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CANONICAL BASES AND STANDARD MONOMIALS
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Let U be the quantized enveloping algebra associated to a simple Lie algebra g by Drinfel'd and Jimbo.
Let A be a classical fundamental weight for g, and V(X) the irreducible, finite-dimensional type 1 highest
weight (/-module with highest weight X. We show that the canonical basis for V{X) (see Kashiwara [6, §0] and
Lusztig [18, 14.4.12]) and the standard monomial basis (see [11, §§2.4 and 2.5]) for V(X) coincide.

1991 Mathematics subject classification: 17B37.

1. Introduction

Let g be a finite-dimensional semisimple Lie algebra over C, and let U be its
universal enveloping algebra. Then there is a well-developed theory of "standard
monomials" for U (see, for example, [13]). For each integrable highest weight module
M for U there is a subset of M (the standard monomials) which are conjectured to
form a basis for M. In many cases this conjecture has been proved. More recently
(see [11]), this theory has been extended to the quantized case, providing standard
monomials for certain modules for quantized enveloping algebras. Also, Lakshmibai
(see [7], [8] and [9]) and Littelmann (see [14] and [15]) have developed theories of
monomial bases in modules for universal and quantized enveloping algebras via crystal
bases and paths (in Littelmann's case, also for the algebras). Let U be the quantized
enveloping algebra associated to g by Drinfel'd [3] and Jimbo [5]. For each dominant
weight A in the weight lattice of g there is an irreducible, finite-dimensional type 1
highest weight l/-module V(X) with highest weight k (see [18, 3.5.6, 6.2.3 and 6.3.4]; for
the definition of type 1, see [2, 10.1]). In particular, if V = V(!) is a fundamental
module of classical type (see the start of Section 3) for U then the standard monomials
in V are known to form a basis for V. There is a canonical basis for V defined
independently by Kashiwara [6] and Lusztig [18, 14.4.12]. Using certain Kashiwara
operators on V, and Theorem 19.3.5 in [18], we show the canonical basis and the
standard monomial basis in V coincide.

2. Preliminaries

We use the treatment in [18, §§1-3]. Let g be a semisimple Lie algebra, with root
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612 R. J. MARSH

system Q>, simple roots a,, <x2,..., an) and Killing form ( , ). Let hu h2,.. •, hn be a basis
for a Cartan subalgebra h of g, satisfying (h,, h) = a*(h) for all h in h and all i e 1 =
{1, 2 , . . . , n). Here a* := 2a,/(a,, a,). Let Y be the Z-lattice spanned by h,, h2 hn. Let
(ox,oi2, . ..,cun be the fundamental weights of g, defined by <u,(fy) = <5,y, and let X be
the Z-lattice spanned by them (the weight lattice). Let d be the minimal positive integer
so that d(a,, a,) is always even. (Note that then d(<xit a;) is always an integer.) If the
highest common factor of the ^(a,, a,) is not 1, then replace d by d divided by this
highest common factor. We then define i -j to be d(ah a;) for each i, j e I, so (/, •) is a
Cartan datum as in [18, 1.1.1]. For \i e Y and X e X, define (/i, A) to be X{ji). Define an
imbedding of / into Y by i >-* h( and into X by i i-> a, for all i e /. We then have a root
datum of type (/, •) as in [18, 2.2.1], with (ft,, a,-) = a;(/i,) = Ait the corresponding
symmetrizable Cartan matrix. For each i e /, we define dt to be the integer id(«(, a,).
Then d,Atj = \d{ait a,) ( ^ ^ ) = d(ah a;) for each i, ; e /, and is thus a symmetric matrix
over Z. We use the same numbering as [1, Planches I to IX].

Let Q(v) be the field of rational functions in an indeterminate v, and A c Q(y) the
ring Z[v, v~1]. For N, M e N and i e / we put u, = i/' and define the following (all of
which lie in .4):

These are referred to as quantized integers, quantized factorials and quantized
binomial coefficients, respectively. If v is specialized to 1 they specialize to the usual
integers, factorials and binomial coefficients.

We define the quantized enveloping algebra U corresponding to the above data (as
in [18, 3.1.1 and 33.1.5]) to be the Q(u)-algebra U with generators 1,£,,£2 En,
Fj, F 2 , . . . , FB, and K^ for n e Y, subject to the relations: (for each i, j e I and
A*. /*' e r )

H fi' — fi+ft

3
. - v,

p+P'=\-Aij
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(where, for i e I, we put Kt = Kd.hj and K, = K_djhj). In the last two summations, p
and p' are restricted to the non-negative integers.

