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Abstract. The dynamics of fluctuations in a closed coronal structure is regulated both by reso-
nance with motions at bases that stores energy in the structure in form of discrete eigenmodes,
and by nonlinear couplings that move this energy along the spectrum to smaller scales. The en-
ergy balance is evaluated both analytically and, numerically, using an hybrid shell model. The
input energy flux is independent of nonlinear effects and is determined by slow (DC) perturba-
tions. Coherent eigenmode couplings determine the nonlinear energy flux and, consequently, the
level of fluctuations at large scales. The estimated velocity fluctuation level is in agreement with
measures of nonthermal velocity in corona. The resulting turbulence spectrum contains both a
pre-inertial range where coherent interactions dominate, and a standard inertial range where
the turbulence behaves as in an unbounded system.
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1. Introduction
Within the theoretical modelling of coronal heating, there are two important questions

that are currently debated: first, in which form and at which time scale the energy of
photospheric motions reaches the corona; second, which are the mechanisms that carry
this energy to the very small dissipative scales. Concerning the former point, models of
coronal heating have been traditionally classified in two groups: 1) DC models consider
slow photospheric motions at time scales tph � TA , TA being the Alfvén crossing time.
The coronal structures continuously re-arrange through a sequence of quasi-equilibrium
states, while the magnetic free energy increases in time; energy enters the corona mainly
as magnetic energy. 2) AC heating models consider perturbations at tph � TA ; kinetic
energy is comparable with magnetic energy. Due to the finite length of closed coronal
structures, exciting such perturbations is similar to put in resonance an elastic string
of given length by an external driver (Ionson 1982). Typically, the Alfvén crossing time
TA ∼ 10−15 s, while the energy of photospheric motions is concentrated around tph ∼ 300
s; this suggests that photospheric motions are expected to energize the corona mainly
by DC perturbations. However, the distinction between AC and DC mechanisms is quite
artificial (Milano et al. 1997) because, in the context of resonant systems a DC mechanism
can be simply considered as corresponding to a resonance at zero frequency.

The second question concerns mechanisms that move energy towards small enough
scales (probably of the order of the proton Larmor radius), where it can be efficiently
dissipated. Linear mechanisms related to the interaction between perturbations and an
inhomogeneous background are: (i) resonant absorption (e.g., Davila 1987), in which the
perturbation energy concentrates around magnetic fieldlines where the wave frequency
matches the local Alfvén frequency; (ii) phase-mixing (e.g., Heyvaerts & Priest 1983)
where differences in the local phase velocity bend wavefronts progressively decreasing the
transverse wavelength; (iii) 3D fast dissipation (Petkaki et al. 1998), where exponential
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separation of nearby magnetic lines builds up small scales faster than in ordinary phase-
mixing. In contrast, turbulence models assume a uniform background and study how
nonlinear interactions build up an energy cascade from large to small dissipative scales
(Einaudi et al. 1996, Dmitruk & Gomez 1997, Nigro et al. 2004). The injection range of the
turbulence corresponds to the length of the photospheric velocity pattern: ∼ (1.5× 104–
1.5×103) km, the dissipative length is of the order of the proton Larmor radius (∼ (10−1)
m); the inertial range of the turbulence, formed by several decades, where nonlinear
interactions play the major role, is located in between.

A model of coronal heating should include both the aspect of energization of the corona
and that of the internal dynamics which leads to dissipation. Milano et al. (1997) consid-
ered a model of a coronal loop with a spectrum of driving frequencies ranging from low
(DC) to higher (AC) values. Resonances play a key role allowing for the fluctuating energy
to enter the loop. The resulting turbulence, described by an EDQNM technique, moves
energy to microscales and it has the net effect of an enhanced dissipation on macroscales.

