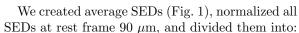
Dust in FIR-bright ADF-S galaxies

K. Małek^{1,2}, A. Pollo^{2,3}, T. T. Takeuchi¹, V. Buat⁴, D. Burgarella⁴ and M. Malkan⁵

¹Department of Particle and Astrophysical Science, Nagoya University, Furo-cho, Chikusa-ku, 464-8602 Nagoya, Japan email: malek@cft.edu.pl


²National Centre for Nuclear Research, ul. Hoża 69, 00-681 Warszawa, Poland ³The Astronomical Observatory, Jagiellonian University, ul. Orla 171, 30-244 Kraków, Poland ⁴Laboratoire d'Astrophysique de Marseille, OAMP, Universite Aix-Marseille, CNRS, 38 rue Frerdeic Joliot-Curie, 13388 Marseille, cedex 13, France

Abstract. Multiwavelength Spectral Energy Distributions (SEDs) of far-infrared (FIR) galaxies detected in the AKARI South Ecliptic Poles Survey (ADF-S) allow to trace differences between [Ultra]-Luminous Infrared Galaxies ([U]LIRGS) and other types of star-forming galaxies (SF).

Keywords. galaxies: infrared - galaxies: evolution - galaxies: spectral energy distribution

1. Results

The ADF-S provides the highest quality FIR image of the extragalactic Universe. With its four photometric bands (65, 90, 140, and 160 μ m) it mapps a wide area of 12 sq². We cross-corelated ADF-S catalog with public databases (Małek *et al.* 2013) and used the CIGALE SED fitting code (Noll *et al.* 2009) to measure the physical parameters of the ADF-S sources.

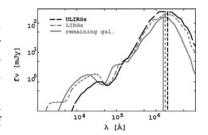


Figure 1. The average SEDs normalized at $90\mu m$.

ULIRGs (17 galaxies), LIRGs (31 galaxies), and the remaining galaxies (82 objects). We notice a significant shift in the peak λ of the dust emission in the FIR and a different ratio between luminosities in the optical and IR parts of these three types of galaxies (Malek *et al.* 2014). It means that [U]LIRGs contain cooler dust that SF galaxies, and that the ratio between luminosities in the optical and IR parts of the spectra increases with the dust luminosity.

Acknowledgements

AP and KM have been supported by the National Science Centre (UMO-2012/07/B/ST9/04425 and UMO-2013/09/D/ST9/04030). KM was supported by the Strategic Young Researcher Overseas Visits Program for Accelerating Brain Circulation No. R2405.

References

Małek, K., Pollo, A., Takeuchi, T. T., et al. 2013, EPS, Special Issue Cosmic Dust V, 65, 1101 Małek, K., Pollo, A., Takeuchi, T. T., et al. 2014, A & A, 562, id.A15 Noll, S., Burgarella, D., Giovannoli, E., et al. 2009, A & A, 507, 1793

⁵Department of Physics and Astronomy, University of California, Los Angeles, CA 90024, USA