We make the following definitions (see [18, 3.1.1 and 3.1.13]). For M e N, and
i e I, we put EJ*0 = £f/[M]|, and F\*° = F,M/[M];, which are called divided powers. We
also put Kt = Kh. and K,"1 = K_h. for i 6 /. Let UA be the .A-subalgebra of U generated
by the elements E^, F^, /£„ for' i e /, N e N and \i e y. It is called the integral form
of C/. Let IT be the subalgebra of U generated by the Fhi e I.

Let W be the Weyl group of g. So W is the group:

W = < S ,s 2 , . . . , s. | s? = 1, ( s j S ) p = 1 (i ̂  j)>

where mit — 2, 3,4, 6 if AgAp = 0, 1, 2, 3, respectively. For r e / , let Wr be the set of
distinguished left coset representatives of the parabolic subgroup Wr of W generated by
{s,,s2 sn)\{sr).

Let X+ c X be the set of dominant weights, i.e. those of the form A,<y, + A2a)2 + h
kncon e X where cou co2,..., con are the fundamental weights of g and A,, A2,... , An e N.
Let A = A,OJ, + A2a>2 H h kncon be a dominant weight. We follow the construction in
[18, 3.4.5 and 3.5.6]. Let J be the left ideal of U generated by the elements £, for i e /
and the elements K^ - vim) for fx e Y. Then the map from U~ to U/J taking x e ( / '
to x -(- J is a Q(u)-vector space isomorphism, which can be used to transfer the left
[/-module structure of U/J to U~. The resulting (/-module we denote by M(A); it is
then called a Verma module. Let T(A) be the left ideal of M(X) (as a Q(u)-algebra)
generated by the elements F-'+1, for i € /, and let K(A) be the quotient module
M(k)/T(X). Then, by [18, 6.2.3 and 6.3.4], V(X) is the unique irreducible, finite-
dimensional type 1 highest weight (/-module with highest weight X. It is the quantized
counterpart of the irreducible, finite-dimensional W-module V\k) with highest weight X
(where U is the universal enveloping algebra of g). We fix x, as the image of
1 e M{X) under the natural map from M(X) to V(X). Then x, is a highest weight vector
for V{X). We also write V(X)A for the integral form of V(X) (see [18. 19.3.1]). This is a
[/^-module, by [18, 19.3.2]. For each r e / we denote by Vr the type 1 module V(cor)
with highest weight cor. This is called the r-th fundamental module for U.

We shall need the following definition of certain root operators (see [6, §2.2]):

Definition 2.1. Suppose that A is a dominant weight, and V(X) is the corresponding
(/-module as above. Fix i e I. Any element m e V(X) can be written uniquely
m = £o<k<k' FTxiy, where the xKk- satisfy Etxky = 0 and Ktxkk> = vk'xky. Then define

*+V*'. and Urn) =
0<k<lk' \<k<k'

Let " be the Q-algebra automorphism from U to U taking E, to £,, F( to Ff, and K^
to K_li, for each i € / and (i e Y, and v to tT1 (see [18, 3.1.12]). Let A e X. There is an
induced Q-linear automorphism (also denoted ") of any module K(A) for U defined by
ux\ = uxi for any u e U~ (see [18, 19.3.4]). Note that every element of V(X) is of the
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form MX, for some u e U~. For A e X let B(A) be the canonical basis for K(A) (see
[6, §0] or [18, 14.4.12]).

3. Standard monomials - the unquantized case

Initially, we look at the unquantized case, i.e. standard monomials in modules for
the universal enveloping algebra. We will use one of the descriptions in this case in the
next section to describe the standard monomials in the quantized case in a way suitable
for proving they coincide with the canonical basis in the classical fundamental
modules. We consider the W-module V'{)), which is the unquantized counterpart of the
l/-module V(X). Let x\ be a fixed highest weight vector in K'(A). We fix A = mr, a
classical fundamental weight, i.e. a fundamental weight satisfying \(a>r, a*)| < 2 for all
positive roots a, where ( , ) is the Killing form.

