GRAPHS AND k-SOCIETIES(1)

BY

PAVOL HELL AND JAROSLAV NEŠETŘIL(2)

A graph G is a couple (X, R) where X is a set, $R \subset X \times X$. If G is an undirected graph without loops (R a symmetric irreflexive relation), we can interpret G as a couple (X, R), where R is a set of two-element subsets of X, i.e. $R \subset \mathscr{P}(X)$. This interpretation is generalized in the notion of society.

A society \mathscr{G} is a couple (X, R), where $R \subset \mathscr{P}(X)$; a k-society is a society (X, R) with |A| = k for each $A \in R$.

Let \mathscr{R} be the category of all graphs and all compatible mappings. Compatible mappings between two societies are defined similarly to those between two graphs (mapping $f: X \to Y$ is a *compatible mapping* of the society $\mathscr{G} = (X, R)$ into the society $\mathscr{H} = (Y, S)$ if $A \in R \Rightarrow f(A) \in S$). Let the category of all k-societies and all their compatible mappings be \mathscr{G}_k . Obviously \mathscr{G}_2 is the category of all undirected graphs without loops, hence $\mathscr{G}_2 \neq \mathscr{R}$. Let \mathscr{G} be the category of all societies and all compatible mappings.

In [2] a full embedding of \mathscr{R} into \mathscr{S}_2 is given, which is of course also a full embedding of \mathscr{R} into \mathscr{S} . In this paper we give a full embedding $\mathscr{R} \to \mathscr{S}_k$ for every $k \ge 2$, thus we prove that each category \mathscr{S}_k $(k \ge 2)$ is binding (cf. [3]). The problem was suggested by Z. Hedrlín.

For the notions and definitions concerning graphs, see [1].

Our method is based on the idea that, relative to compatible mappings, certain graphs behave like k-societies.

Let $k \ge 2$ be fixed from now on.

Let $\mathscr{G} = (X, R)$ be a k-society. A graph $\mathscr{G}^* = (X, R^*)$ is naturally associated with \mathscr{G} , where

 $R^* = \{(a, b) \mid a \neq b \text{ and there exists an } A \in R \text{ such that } a \in A, b \in A\}.$

Obviously the graph \mathscr{G}^* satisfies the following conditions:

(i) \mathscr{G}^* is undirected and has no loops,

(ii) each edge of *G** belongs to some complete k-subgraph of *G** (complete k-subgraph is a complete subgraph of cardinality k).

Let $C(\mathscr{G}, \mathscr{H})$ be the set of all compatible mappings $\mathscr{G} \to \mathscr{H}$; let us write $C(\mathscr{G})$ instead of $C(\mathscr{G}, \mathscr{G})$.

(2) Part of this paper was written while the authors were supported by the National Research Council of Canada.

Received by the editors May 8, 1969.

⁽¹⁾ Sometimes, instead of society (k-society), the words set-system (uniform set-system) or hypergraph are used.

LEMMA 1. Let $\mathscr{G} = (X, R), \mathscr{H} = (Y, S)$ be k-societies. Then $C(\mathscr{G}, \mathscr{H}) \subset C(\mathscr{G}^*, \mathscr{H}^*)$.

Proof. Take $f \in C(\mathcal{G}, \mathcal{H})$. If $(a, b) \in R^*$ then there exists an $A \in R$ such that $a, b \in A$. We have $f(A) = B \in S$, hence $f(a) \neq f(b), (f(a), f(b)) \in S^*$.

In general, having a graph G with the property (*) we can find several societies \mathscr{G} such that $\mathscr{G}^* = G$. Among those there is always a society \mathscr{G} with $C(\mathscr{G}) = C(G)$.

A set $A \subseteq X$ in a graph G = (X, R) is called a carrier of a complete subgraph of G if $(A, R \cap A \times A)$ is a complete graph.

Let G = (X, R) be a graph with (*). We define the society $G^{\circ} = (X, R^{\circ})$ as follows: $A \in R^{\circ}$ if and only if A is the carrier of a complete k-subgraph of G. Indeed we have $(G^{\circ})^{*} = G$, but not necessarily $(\mathscr{G}^{*})^{\circ} = \mathscr{G}$.

LEMMA 2. Let G = (X, R), H = (Y, S) be graphs satisfying (*). Then $C(G, H) = C(G^{\circ}, H^{\circ})$.

Proof. $C(G, H) \supset C(G^{\circ}, H^{\circ})$ by Lemma 1. Let $f \in C(G, H)$, $A \in R^{\circ}$. Since A is the carrier of a complete k-subgraph of G and f is compatible, f(A) is the carrier of a complete k-subgraph of $H, f(A) \in S^{\circ}$.

