

Corrigendum: On an Enriques surface associated with a quartic Hessian surface

http://dx.doi.org/10.4153/CJM-2018-022-7

Ichiro Shimada

In the original article [1], we made a mistake in the calculation of the number of Aut(Y)-equivalence classes of RDP-configurations on an Enriques surface *Y* covered by a *K*3 surface birational to a general quartic Hessian surface. Theorem 1.5 and Table 1.2 of the paper should be replaced by the following:

Theorem 1.5 Up to the action of Aut(Y), the Enriques surface Y has exactly 33 nonempty RDP-configurations. Their ADE-types are given in Table 1.2.

ADE-type	Number	ADE-type	Number
E_6	1	$A_3 + A_1$	1
$A_{5} + A_{1}$	5	$2A_2$	1
$3A_2$	1	$A_2 + 2A_1$	1
D_5	1	$4A_1$	5
A_5	1	A_3	1
$A_4 + A_1$	1	$A_{2} + A_{1}$	1
$A_3 + 2A_1$	5	$3A_1$	2
$2A_2 + A_1$	1	A_2	1
D_4	1	$2A_1$	1
A_4	1	A_1	1

Table 1.2: RDP-configurations on Y.

- Published online on Cambridge Core December 10, 2020.
- AMS subject classification: 14J28.

Keyword: Enriques surface.

Received by the editors September 17, 2020.

The corrected version of the theorem gives us the following:

Corollary The automorphism group Aut(Y) acts on the set of smooth rational curves on Y transitively.

The mistake in the original proof is located in the second paragraph of Section 7.6. Let \mathcal{F} be the set of maximal nonideal faces of D_Y , and we consider the mapping $F \mapsto \mathcal{R}(F)$ on \mathcal{F} . Even when two faces $F \in \mathcal{F}$ and $F' \in \mathcal{F}$ are *not* aut(Y)-equivalent, the RDP-configurations $\mathcal{R}(F)$ and $\mathcal{R}(F')$ can be in the same aut(Y)-orbit. This happens when F^g and F' span a same linear subspace in $S_Y \otimes \mathbb{R}$ for some automorphism $g \in$ aut(Y).

We briefly explain the algorithm to obtain the correct version of Theorem 1.6. The detail of this algorithm will be explained in the forthcoming paper by the author in a more general setting.

Let *F* be an element of \mathcal{F} , and we put $\Gamma := \mathcal{R}(F)$. Let $\langle \Gamma \rangle$ be the sublattice of S_Y generated by Γ , and $\langle \Gamma \rangle^{\perp}$ the orthogonal complement of $\langle \Gamma \rangle$ in S_Y . Then $\langle \Gamma \rangle^{\perp}$ is a hyperbolic lattice of rank $10 - \mu$, where $\mu := |\Gamma|$ is the total Milnor number of the surface \overline{Y} corresponding to *F*. We consider the positive cone

$$\mathcal{P}_{(\Gamma)^{\perp}} \coloneqq \mathcal{P}_{Y} \cap (\langle \Gamma \rangle^{\perp} \otimes \mathbb{R})$$

of $\langle \Gamma \rangle^{\perp}$. A $\langle \Gamma \rangle^{\perp}$ -*induced chamber* is a closed subset of the cone $\mathcal{P}_{\langle \Gamma \rangle^{\perp}} \cap D$ of the form $\mathcal{P}_{\langle \Gamma \rangle^{\perp}} \cap D$, where D is an induced chamber in \mathcal{P}_Y such that $\mathcal{P}_{\langle \Gamma \rangle^{\perp}} \cap D$ contains a nonempty open subset of $\mathcal{P}_{\langle \Gamma \rangle^{\perp}}$. For example, the face F is a $\langle \Gamma \rangle^{\perp}$ -induced chamber $\mathcal{P}_{\langle \Gamma \rangle^{\perp}} \cap D_Y$. Since N(Y) is tessellated by induced chambers in \mathcal{P}_Y , the closed subset $\mathcal{P}_{\langle \Gamma \rangle^{\perp}} \cap N(Y)$ of $\mathcal{P}_{\langle \Gamma \rangle^{\perp}}$ is tessellated by $\langle \Gamma \rangle^{\perp}$ -induced chambers. We denote by V_{Γ} the set of $\langle \Gamma \rangle^{\perp}$ -induced chambers contained in $\mathcal{P}_{\langle \Gamma \rangle^{\perp}} \cap N(Y)$. Then, the group

$$\operatorname{aut}(Y, \Gamma) := \{g \in \operatorname{aut}(Y) \mid \Gamma^g = \Gamma\}$$

acts on V_{Γ} .

Let $\mathcal{P}_{(\Gamma)^{\perp}} \cap D_0$ be an element of V_{Γ} , where D_0 is an induced chamber contained in N(Y). Then,

- we can make the list of all induced chambers D'_0 contained in N(Y) such that $\mathcal{P}_{(\Gamma)^{\perp}} \cap D_0 = \mathcal{P}_{(\Gamma)^{\perp}} \cap D'_0$,
- we can make the list of all $\langle \Gamma \rangle^{\perp}$ -induced chambers $\mathcal{P}_{\langle \Gamma \rangle^{\perp}} \cap D'$ adjacent to $\mathcal{P}_{\langle \Gamma \rangle^{\perp}} \cap D_0$,
- for another ⟨Γ⟩[⊥]-induced chamber 𝒫_{(Γ)[⊥]} ∩ D₁, where D₁ is an induced chamber contained in N(Y), we can enumerate all the elements g of aut(Y) that maps D₀ to D₁, and
- combining the algorithms above, we can make the list of all $g \in \operatorname{aut}(Y)$ that maps $\mathcal{P}_{(\Gamma)^{\perp}} \cap D_0$ to $\mathcal{P}_{(\Gamma)^{\perp}} \cap D_1$.

Then, we can make a complete set of representatives

$$\mathcal{P}_{(\Gamma)^{\perp}} \cap D^{(0)}, \dots, \mathcal{P}_{(\Gamma)^{\perp}} \cap D^{(m)}$$
(1.1)

of the orbits of the action of aut (Y, Γ) on V_{Γ} , where $D^{(0)}, \ldots, D^{(m)}$ are induced chambers contained in N(Y).

604

Corrigendum

Let F' be another element of \mathcal{F} such that $\Gamma' := \mathcal{R}(F')$ has the same ADE-type as Γ . Then Γ' belongs to the same $\operatorname{aut}(Y)$ -orbit as Γ if and only if there exist a $\langle \Gamma \rangle^{\perp}$ -induced chamber $\mathcal{P}_{\langle \Gamma \rangle^{\perp}} \cap D^{(k)}$ in the representatives (1.1) and an element g of $\operatorname{aut}(Y)$ that maps F' to $\mathcal{P}_{\langle \Gamma \rangle^{\perp}} \cap D^{(k)}$. Applying this criterion to all pairs of faces in \mathcal{F} , we obtain the orbit decomposition by $\operatorname{aut}(Y)$ of RDP-configurations of smooth rational curves on Y.

We apologize for possible confusion that this mistake may have caused.

Reference

Department of Mathematics, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan e-mail: ichiro-shimada@hiroshima-u.ac.jp

^[1] I. Shimada, On an Enriques surface associated with a quartic Hessian surface. Canad. J. Math. 71(2019), 231–246.