Suppose T, 4> e W. Then (T, (f>) is an admissible pair if there is a sequence {T,} of
elements of WT satisfying

T = T0 > T, > • • • > Zk = <t>, (1)

where the relation involved is the Bruhat order on W. The sequence must also
satisfy:

(1) For i = 0 , 1 , . . . , k — 1, there is a fundamental root /?, such that T, = sftT,+,. So
Kxi) — £(T,+1) + 1 (where £(•) is the usual length function on W).

(2) We have ( T . K ) , ft) = 2, for i = 0, 1 k - 1.

We call such a sequence a defining sequence for (T, (p). For each admissible pair
(T, <p) in W there is a corresponding standard monomial Q'(T, <j>) e V'(X). We make the
definition inductively in the following way (following [12, §3.6]):

Definition 3.1. Firstly, we put Q'(\,l) — x\, the highest weight vector. Next, we
assume that we have already defined Q'{x, <f>) for all admissible pairs (T, </>) satisfying
6 > T for some fixed 0 e W'. Let (T,, <f)t) be such a pair satisfying (rt(cor) + 4>t(o}r), a*) > 0
and0 jt SI(T, for some fundamental root a,.

(a) If (i(T,(cor) + 0 ,K)) . a*) = 1, we set:

(b) If (i(T,(e>r) + 0,(«,)), a*) = 2, we set:

( 0
( i i ) , > 4

Thus, when (j(T,(cor) + <f>t(cor)), <x') = 1, we have defined one new Q'(x, <f>) using
$i) a n d when (i(T|(cur) + ^>,(cor)), a*) = 2, we have defined two new elements of

the form Q(x, <j>) using e'(*,, 0,). By [12, §3.6], Q'(xu <£,) jt 0, so i(r,(cwr) + tf>,(o;r)) is a
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weight, and it follows that as cor is a classical weight, these are the only possibilities
for the value of (5(1,(0),.) + 0,(ftJr)), a*). By [12, §3.6], each admissible pair arises exactly
once in the above process, so we get one standard monomial corresponding to each
admissible pair. However, as there is a certain amount of choice in the way the Q'(x, 0)
are defined it is not clear that if we make different choices we will get the same
elements of the module. However, we shall see below (see Theorem 3.2) that whatever
choices are made in the definition we shall always obtain the same elements Q'(r, 4>)
in the module (note that we have fixed a highest weight vector x',).

For i e I and m e N, put eS"° = e™/m\ and ffm) =/7"/m! Standard monomials can also
be described in the following way (as usual we are assuming that the highest weight X
is a classical fundamental weight):

Theorem 3.2. Suppose (x, $) is an admissible pair.

(a) If (x, 4>) is trivial (that is, x = <f>), then let syisyt_t • • • sn be a reduced expression for
x, where each y,- is a fundamental root and syi is the corresponding fundamental
reflection. For i = 1, 2 , . . . , t, put m, = (sy._1 • • • sn (<yr), y*). We have:

(b) If(x, (/>) is not trivial, and {T,} is a defining sequence as above for (x, 4>), we have:

(The product on the right hand side is independent of the defining sequence chosen).

In particular, the elements Q'(x, <p) are independent of the choices made in Definition 3.1.

Proof. We first show that the result (a) is true for certain choices in Definition 3.1, by
induction on the length t o f t . If t(x) — 0, then T — 1. By definition, Q'0> 1) = x', so the
result is true for t = 0. Suppose the result is true for t = u — 1. Let r = sVii • • • sV| e W
be an element of length w, and for i — 1, 2 , . . . , u, put m, = (syji • • • syi (cor), y*). By the
inductive hypothesis applied to v = s7u_, • • • syi, we have Q'(v, v) =fy

l^~i) • • -fj"0^. Now
apply Definition 3.1, with 9 = T, T, = 0, = v, and a, = yu. Clearly the condition 6 jf T,
is satisfied. In the notation of the definition, we have (j(T,((ur) + 0,((Ur)), a*) =
(v(«r). >O = ">„, whence mu - (cor, v"'(y;)). But t(v~lsya) > l(v~x), so v"'(yj is a positive
root, and (a>r, v~x(yu)) > 0, since cor is a fundamental weight. We have mu > 0, and
therefore, applying part (a) of the definition if mu = 1 or (b)(i) if mu — 2,
6'(*, T ) = / ^ ! / ^ " I ) • • ^ r i ) x ' i ' a s required. So, the result is true for t = u given it is true
for t = u — 1. By induction it is true for all t.