Direct numerical simulations give a detailed representation of spatial structures, but
cannot adequately describe the wide range of spatial scales of the coronal turbulence. This
is more easily represented in “reduced” models, like shell models (Giuliani & Carbone
1998, Boffetta et al. 1999), in which the dynamics of turbulence is represented in a
simplified Fourier space. A drawback of shell models is that phenomena related to wave
propagation, like resonance, cannot be described due to the lack of spatial information.
A compromise is represented by the hybrid shell model (Nigro et al. 2004, Buchlin &
Velli 2007), based on the reduced MHD (RMHD) equations, that includes both nonlinear
effects using a shell technique, and linear propagation along the magnetic field. This gives
an adequate description of a wide turbulent range as well as of the resonance phenomenon.
In the present paper we focus on the energy input due to motions at the loop basis at
large scales and on the energy flux towards small scales due to nonlinear effects, deriving,
by an analytical treatment, some properties of fluctuations and of nonlinear interactions
at large scales. The results are compared with those derived from the hybrid shell model
(Nigro et al. 2004).

2. RMHD and energy balance equations
A coronal magnetic structure is characterized by a strong longitudinal magnetic field,

by a large aspect ratio R = L/L⊥ (L and L⊥ being the longitudinal and the transverse
lengths, respectively), and by a low value of the plasma β (∼ 10−2). In these conditions
the large scale dynamics can be described by the RMHD equations (Strauss 1976), that
are written in the following form, after a Fourier expansion in the transverse directions:

ρ0
∂vn (k⊥)

∂t
− B0

4π

∂Bn (k⊥)
∂z

= −ik⊥nP (k⊥) +
∑

p⊥, q⊥

iq⊥j

[
1
4π

Bj (p⊥)Bn (q⊥) − ρ0vj (p⊥)vn (q⊥)
]

δp⊥+q⊥,k⊥

(2.1)
∂Bn (k⊥)

∂t
− B0

∂vn (k⊥)
∂z

=
∑

p⊥, q⊥

iq⊥j [Bj (p⊥)vn (q⊥) − vj (p⊥)Bn (q⊥)] δp⊥+q⊥,k⊥

(2.2)

where v and B are the transverse velocity and magnetic field, P is the total (fluid +
magnetic) pressure, z is the longitudinal coordinate. These equations indicate that the
dynamics of perturbations is determined by two mechanisms: (i) linear propagation along
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±B0 at the Alfvén velocity cA0 = B0/(4πρ0)1/2 (LHS terms); (ii) nonlinear couplings
between Fourier modes at different transverse wavevectors (RHS terms). The kinetic and
magnetic energy at a given transverse wavevector k⊥ are:

Ekin (k⊥, t) =
1
2
ρ0L

2
⊥

∫ L

0
dz |vn (k⊥, z, t)|2 ; Emag (k⊥, t) =

L2
⊥

8π

∫ L

0
dz |Bn (k⊥, z, t)|2

(2.3)
whose time evolution satisfies the energy balance equations:

dEkin (k⊥)
dt

= L2
⊥

[
Φin

kin (k⊥) + Φnl
kin (k⊥)

]
;

dEmag (k⊥)
dt

= L2
⊥

[
Φin

mag (k⊥) + Φnl
mag (k⊥)

]
(2.4)

where Φnl
kin and Φnl

mag are the spectral energy fluxes due to nonlinear effects, defined by

Φnl
kin (k⊥) =

1
2

∫ L

0
dz

∑
p⊥, q⊥

iq⊥j

[
ρ0

[
vn (k⊥)v∗

j (p⊥)v∗
n (q⊥) − v∗

n (k⊥)vj (p⊥)vn (q⊥)
]

+
1
4π

[
v∗

n (k⊥)Bj (p⊥)Bn (q⊥) − vn (k⊥)B∗
j (p⊥)B∗

n (q⊥)
]]

δp⊥+q⊥,k⊥

(2.5)

and

Φnl
mag (k⊥) =

1
8π

∫ L

0
dz

∑
p⊥, q⊥

iq⊥j

[
Bn (k⊥)v∗

j (p⊥)B∗
n (q⊥) − B∗

n (k⊥)vj (p⊥)Bn (q⊥)