In other words: if we denote the category of all graphs satisfying (*) and all their compatible mappings by \mathscr{S}_2^k , then we can define a functor $\Phi_1: \mathscr{S}_2^k \to \mathscr{S}_k$ by $\Phi_1(G) = G^\circ$, $\Phi_1(f) = f$ and by Lemma 2, Φ_1 is a full embedding of \mathscr{S}_2^k into \mathscr{S}_k . Thus for the construction of a full embedding of \mathscr{R} into \mathscr{S}_k , it suffices to find a full embedding Φ_2 of \mathscr{R} into \mathscr{S}_2^k . Then $\Phi_1 \circ \Phi_2$ will be the desired embedding.

E. Mendelsohn in [3] gives a general construction, which in slight modification will provide us with the full embedding Φ_2 . He defines the *šip-součin* (*šip-product*) (X, R, A, B) * (Y, S) of a '*šip*' (X, R, A, B) (i.e. graph (X, R) with distinguished two isolated subsets A, B and an isomorphism i of $(A, R \cap A \times A)$ onto $(B, R \cap B \times B)$) and an arbitrary graph (Y, S). Intuitively the *šip-product* is obtained by replacing every arrow of the graph (Y, S) with the starting point a and endpoint bby a copy of the graph (X, R), where the set A 'replaces' the point a and B 'replaces' b. Isolated points of (Y, S) are replaced by copies of $(A, R \cap A \times A)$ by this definition, and loops by graphs (X, R, A, A), where (X, R, A, A) is the quotient graph of (X, R, A, B) under the equivalence generated by $x \sim y \Leftrightarrow x \in A$, $y \in B$ and i(x) = y. Let η denote the natural compatible mapping (X, R, A, B) onto (X, R, A, A).

If $f \in C((Y, S), (Y', S'))$ then one can define a mapping $f^*: (X, R, A, B) * (Y, S) \rightarrow (X, R, A, B) * (Y', S')$ by

$$f^*([(a, y)]) = [(a, f(y))] \quad \text{for } a \in A, \ y \in Y$$
$$f^*([(x, s)]) = [(x, {}^2f(s))] \quad \text{for } x \in X, \ s \in S,$$

where ${}^{2}f((c, d)) = (f(c), f(d))$ Obviously

$$f^* \in C((X, R, A, B) * (Y, S), (X, R, A, B) * (Y', S')),$$

furthermore $1^*_{(Y,S)} = 1_{(X,R,A,B)*(Y,S)}$ and $(f \circ g)^* = f^* \circ g^*$.

A šip (X, R, A, B) is strongly rigid (cf. [3]) if and only if for every graph (Y, S)(1) $f \in C((A, R \cap A \times A), (X, R, A, B) * (Y, S)) \Rightarrow f(a) = [(a, y)]$ for some fixed $y \in Y$;

(2) f∈ C((X, R), (X, R, A, B) * (Y, S))⇒either f(x)=[(x, s)] for a fixed s∈ S₁ or f(x)=[η(x), s] for a fixed s∈ S₂ (here S₁ is the irreflexive part of S, S₂=S-S₁);
(3) f∈ C((X, R, A, A), (X, R, A, B) * (Y, S))⇒f([x]_n)=[(x, s)] for a fixed s∈ S₂. E. Mendelsohn shows that if (X, R, A, B) is strongly rigid, then the correspondence Φ(f)=f* is an isomorphism between C((Y, S)) and C((X, R, A, B) * (Y, S)) (Theorem 1 in [3]). By the same argument one can prove the following lemma.

LEMMA 3. If (X, R, A, B) is strongly rigid, then for any $g \in C((X, R, A, B) * (Y, S), (X, R, A, B) * (Y', S'))$ there exists an $f \in C((Y, S), (Y', S'))$ such that $f^* = g$.

If we define the functor Φ_2 by $\Phi_2(G) = (X, R, A, B) * G$ and $\Phi_2(f) = f^*$ then we clearly have a full embedding $\mathscr{R} \to \mathscr{S}_2^k$, provided the *šip* (X, R, A, B) is strongly rigid and satisfies property (*) (if the *šip* satisfies (*), then so do all its *šip*-products).

Let us first introduce some remarks about undirected graphs without loops.

If G is such a graph we denote its chromatic number by $\chi(G)$. For every compatible mapping $f, \chi(f(G)) \ge \chi(G)$. Thus every compatible mapping maps a complete *n*-graph onto a complete *n*-graph.