We next show that whatever choices are made, we still get the same elements in
the module, for admissible pairs of the form (T, T). Firstly, we note that to define
Q'(T:,T) we must use either (a) or (b)(ii) in Definition 3.1, since if we used (b)(i), we
would have that (T,, 0,) = (SJ(T, T) was an admissible pair, and thus that stj > i (note
we cannot have equality). But in this situation, we would have 6 >x, = SI(T for some
9 e W, and thus that 9 > x = s^s^x). But we must also have 0 ~t sXlxu i.e. 9 Jf x, a
contradiction. Thus, all of the elements Q'(x, x) will be defined as in the above
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paragraph. So all that remains to be done is to check that Q'(x, T) is independent of
the reduced expression chosen. This follows from specializing the result in [18, 28.1.2]
to the unquantized case. Thus part (a) is proved.

For part (b), see [12, §3.8]. Note that Theorem 5.1 later provides an alternative proof
that the elements Q'(T, 0) are uniquely defined, since as the specialization of the
elements Q(i, <j>) (see Definition 4.1 and also Theorem 4.4) they must be equal to the
specialization of the canonical basis of the module V(cor) for U, provided we specialize
X! tO x'i. •

Theorem 3.3. Suppose that cor is a classical fundamental weight. Then the set
{Q'(T, <j>) : (T, <j>) is an admissible pair in W'} forms a C-basis for V'{u>r). Each Q'(x, (f)) has
weight {(r(cor) + <f>(cor)).

Proof. See [12, §3.6]. •

4. Standard monomials - the quantized case

The theory of standard monomials has been extended to the quantized case, also.
We now use the description in the previous section to describe these standard
monomials in a way suitable for our purposes. Again, assuming that a>r is a classical
weight, we look at standard monomials for the {/-module V((or). These monomials are
defined in a similar way to Theorem 3.2, as follows below (see [11, §§2.4 and 2.5]). A
standard monomial Q(x, (f>) is again defined for each admissible pair, (T, 4>).

Definition 4.1. Suppose (T, 4>) is an admissible pair.

(a) If (T, (j>) is trivial (that is, T — 0), then let syish] • • • syi be a reduced expression
for r, where each y, is a fundamental root and sn is the corresponding
fundamental reflection. For i = 1,2,... ,t, put w, = (sy( _1 • • • sn(cor), y'). We put:

(b) If (T, </>) is not trivial, and {T,} is a defining sequence as above for (T, $), we put:

This element is independent of the defining sequence chosen.

We also have:

Theorem 4.2. Suppose that a>r is a classical fundamental weight. Then the set
{Q(x, (f>): (T, (f>) is an admissible pair in Wr) forms a Q(v)-basis for V(cor). Each Q(i, 4>)
has weight \ (r(cor) + <f>(a>r)).

Proof. See [11, §2.6]. •
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For each admissible pair (T, </>) we shall define a monomial Q*(x, <f>) in V(X). These
monomials will be seen to be the same as those defined above. We make the definition
inductively in the following way (following the construction in [12, §3.6] for the
unquantized case - see Definition 3.1):

Definition 4.3. Firstly, we put g*(l , l ) = x,, the highest weight vector. Next, we
assume that we have already defined Q*(x, <t>) for all admissible pairs (T, <f>) satisfying
9 >x for some fixed 9 e W. Let (xu #,) be such a pair satisfying (x}(a>r) + <£,(cor), a*) > 0
and 6 ^t s^.xi for some simple root a,.

(a) If (i(T,(o>r) + </>,K)). aT) = 1, we set:

(b) If (i(T,(ojr) + 0,(flir)), a*) = 2, we set:

(0 G'(s^i .^) =

(ii) e*(^T1,sa,.01)

Thus, when (̂  (T, (a;r) 4- </>,(ajr)), a*) = 1, we have defined one new Q*{x, 4>) using
Q * ( T , , $ , ) and when Q(xl(cor) + #,(<»,.)), a*) = 2, we have defined two new elements of
the form Q*(x, <f>) using 2*(T,, <£,). As in the unquantized case (see Definition 3.1), these
are the only possibilities for the value of (|(T,(a)r) + $|(cor)), a*). By [12, §3.6], each
admissible pair arises exactly once in the above process, so we get one standard
monomial corresponding to each admissible pair. However, as there is a certain
amount of choice in the way the Q*{x, 4>) are defined it is not clear that if we make
different choices we will get the same elements of the module. However, we shall see
below (see Theorem 4.4) that whatever choices are made in the definition we shall
always obtain the same elements Q*(x, #) in the module.