+ B∗
n (k⊥)Bj (p⊥)vn (q⊥) − Bn (k⊥)B∗

j (p⊥)v∗
n (q⊥)

]
δp⊥+q⊥,k⊥ (2.6)

while the input energy flux through the loop bases is

Φin
tot(k⊥) = Φin

kin (k⊥) + Φin
mag (k⊥) =

B0

4π

[
� [vn (k⊥)B∗

n (k⊥)]z=L
z=0

]
(2.7)

Since only one variable (v or B) can be specified at each boundary, the input flux is
determined both by the boundary conditions (representing the external forcing), and by
the internal dynamics of the system.

3. Linear dissipative model
We consider the velocity and the magnetic field at a given transverse wavevector k⊥

within the energy injection range k⊥ ∼ 2π/lin⊥ . Nonlinear couplings represented by non-
linear terms in equations (2.1), (2.2) put away energy from this mode towards smaller
transverse scales. We assume that in the injection range these nonlinear terms are small
with respect to the linear ones (weak nonlinearity). Thus, a simplified model can be
derived (Milano et al. 1997), in which nonlinear terms in equations (2.1) and (2.2) are
replaced by fictitious linear dissipative terms:

∂v⊥
∂t

=
B0

4πρ0

∂B⊥
∂z

− νk2
⊥v⊥;

∂B⊥
∂t

= B0
∂v⊥
∂z

− λk2
⊥B⊥ (3.1)

v⊥(z, t) and B⊥(z, t) are real quantities representing the real or the imaginary part of
perturbations, while the fictive dissipative coefficients ν and λ are small quantities and
represent free parameters. Boundary conditions give the velocity perturbation at the loop
ends:

v⊥(z = 0, t) = u(t); v⊥(z = L, t) = 0 (3.2)
where u(t) is a random gaussian-distributed signal with a given auto-correlation time Tc .
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We assume the following ordering among characteristic times

TA � Tc � Td, Td0 (3.3)

where TA = L/cA0 is the Alfvén crossing time and Td = 1/ωd = 2/(ν + λ)k2
⊥, Td0 =

1/ω
(0)
d = 1/(λk2

⊥ are the dissipative times giving a measure of the nonlinear time Tnl).
The results derived from the linear model can be summarized as follows. In the weak

nonlinearity limit perturbations are a superposition of eigenmodes, each at frequency
ωn = (cA0π/L)n, representing Alfvén standing waves; at ωn = 0 the velocity is a linear
function of z while magnetic field is constant. Eigenmodes have a well-defined parity
in space and time and their amplitude is determined by dissipative coefficients, i.e., by
nonlinear effects (Nigro et al. 2008).

The input energy flux 〈Φin
tot〉t is a convolution in the frequency space between the

spectrum G(ω) = 2u0Tc/(1 + ω2T 2
c ) of velocity at the loop base (u0 being the velocity

amplitude) and a function HuB (ω) describing the response of the loop at each frequency
ωn . The main contribution to 〈Φin

tot〉t is due to the resonance at ωn = 0 (DC motions),
which gives (Nigro et al. 2008):

〈Φin
tot〉t � −B2

0

4π

Tc

L
u2

0 (3.4)

This expression is independent of Td and Td0 . Thus, the input flux does not depend on
nonlinear effects but only on the loop resonance. The scaling law (3.4) is the same as
in “stochastic buildup models” (Sturrock & Uchida 1981), where random photospheric
motions increase the magnetic energy by twisting flux tubes. Assuming B0 = 100 G,
L = 3 × 109 cm, Tc = 300 s and u0 = 105 cm s−1 , we get 〈Φin

tot〉t = 8 × 105 erg cm−2

s−1 , which is of the order of the energy flux required to sustain the quiet-Sun corona
(Withbroe 1988).