We define |G| to be |X| for G = (X, R), and write 1_G for 1_X . $W = \{K_1, K_2, \ldots, K_r\}$ is an *n*-complete path of length r if $n \ge 3$ and K_1, \ldots, K_r are complete n-graphs such that $|K_i \cap K_{i+1}| \ge n-1$ for $i=1, 2, \ldots, r-1$.

Two points x, y are joined by an n-complete path in the graph G if there exists an n-complete path $W = \{K_1, \ldots, K_r\}$ such that each K_i is a subgraph of G and $x \in K_1, y \in K_r$.

Let $x, y \in G$, $x \neq y$. Let $d_n(x, y)$ denote the length of a shortest *n*-complete path in G joining x and y if such a path exists, $d_n(x, y) = 0$ otherwise.

Remember that now we are considering undirected graphs without loops.

LEMMA 4. Let $f \in C(G, H)$. If $d_n(x, y) > 0$ and $f(x) \neq f(y)$, then $d_n(f(x), f(y)) > 0$ and $d_n(f(x), f(y)) \le d_n(x, y)$.

The proof can be done by induction.

In particular: if $d_n(x, y) > 0$ for any two points in G, then there is no compatible mapping of G onto a graph with cut point.

A graph G is called rigid if $C(G) = \{1_G\}$.

Now we start to construct a strongly rigid šíp satisfying (*). Let m, n, l be natural numbers. Denote by $I_{n,l}^m$ the following graph (X, R): $X = \{1, 2, ..., m+1\}$, $(i, j) \in R \Leftrightarrow$ either $0 < |i-j| \le n-1$ or $i=1, j \ge m+1-l$ or $j=1, i \ge m+1-l$. Call the triple m, n, l admissible if n > l+2 and m is a nontrivial multiple of n.

LEMMA 5. If m, n, l is admissible then $I_{n,l}^m$ is rigid.

Proof. Note that every edge of $I_{n,l}^m$ belongs to a complete (l+2)-graph, furthermore $d_n(x, y) > 0$ for any $x, y \in I_{n,l}^m$ and even each edge except $\{(1, m+1), (1, m), \ldots, 6-C.M.B.\}$

[September

(1, m+1-l) belongs to a complete *n*-graph. It is easy to check that $\chi(I_{n,l}^m) = n+1$, while chromatic number of each proper subgraph of $I_{n,l}^m$ is < n+1. Thus every compatible mapping $I_{n,l}^m \to I_{n,l}^m$ is an automorphism (since it is onto $I_{n,l}^m$). Let *h* be an automorphism of $I_{n,l}^m$. The set of mentioned exceptional edges is mapped onto itself, thus h(1)=1, and an easy argument concerning degrees (deg h(x) = deg xfor any automorphism *h*) yields h(m+1)=m+1, $h(m)=m,\ldots,h(m+1-l)$ =m+1-l. Each point *i*, n < i < m+2-n is then fixed (i.e. h(i)=i) by Lemma 4 since $f(i) < i \Rightarrow d_n(m+1, f(i)) > d_n(m+1, i)$ and $f(i) > i \Rightarrow d_n(1, f(i)) > d_n(1, i)$. The remaining points are fixed again—it suffices to consider their degrees. Thus *h* is the identity.

Define the šíp S(m, m', l, l', n) = (X, R, A, B) as follows:

$$\overline{X} = \{a_1, a_2, \dots, a_{m+1}\} \stackrel{\circ}{\cup} \{b_1, b_2, \dots, b_{m+1}\} \stackrel{\circ}{\cup} \{h_1, h_2, \dots, h_{m'+1}\}$$

$$\overline{R} = \{(a_i, a_j) \mid (i, j) \text{ is an edge in } I_{n,l}^m\} \stackrel{\circ}{\cup}$$

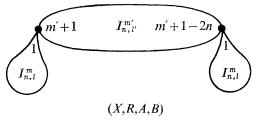
$$\{(b_i, b_j) \mid (i, j) \text{ is an edge in } I_{n,l}^m\} \stackrel{\circ}{\cup}$$

$$\{(h_i, h_j) \mid (i, j) \text{ is an edge in } I_{n,l'}^m\}$$

and $(X, R) = (\overline{X}, \overline{R})/\sim$

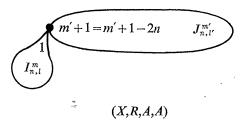
where the equivalence ~ is defined by $a_1 \sim h_{m'+1}$, $h_{m'+1-2n} \sim b_1$.