Theorem 4.4. We have, for all admissible pairs (T, 0), that Q'{x, 4>) = Q(T, 0) {where
Q(x, <f>) is as in Definition 4.1). In particular, the elements Q*(T, (j>) are independent of the
choices made in Definition 4.3.

Proof. The proof of this theorem goes through in exactly the same way as in the
unquantized case (see Theorem 3.2). We use [18, 28.1.2]. Note that the definition of the
monomials Q*(x, $) is the quantized version of the definition of standard monomials
in [12, §3.6]. Note also that Theorem 5.1 below provides an alternative proof that the
elements Q*(x, $) are independent of the choices made in their definition. •

5. Equality of bases

We now identify Q(x, 0) and Q'(x, (f>) for all admissible pairs (T, </>). Since co, is
classical, we have |(cor, a*)| < 2 for any root a. Since ( , ) is ^-invariant we have, for any
root a and any xeW, (cor, a*) = (x(cor), <a*)) = (x(a)r), (x(a))*), whence \(x(cor), a*)| < 2
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for any root a and any T e W. Therefore

M
•2 (2)

for any admissible pair (T, <f>). Note also that if £ e Vr has weight 5, then K^ = vc£,
where c = (<5, a*), by the definition of weight.

We therefore have, in case (a) of Definition 4.3, K,<2(T,, #,) = vQ{xx, </>,), and in case
(b), /C,Q(T,, 4>\) = v2Q(rt, (j)x) (where i is as in the definition). In either case, suppose
that EjQ(zlt 4>\) # 0- Then E,6(T|,$,) has weight j(Ti(ajr) 4- ̂ >,(ajr))4-a,. Because
standard monomials form a basis of Vr, any weight of Vr must be of the form
i(/J(a)r) 4- v(<ur)), for some admissible pair (/?, v), by Theorem 4.2. Therefore,

1 1
2 I ' 2

for some such pair (/?, v). But also (.\(z\((or) + </>,(a>r)), a*) > 1. (In fact it is either 1 or
2 - see Definition 4.3.) Thus:

: 1 + 2 = 3,
V /

that is,

which contradicts (2). We conclude that in case (a) or (b) of Definition 4.3,
EJQ(T,, 4>\) = 0. (Note that we have used here an argument similar to an argument used
in the proof of Lemma 3.6 in [12].)

We use the root operator F, (see Definition 2.1). The results in the above paragraph
shows that the decomposition (as in Definition 2.1) of the element Q(T, ,0I ) in
Definition 4.3 is F{0)x0, in case (a) and Fj0)x02 in case (b), from which it follows easily
that

in case (a): ^(S^T,, sa,tf>,) = FiQ(zt, <£,),

in case (b)(i): Q(sXl, T,, <£,) = FtQ(zu 0,), and

in case (b)(ii): Q ^ . T , , sI(tf>,) = F)Q{TX, </>,).

Theorem 5.1. The standard monomial basis for Vr is the canonical basis for Vr.

Proof. By the above each standard monomial is of the form FitFi2 • • • Fux1 for some
sequence i,, i2 i, in /. It is clear that each standard monomial is not zero and lies
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in the .A-form VrA. Since " fixes each Ft and also [N], for any N eN,i e I, it is clear
that each standard monomial basis element is fixed under ~. Therefore by the
characterization [18, 19.3.5] (note that, in Lusztig's notation, the assumption b / 0 is
required to make this theorem correct), of the canonical basis, each standard monomial
lies in the canonical basis. Since the standard monomials also form a basis, the
standard monomial basis and the canonical basis for Vt coincide. •

Remark 5.2. The above theorem applies to fundamental modules of classical type.
A natural question is whether it extends to the other fundamental modules for U (in
the cases when there are any). For these modules as well there are standard monomials
forming a basis (see [11, Appendix A]), which are defined in the following way. Let
X = cor be a fundamental weight of non-classical type, associated to a simple Lie
algebra. First we define the vectors Q(T, T) for T e W in the same way as in Definition
4.1. For the other weights, we need the indexing set S — {{i,y)N : i , / i 6 Wr], where
T, n and N satisfy the following:

(a) There exists a sequence {/i,,e W, 0 < i < s + 1} such that

(b) Let \i{ — s^nM (where /?, is a positive root), and m,, = (/ii+1(A), /?*)• There exist
positive integers nh 0 < i < s, such that

1 > njms > «,_,/»«,_, > • • • > no/mo > 0.

