Behrend's work, investigates partial between-
ness groups [Math. Zeitschr. 78, 305-318 (1962)]. 
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