The main contribution to fluctuating kinetic energy comes from the n = 1 eigenmode
(AC), which gives an estimation for the velocity fluctuation:

δv � u0

(
Td

6Tc

)1/2

(3.5)

We note that δv � u0 , in accordance with measures of nonthermal velocities in corona
much larger than photospheric velocities. Magnetic fluctuations are mainly due to the
n = 0 eigenmode (DC), giving an estimation for the magnetic field fluctuation:

δB � B0

cA
u0

(
TcTd0

2T 2
A

)1/2

(3.6)

Since δB/B0 � δv/cA the turbulence injection range is magnetically dominated. Note
that both δv and δB depend on dissipative coefficients, i.e., are determined by the am-
plitude of nonlinear effects.

4. Nonlinear effects: spectral energy fluxes
In a statistically stationary situation, the input energy flux must be balanced by the

spectral flux moving energy from the whole injection range to smaller scales along the
spectrum. The spectral flux can be estimated using the expressions (2.5), (2.6), as well
as the form of eigenmodes derived from the linear analysis. Nonlinear interactions take
place among triads of wavevectors (k⊥,p⊥,q⊥). The perturbation at a given wavevector
is a superposition of infinite eigenmodes. However, due to the symmetry properties of
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eigenmode profiles, nonlinear interactions are dominated by coherence effects. This fact
has some consequences that make this situation peculiar with respect to a “standard”
MHD turbulence (Nigro et al. 2008): (i) in each interacting triad, two AC eigenmodes
(n 	= 0) interact with the velocity perturbation of a DC (n = 0) eigenmode; (ii) only
eigenmodes with the same parallel wavelength (at n 	= 0) can efficiently interact; in the
other cases the energy flux is vanishing; (iii) only interactions where two wavevectors are
in the injection range and the third in the inertial range contribute to the energy flux;
(iv) the kinetic and magnetic spectral energy fluxes are equal; (v) the above properties
makes the spectral energy flux much smaller than in a standard MHD turbulence; this
justifies the hypothesis of weak nonlinearity (equation (3.3)).

As a consequence, the turbulence spectrum is characterized by the presence of a pre-
inertial range at scales just smaller than those of the injection range. In the pre-inertial
range nonlinear interactions are strongly influenced by coherence effects, due to the
presence of linear eigenmodes. In particular, in the pre-inertial range magnetic energy
dominates kinetic energy, as is the injection range. With increasing k⊥ the nonlinear time
Tnl decreases, while TA keeps unchanged; this implies that at smaller scales resonance
lines becomes wider and wider. When Tnl becomes � TA nonlinear effects dominate linear
ones: resonant eigenmodes disappear and the turbulence is determined by incoherent
mode interactions; this corresponds to a standard inertial range, where Ekin ∼ Emag

and the two spectra both follow a Kolmogorov law. The transition between pre-inertial
and inertial range is characterized by Tnl ∼ TA giving the condition

kinc
⊥ δv(kinc

⊥ ) ∼ L

cA0
(4.1)

where kinc
⊥ is the lower limit of the pre-inertial range. An estimation of the spectral

energy flux from the injection range to smaller scales is (Nigro et al. 2008):

〈Φnl
tot〉t �

2π√
3

L

lin⊥
ρ0u0δv

2(lin⊥ ) (4.2)

ρ0 being the background density. Energy conservation requires 〈Φin
tot〉t+〈Φnl

tot〉t = 0. Then,
from the expressions (3.4) and (4.2) we obtain a scaling law for the velocity fluctuation
in the injection range:

δv(lin⊥ ) �
(√

3
2π

lin⊥
L

Tc

TA
cA0u0

)1/2

(4.3)

Using the values lin⊥ = 3× 108 cm, L = 3× 109 cm, Tc = 300 s, TA = 15s, cA0 = 2× 108

cm s−1 , u0 = 105 cm s−1 we obtain δv(lin⊥ ) = 3 × 106 cm s−1 , which is consistent with
typical nonthermal velocities measured in the corona (e.g., Warren et al. 1997). Since the
spectral flux is independent of the amplitude of DC magnetic perturbation, this method
does not allow us to obtain a scaling law for δB.