(In particular, note that each m, > 1.)

(c) Let pjq, > p,-\/q,.\ > • • • > P\/q\ be all the distinct numbers in the set
{njm,, «,_,/«,_„ • • •, n0M>}; then N = (p,/qt, p,_,/<7.-i. • •

To each (T, H)N we associate the vector Q(x, n)N = ̂ F^ • • • rf^Qfji, n). For 0
non-simple, Ff is to be understood as in [16], according to [11]. We take this to be [17],
as such root vectors are not described in [16]. (See also the remark at the end of the
second paragraph on page 123 in [10].)

It turns out that in case F4, if we take k = <w2> the fundamental weight corresponding
to the adjoint representation, the standard monomial basis and the canonical basis
for the corresponding finite-dimensional highest weight module differ. The Dynkin
diagram and the numbering we are using for it are shown below:

Note that dx—d1 = \ and ds = dA — 2. In this case there exist sequences as described
above where one of the /?, is not a simple root, and the corresponding root vector from
[17] must be used. Put a = a, 4- a2; then the reflection s2 in the hyperplane orthogonal
to a is s,s2S| e W. We consider first the following:

fi = Hx =
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with /?„ = a, so m0 = 2. Put n,, = 1, so N = (1/2). Then Q{z,n)N = FilF2F3F2FAF-iF2xx.
From [17, 6.6] we have F, = — F,F2 + t>F2F,. Note that our numbering of the Dynkin
diagram is good in the sense of [17, 4.3]. Now FiF2.F2FiF2F^F^F2xi = 0. To see this,
start by applying the relation

F?F, - i f ' F J F J + F.F^ - FS? = 0. (3)

Thus

FlF2.F2F3F2FAFiF2Xt =

= [2]F1F
t
2
3)F3F4F3F2x1 +[2]F,F2F3F

(
2

2)F4F3F2x1 - [2]F1F3F2
3)F4F3F2x1.

Then, applying the relation F^F^F^ = F^F^ + F ^ to the first term, and
commutations to the other two, we have

F1F2.F2F3F2FtF3F2xl =[2]F1F
(
2
3)F(

3
2)F4F2x, + [ ^ F . F ^ F f F . x ,

+ [2]F,F2F3F4F
(
2
2)F3F2x1 - [2]F,F3F4F2

3)F3F2x1.

Noting that F,x, = 0 if i ̂  2, the first term can be seen to be zero by applying a
commutation, the second term by using the relation Ff*F2 — F3F2F2 + F2Ff} = 0, and
the last two by using again the relation (3).

So we should just consider vF2F]F2F3F2FAFiF2x]. Let p : U -*• Uopp be the
isomorphism of Q(p)-algebras defined by Lusztig (see [18, 19.1.1]), given by:

& j1 = K,.

We will use (from [18, 19.1.2 and 19.3.5]):

Proposition 5.3. Let k be a dominant weight, and V(k) the corresponding finite
dimensional type 1 highest weight module. There is a unique bilinear form ( , ) on V(k)
such that

(a) (x,, x,) = 1 and

(b) (wx, y) = (x, p(u)y)for all x, y e V{k) and u e U.

Furthermore, if b e V(k) then b e ± B(A) // and only if b e V(k)A, b = b and
(i,())=lmodi)"'Z[p-']. •

We have
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= v(p{F1F1FiF1F4FiF2)E2F2FlF2F3F2FtFiF2x1,xl)

= v{p(FlF2FJF2F,FiF2)F2FlFJF2F,FJF2xux1).

In the last step we use the fact that:

Ei(Fh F,2 • • • F^x,) = ] T [y(iu+,, iu+2 i , ) l F h • • • F~ • • • Fit

where the hat indicates omission, and yQ,, j 2 , . . . ,js) e Z is defined by

The square brackets indicate the quantum integer as usual. This fact follows easily
from the relations of U. In this case all terms in the sum are zero except one.

