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The propagation of light in an inhomogeneous universe is along standing 
problem. Its resolution requires, first, a realistic description of the geometry 
of a clumpy universe and, second, solutions to the null geodesic equations 
given the metric of such a universe. The Friedmann-Robertson-Walker met-
ric has become the standard description of the large scale geometry of the 
universe. However, the observable universe today is manifestly inhomoge-
neous. The weakly perturbed Friedmann-Robertson-Walker metric is often 
used to describe such a universe. But its validity is only guaranteed for 
a weakly inhomogeneous universe, where, for instance, over densities are 
small (δρ/ρ <C 1), which is not true for sufficiently small scales in the uni-
verse today. It is well known, however, that the metric perturbations can 
still be small even if the overdensity is not small, given the right condi-
tions and coordinates. However, spatial gradients of metric perturbations 
are not necessarily small any more. Here we estimate whether the second-
order corrections involving them can affect significantly the expansion of 
the universe or the light propagation in it. 

We concentrate on the energy constraint equation (or the time-time 
part of the Einstein's equations). The zeroth order terms of this equation 
constitute the Friedmann equation. The second order terms that we keep 
are then corrections to it. They can be viewed as the back-reaction of 
inhomogeneities on the expansion rate of the universe (Futamase 1988). 
We write the metric in the following form: 

ds2 = α2(η)[-(1 + 2φ)άη2 + 2ωίάχίάη + ((1 - 2φ)δ^ + 2hij)dxidxj] (1) 

where φ, ω{, φ and hij are functions of time and space. h{j is chosen to be 
traceless i.e. Y^k hkk = 0. We also make the slow motion approximation: 
peculiar velocities are small and so are the time derivatives of metric per-
turbations compared to their gradients. We impose the gauge conditions 
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uj\i = 0 and h{f% = 0. By examining the rest of the Einstein equations, it 
can be shown that U{ and h{j and their gradients are small compared to φ or 
φ. So, second order terms involving them are discarded. All other second or-
der terms involving spatial gradients are kept. The time-time equation can 
be separated into homogeneous and inhomogeneous parts by performing a 

spatial average, (Q) = f Qyjg^cßx/V, where Q is any quantity that is to 

be averaged, is the determinant of the three metric and V is the volume 
of a finite box over which the integration is performed. Periodic boundary 
conditions are imposed on the box and the limit of V approaching infinity 
is taken. Hence, the modified Friedmann equation becomes 

, Α ' 
8TGa2(p> = 3 ( ^ ) 2 + ((V0)2>. (2) 

The inhomogeneous part of the time-time equation is then the cosmo-
logical generalization of Poisson 's equation, where the second order terms 
are obviously small compared to first order ones. Moreover, Poisson equa-
tion guarantees that the metric perturbation is equivalent to the Newto-
nian potential on small scales and remains small everywhere away from 
black holes. This equation is used to estimate the significance of the cor-
rection e = ((V(/))2)/3HQ (HO = a'/a is the Hubble constant today) to the 
Friedmann equation, given a realistic model of density fluctuations. The 
averaging can be rewritten in terms of the power spectrum as 

€=YJ & 3 P 0 ( fc)( fc /#o) 2 dlnfc = 3tt y k3Ps(k)(Ho/k)2dlnk. (3) 

4%k3Ps(k) « 1 today is at k ' 1 « lOMpc from which follows e « 10~ 5 , 
provided that there is no divergence on very small scales. To investigate this 
possibility we use nonlinear evolution of realistic power spectra, using N-
body simulations. The conclusion from these studies is that the logarithmic 
contribution to e peaks at the transition from linear to nonlinear scale and 
is in all models of the order of 10~ 5 . 

To conclude, we argue that linear metric perturbation theory in the 
gauge above provides an excellent description of clumpy universe today and 
the corrections to the Friedmann equation are found to be negligible. For 
light propagation, second order corrections to the geodesic equation (terms 
proportional to φφ^) are necessarily small compared to the first order terms 
(those proportional to φ^). The deflection of light ray is dominated by the 
linear terms and higher order terms are unimportant even in a clumpy 
universe, provided that the metric perturbations remain small. 
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