We put $A = \{[a_1], \ldots, [a_{m+1}]\}, B = \{[b_1], \ldots, [b_{m+1}]\}$ and the isomorphism $i: a_j \mapsto b_j$. Thus our šíp is formed from two copies of $I_{n,l}^m$ and one copy of $I_{n,l'}^{m'}$ so that the point m'+1 from the copy of $I_{n,l'}^{m'}$ is identified with the point 1 from the first copy of $I_{n,l}^m$ and the point m'+1-2n from $I_{n,l'}^{m'}$ is identified with the point 1 from the second copy of $I_{n,l'}^m$.



Note that $(A, R \cap A \times A) \cong I_{n,l}^m \cong (B, R \cap B \times B)$.

Obviously (X, R, A, A) has only one copy of $I_{n,l}^m$ and in the copy of $I_{n,l'}^{m'}$ the points m'+1 and m'+1-2n are identified. Let us denote by $J_{n,l'}^{m'}=I_{n,l'}^{m'}/\sim$ where $m'+1 \sim m'+1-2n$.



378

LEMMA 6. Let m', n, l' be admissible, let $m'/n \ge 4$. Then

(1) $J_{n,l'}^{m'}$ is rigid

(2) The natural mapping $\xi: I_{n,l'}^{m'} \to I_{n,l'}^{m'} / \sim$ is the only $f \in C(I_{n,l'}^{m'}, J_{n,l'}^{m'})$ with f(m'+1) = f(m'+1-2n)

(3) $C(J_{n,l'}^{m'}, I_{n,l'}^{m'}) = \phi$

(4) If m < m' - 2n and m, n, l is admissible, then $C(I_{n,l}^m, J_{n,l'}^m) = \phi$.

Proof. (1) The graph $J_{n,l'}^{m'}$ has vertices [1], [2],..., [m'+1-2n] = [m'+1], $[m'+2-2n], \ldots, [m'-1], [m']$. Let J be the full subgraph of $J_{n,l'}^{m'}$ on the vertices [1], ..., [m'+1-2n].

One can easily note that J is n+1 chromatic, that all its subgraphs have chromatic numbers < n+1, and moreover that each n+1 chromatic subgraph of $J_{n,l'}^{m'}$ contains J.

This allows us to see that every $f \in C(J_{n,i'}^{m'})$ maps J onto J and (considering degrees in J) that f/J is either the identity, or the mapping which interchanges the vertices [i] and [m'+2-2n-i]. In both cases the set $\{[m'+1-l'], [m'+2-l'], \ldots, [m']\}$ is mapped into itself (as the set of common neighbours of [1] and [m'+1-2n]) and thus the complete *n*-graph K on the vertices $[m'+2-n], [m'+3-n], \ldots, [m'+1]$ is mapped onto a complete *n*-graph containing the vertices $[m'+1-l'], [m'+2-l'], \dots, [m']$ and [m'+1]=[m'+1-2n] or [1] (remember n > l'+2). Since there is no complete *n*-graph containing both [m'] and [1] in $J_{n,l'}^{m'}$ the interchanging $[i] \leftrightarrow [m'$ +2-i] is impossible (thus $f/J=1_J$) and f(K)=K. The vertex [m'+2-n]=f([m'+2-n]) because it is the vertex with d_n -distance from [1] smaller than any other point of K. The rest of the argument is similar to Lemma 5.

(2) Obviously $\xi = \eta/I_{n,i'}^{m'}$ for η from the definition of the šip. Let $f \in C(I_{n,i'}^{m'}, J_{n,i'}^{m'})$ such that f(m'+1) = f(m'+1-2n). Then we can define a mapping $j: J_{n,i'}^{m'} \to J_{n,i'}^{m'}$ by i([x]) = f(x); j is compatible and $f = \xi \circ j$. Thus by (1) $f = \xi$.

(3) Since $\chi(J_{n,l'}^{m'}) = n+1$ and chromatic numbers of all proper subgraphs of $I_{n,l'}^{m'}$ are < n+1, any compatible f maps $J_{n,l'}^{m'}$ onto $I_{n,l'}^{m'}$, which contradicts the fact that $|J_{n,l'}^{m'}| < |I_{n,l'}^{m'}|$.

(4) If m < m' - 2n then $|I_{n,l}^m| = m + 1 < m' + 1 - 2n$, while all the subgraphs of $J_{n,l'}^{m'}$ with the cardinality less than m' + 1 - 2n have their chromatic numbers < n+1.