We continue the calculation in this way, and get:

= ^1[2](p(F2F3F2F4F3F2)F2F3F2F4F3F2x1> x.)

= (1 + I;-
2)(p(F3F2F4F3F2)F3F2F4F3F2x1.x1)

= (1 4- v-2)(p(F,F2FtF3F2)F3F2F4F,F2xu x,)

= (1 + i;-2)(p(F2F4F3F2)F2F4F3F2x1, x.)

= (1 + t;-2)(p(F4F3F2)F4F3F2x,, x,)

= (l+t;-2)(p(F3F2)F3F2x1,x1)

= (l+»-2)(p)(F2)F2xI fx,

= (l + ir2)(x1,x1) = l + t r 2

(in each case, the sum in the previous paragraph contains only one non-zero
summand).

We thus have

(F.F2F3F2F4F3F2xl,F.F2FiF2F4FiF2xl) = v2 + 1,

so FxF2F}F2F4FjF2xl does not lie in the canonical basis for
One may ask if an alternative root vector F, would solve this problem. But consider

also the following:

T = Ho = SlS2SiS2SlS4SiS2 > /i , = SjStS^S^^ > H2 = S&SiS&Si = fi,
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with po = a. and jS, = a3, so m0 = m, = 2. Put n0 = n, = 1, so N = (l/2). Then
Q(x,fi)N = FxFiF]F2

2)FlF/)FiF2xi. In this case F2Fl.FiFiFf)FlF4FiF2xl = 0. To see
this, note that K,(F(

2
2)F1F4F3F2x1) = yC^F.F^FjX,) , so if v is the weight of

FfF^F^F^F2xu then (v, aj) = 1. Note also that v + a, is not a weight of the module.
This is easy to see with bare hands: v — a, = / - 3a2 — a3 — a4, so if «x, were a non-zero
element in such a weight space, with u e IT, then u would be a linear combination
of monomials in the Ft, each containing F2 three times and F3 and F4 once each.
Suppose, for a contradiction, we had such a monomial which did not annihilate x,.
Such a monomial must end in FJF2 as Ffx, = 0 if i / 2 and F2x, — 0. Since F4

commutes with F2, we are reduced to considering F^F2
2)FiF2xi, but this is zero by the

relation (3). Since the weights of V(k) are the same as those in the classical case, we
have, by [4, Theorem 1, p. 112], that v — 2a, is not a weight of K(A), from which it
follows that F?fi2)F,F4FjF2x1 = 0, and so F^^.F^F^fF^F^F^^ = 0.

We therefore consider FiF2.FiF^F2
1)F^F^FJF2xx. We have

~\(FlF2.FiFlF
<

2
2)FlFiFJF2xuFlF2.FiF]F2

2)FlFAFJF2x]) = 1 + v

in a similar way to the previous example. (Again the action of the £, in each case
produces a sum in which only one summand is non-zero.)

Thus, if we define Fa to be ±vaFxF1±vbF2F\ then a necessary condition for the
standard monomial basis and the canonical basis to coincide for this module is that
a — b = 0. For i e I, let Tt be the unique algebra automorphism of U whose action on
the generators is given by:

,(E,) =-F,Klt TtE}=

-KTlE,, T,Fj= ^T {-\)rv~d»??Ffl\ if i^j,
r+s=-Aij

If w — sh s,2 • • • sim is a reduced expression for w e W, then Tw is defined to be
77,772 - - - Tim; this product is independent of the reduced expression chosen (see [17]). In
[19, 1.4], Xi defines a root vector in U of root —a to be an element of the form Tw(Fj)
where w € W satisfies w~'(a) = af.

Using [19, 4.4] and interpreting the result in terms of U~ and negative roots, we
see that all root vectors of root - a are of the form 7f'(F2). Since T^iFJ = T2(Ft) it is
easy to see that these are indeed root vectors of root -a . Thus the root vectors of root
- a are TX(F2) = t>F,F2 - F2Ft and T2(F,) = -F]F2 + vF2Fu and we see that for all root
vectors of root —a in this sense, the standard monomial basis and the canonical basis
for V(u>2) in type F2 do not coincide.
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