5. A numerical approach: the hybrid shell model
The hybrid shell model (Nigro et al. 2004, Buchlin & Velli 2007) is based on RMHD

equations (2.1), (2.2); propagation terms in the parallel (z) direction are explicitly in-
cluded, while the perpendicular spectral space is divided into concentric shell of ex-
ponentially increasing width. At each shell a value k⊥n = k02n (k0 = 2π/lin⊥ , n =
0, 1, . . . , nmax ) of the wavevector is assigned, while velocity and magnetic fluctuations
(normalized to cA0 and to B0 , respectively) are represented by complex scalar quantities
v⊥n (z, t), b⊥n (z, t). Nonlinear couplings are represented by quadratic nonlinear terms
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Figure 1. Velocity spectrum ev as a function of the normalized frequency f = ωL/2πaA 0 in
semilogarithmic scale (left) and in logarithmic scale (right).

whose coefficients are chosen in order to have conservation of 2D quadratic invariants.
The equations of the hybrid shell model are (Nigro et al. 2004):(

∂

∂t
∓ ∂

∂z

)
Z±

n = ik⊥n

(
13
24

Z±
n+2Z

∓
n+1 +

11
24

Z∓
n+2Z

±
n+1 −

19
48

Z±
n+1Z

∓
n−1 −

11
48

Z∓
n+1Z

±
n−1

+
19
96

Z±
n−1Z

∓
n−2 +

13
96

Z∓
n−1Z

±
n−2

)
+ χk2

⊥nZ±
n (5.1)

where Z±
n = v⊥n ± b⊥n are the Elsässer variables, χ is a dissipative coefficient which

determine the dissipative scale, z is normalized to L and t to L/cA0 . Boundary conditions
are the same as in the analytical treatment (equation 3.2) and are imposed on the first
three shells; then, these shells represent the energy injection range of the turbulence.

The hybrid shell model is able to reproduce both nonlinear effects and linear phenom-
ena, like resonance, that are naturally included into the model. Then, results derived
from it can be compared with those of the analytical treatment previously described; in
particular, the hypothesis of weak nonlinearity and the related dominance of resonant
eigenmodes at large scales. Moreover, a wide spectral range can be described with a
limited numerical effort; this allows to get a detailed description of the spectra.

The evolution equations (5.1) have been numerically solved, using the following values
for the parameters: L = 3 × 109 cm, L⊥ = π × 108 cm, cA0 = 2 × 108 cm s−1 , ρ0 =
1.67 × 10−16 g cm−3 , u0 = 105 cm s−1 , Tc = 300 s, χ = 2 × 10−9 . This value of χ gives
a dissipative length ld = 1.2 × 103 cm, which is a factor � 4 × 10−6 smaller than the
injection scale. Such a wide range of scales for the turbulence (6 decades) is inaccessible
to direct MHD numerical simulations.

From the space-time dependence of fluctuations v⊥n (z, t), b⊥n (z, t) in each shell, we
calculated the frequency spectra ev (ω) of velocity and eb(ω) of magnetic field, integrated
in space. We select the shell n = 1 which is at the middle of the energy injection range:

ev (ω) =
∫ 1

0
dz|v̂⊥1(z, ω)|2 ; eb(ω) =

∫ 1

0
dz|b̂⊥1(z, ω)|2 (5.2)

where v̂⊥1 and b̂⊥1 are the Fourier time transform of velocity and magnetic field fluctu-
ations:

v⊥1(z, t) =
∑
ω

v̂⊥1(z, ω)e−iω t ; b⊥1(z, t) =
∑
ω

b̂⊥1(z, ω)e−iω t (5.3)

The velocity frequency spectrum ev is plotted in Figure 1, as a function of the normal-
ized frequency f = ωL/2πaA0 . The spectrum displays a sequence of peaks approximately
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Figure 2. The same as in Figure 1, for the magnetic field spectrum eb .