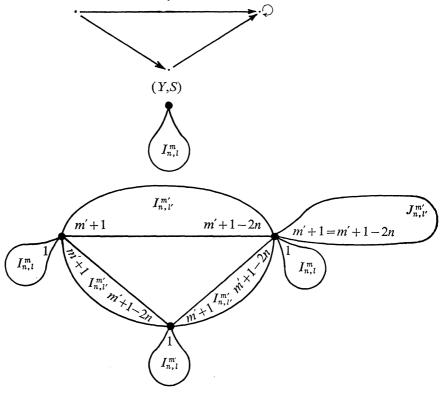
LEMMA 7. If m, n, l and m', n, l' are admissible and l < l' then $C(I_{n,l'}^{m'}, I_{n,l}^{m}) = \phi$.

Proof. Again the chromatic numbers reasoning implies that each $f \in C(I_{n,l'}^{m'}, I_{n,l}^{m})$ is a mapping onto; on the other hand the edge (1, m+1) does not belong to any complete l'+2 graph, while all edges of $I_{n,l'}^{m'}$ do so.

LEMMA 8. Let the triples m, n, l and m', n, l' be admissible. If $m'/n \ge 4, m < m' - 2n$, and l < l', then the sip S(m, m', l, l', n) is strongly rigid.

Instead of a very formal proof we rather give one somewhat more intuitive. The

sip-product S(m, m', l, l', n) * (Y, S) consists of copies of $I_{n,l}^m$, $I_{n,l'}^m$, and $J_{n,l'}^m$ connected only by 'cut points' as in the following example:



S(m,m',l,l',n)*(Y,S)

Let us verify the conditions in definition of the strongly rigid šíp.

(1) Any compatible mapping of $(A, R \cap A \times A) = I_{n,l}^m$ into S(m, m', l, l', n) * (Y, S) maps $I_{n,l}^m$ into a graph without cutpoints, thus a subgraph of $I_{n,l'}^{m'}$, or $J_{n,l'}^{m'}$, or $I_{n,l}^m$. The second case is impossible [by Lemma 6 (4)], and therefore, also the first case is impossible (if $f: I_{n,l}^m \to I_{n,l'}^{m'}$ is compatible, then $\xi \circ f$ is compatible [by Lemma 6 (2)]) and by Lemma 5 we are done.

(2) The two copies of $I_{n,l}^m$ in (X, R, A, B) can either be mapped onto two different copies of $I_{n,l}^m$ in the šip-product and then $I_{n,l'}^{m'}$ is mapped onto the copy of $I_{n,l'}^m$ spanning them and we are again done by Lemma 5, or they can be mapped onto one copy of $I_{n,l}^m$ and, by Lemma 5, the points m'+1 and m'+1-2n from $I_{n,l'}^{m'}$ are mapped onto one point, thus $I_{n,l'}^{m'}$ cannot be mapped into $I_{n,l}^m$ by Lemma 7 and by Lemma 6 (2), we are finished.

(3) Is again obvious from Lemmas 6 (1) and (3), and 7 with 6 (2).

THEOREM. Let $k \ge 2$. There exists a full embedding of the category of all graphs into the category of all k-societies (i.e. $\mathscr{R} \to \mathscr{S}_k$).

Proof. The sip S(2(k+2), 5(k+2), k-1, k, k+2) is strongly rigid by Lemma 8, and obviously satisfies (*).

REMARKS and COROLLARIES. (1) For every graph G we have constructed a k-society \mathscr{G} with $C(\mathscr{G}) \cong C(G)$ (and $|\mathscr{G}| \ge |G|$).

Using results from references [2] and [5]:

(2) Each \mathscr{S}_k is binding, in particular for every monoid S^1 there is a k-society \mathscr{G} such that $C(\mathscr{G})$ is isomorphic to S^1 .

(3) For every cardinal α there is a rigid k-society \mathscr{G} such that $|\mathscr{G}| \ge \alpha$. Rigid k-society is defined similarly as rigid graph, i.e. $C(\mathscr{G}) = \{1_{\mathscr{G}}\}$.

Finally let us note that

(4) The full embedding Φ_1 is a realization (for definition see [4]) of \mathscr{S}_2^k in \mathscr{S}_2 .

REFERENCES

1. C. Berge, Theory of graphs and their applications, J. Wiley, New York, 1962.

2. Z. Hedrlin, A. Pultr: Symetric relations (undirected graphs) with given semigroup, Mhf. für Math. 68 (1965), 318-322.

3. E. Mendelsohn, Šips, products, and graphs with given semigroup, (to appear).

4. A. Pultr, On selecting of morphisms, CMUC (1), 8 (1967), 53-83.

5. P. Vopěnka, A. Pultr, Z. Hedrlín, A rigid relation exists on any set CMUC (2), 6 (1965), 149-155.

MCMASTER UNIVERSITY, HAMILTON, ONTARIO

1970]