located at semi-integer values of f , that corresponds to the resonance frequencies ωn . This
clearly show the presence of resonant eigenmodes that dominate large scale fluctuations.
The most energetic eigenmode corresponds to the 1st-order resonance , while much less
energy is present in the 0th-order resonance. Thus, in accordance with the analytical
model, AC perturbations (in particular, the n = 1 resonance) dominate the velocity fluc-
tuations. The width of the dominant peak is much less than the separation T−1

A between
peaks; this indicates that at large scales the nonlinear time is much longer than TA , thus
supporting the assumption of weak nonlinearity made in the analytical treatment.

The magnetic field frequency spectrum eb is plotted in Figure 2, as a function of f .
Also this spectrum is formed by a sequence of peaks localized at the resonance frequen-
cies (semi-integer f). In contrast with the velocity spectrum, magnetic fluctuations are
dominated by the resonant eigenmode n = 0, corresponding to slow DC perturbations.
Comparing the two spectra we see that, at resonance frequencies n 	= 0, ev ∼ eb (except
for n = 1 where ev is slightly larger than eb), this indicates that resonant AC pertur-
bations are stationary Alfvén waves trapped into the closed magnetic structure. At the
resonance n = 0 we find eb � ev , as expected. All these features are in accordance with
the results of the analytical model.

Figure 3. Spatial profile of rms velocity perturbation δv as a function of the longitudinal
coordinate z.
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In Figure 3 we show the spatial profile of the rms velocity perturbation, defined by

δv(z) =

(∫ T

0

dt

T

∑
n

|v⊥n (z, t)|2
)1/2

(5.4)

The contribution of the resonant eigenmode profiles at n � 4 can be recognized in
Figure 3. The typical value for the velocity perturbation found in the run is δv � 3× 106

cm s−1 , which is in accordance with the estimation (4.3) derived from the analytical
treatment. As expected, this value of δv is much larger than at the loop basis, which is
of the order of 105 cm s−1 .

The rms magnetic field perturbation found numerically is δB/B0 � 0.2 � δv/cA0 .
This value of δB is mainly due to the n = 0 resonance; for this reason, such a value
cannot be predicted using energy flux conservation, as we did for δv.

The total energy E, the net incoming power F and the dissipated power W are shown
in Figure 4 as functions of time. During a transient, which lasts about 15 hours, the
energy increases. For subsequent times the energy does not stabilize but displays strong
irregular variations. These variations are due both to energy input/output at the lower
boundary and to dissipation. The energy input depends on how the forcing at the base
couples with perturbations which are present inside the system. This coupling contributes
to determine the sign of the incoming power F which continuously changes sign on a short
time scale (Figure 4). Excluding the initial transient, the time average of net incoming
and dissipated powers are 〈F 〉t ∼ 〈W 〉t � 2.6×1022 erg s−1 . We compare this value with
the predictions of the analytical model; from equation (3.4) we derive

〈F 〉t ∼
B2

0

4πcA0

Tc

TA
δu2L2

⊥ (5.5)

Using the above values for the parameters, this equation gives 〈F 〉t ∼ 2 × 1022 erg s−1 ,
which is quite close to the value of the input power in the hybrid shell model. Then, the
analytical estimation (3.4) of the input energy flux is in agreement with the results of
the numerical model.

Motions at the loop basis inject energy at scales ∼ lin⊥ and nonlinear couplings trans-
fer this energy to smaller transverse scales forming a spectrum which extends down to
dissipative scales. The average spectra of kinetic and magnetic fluctuations are defined
by

〈e(v )
n 〉t =

∫ 1

0
dz

∫ T

0

dt

T
|v⊥n (z, t)|2 ; 〈e(b)

n 〉t =
∫ 1

0
dz

∫ T

0

dt

T
|b⊥n (z, t)|2 (5.6)

These perpendicular spectra are shown in Figure 5. Note that a linear scale in the index
n corresponds to a logarithmic scale in k⊥n . In the injection range (0 � n � 2) magnetic
fluctuations dominate velocity fluctuations, but the average slope of 〈e(b)

n 〉t is much larger
than that of 〈e(v )

n 〉t . Thus, for increasing n there is a tendency to an equipartition between
〈e(b)

n 〉t and 〈e(v )
n 〉t , which is approximately verified in the range 5 � n � 10. Within

such a range both the kinetic and the magnetic energy spectra approximately follow a
Kolmogorov law, in accordance with what expected from the analytical treatment. The
kinetic energy spectrum has a similar slope also in the injection range. In the considered
case we have l

(nr)
⊥ ∼ 2−5L⊥0 � 2×107 cm. Then, from equation (4.1) we find δv(l(nr)

⊥ ) ∼
1.3 × 106 cm s−1 , which is compatible with the results of the numerical model.
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Figure 4. Total energy E (upper panel), net incoming power F (middle panel) and dissipated
power W (lower panel) as functions of time t.

6. Conclusions
We have examined and discussed some features of the energy input in a coronal loop

due to photospheric motions at large transverse scales and of the subsequent generation
of a turbulence towards smaller scales, where this energy can be dissipated. We focused
on the energy injection range which is dominated by coherent dynamics. Perturbations
are essentially formed by resonant eigenmodes at discrete frequency multiples of the
fundamental Alfvén frequency, including the eigenmode at ω = 0 corresponding to DC
perturbations. The latter is mainly responsible for the input energy flux, that essentially
depends on the coupling between such an eigenmode and the external driver. The co-
herence properties of eigenmodes imply that at large scales nonlinear effects are much
smaller than linear ones (weak nonlinearity). In this limit, the input flux is independent
of nonlinear effects. The spectral flux is determined by interactions between AC pertur-
bations at times ∼ TA and the velocity perturbation of DC modes: then, both AC and
DC mechanisms regulate the energy balance of the loop. Moreover, the weak nonlinear-
ity allows for the formation of a pre-inertial range of the turbulence, where nonlinear
interactions are influenced by coherence effects: a dominance of magnetic on kinetic en-
ergy and a reduced spectral energy flux. This theory has given scaling laws for the input
energy flux 〈Φin

tot〉t , the spectral flux 〈Φnl
tot〉t from large to small scales, and the velocity

perturbation level δv. The estimation for 〈Φin
tot〉t is in agreement with the energy flux

required to sustain the quiet-Sun corona against radiative losses (Withbroe 1988), while
δv is of the order of nonthermal velocities deduced from nonthermal broadening (e.g.,
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Figure 5. Spectra 〈e(v )
n 〉t of velocity perturbation (“×” symbols) and 〈e(b )

n 〉t of magnetic field
perturbation (“+” symbols) as functions of the transverse wavevector k⊥n . The line corresponds
to a Kolmogorov spectrum.

Warren et al. 1997). All the above properties have been checked on a numerical model
(the hybrid shell model) finding a good agreement.
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Discussion

Davila: I wonder if the Reduced MHD solutions violate the initial assumptions used to
derive the equations originally.

Malara: Reduced MHD is based on the hypothesis that perpendicular gradients are
made larger than parallel gradients. When a current sheet forms (at large scales) the
associated gradient is quasi-perpendicular to B, so the above assumption is not violated.
Moreover, perturbations responsible for the current sheet formation are included in these
approaches as DC perturbations (ω = 0 resonant eigenmodes).
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Tsap: Why do you think about the fact that the crossing Alfven time in the solar
atmosphere is about 20 s? Its value is significantly greater in the photosphere.

Malara: I tried to estimate how much the first-order resonance frequency decreases
when chromosphere is included. For this I used a simple exponential dependence of the
Alfven speed on the altitude. I found that this frequency is decreased by a factor of 3,
while the input energy flux is only slightly increased.
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