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Abstract. Present and future large scale surveys offer promising probes of cosmology. For
example the Dark Energy Survey (DES) is forecast to detect ∼300 millions galaxies and thou-
sands clusters up to redshift ∼1.3. I here show ongoing work to combine two probes of large
scale structure : cluster number counts and galaxy 2-point function (in real or harmonic space).
The halo model (coupled to a Halo Occupation Distribution) can be used to model the cross-
covariance between these probes, and I introduce a diagrammatic method to compute easily the
different terms involved. Furthermore, I compute the joint non-Gaussian likelihood, using the
Gram-Charlier series. Then I show how to extend the methods of Bayesian hyperparameters to
Poissonian distributions, in a first step to include them in this joint likelihood.
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1. Cross-covariance between cluster counts and galaxy clustering
1.1. Cluster counts and galaxy angular 2-point function

The number counts in a bin of mass iM and redshift iz , can be considered as a monopole
of the halo density field :

N̂cl(iM , iz ) = N cl(iM , iz ) +
1

ΩS

∫
d2 n̂ dM dz r2 dr

dz

d2nh

dMdV
δcl(x = rn̂|M, z) (1.1)

Cluster counts have been shown as a powerful probe of cosmology, e.g. Planck Collabo-
ration XX (2014) has produced constraint on σ8 and Ωm with SZ detected clusters.

The study of the clustering of galaxies may be done with the angular correlation
function w(θ) or its harmonic transform C� , in tomographic redshift bins :

Cgal
� (iz , jz ) =

2
π

∫
k2dk

ngal(z1)ngal(z2) dV1 dV2

ΔNgal(iz )ΔNgal(jz )
j�(kr1) j�(kr2) Pgal(k|z1 , z2) (1.2)

In the following I use C� instead of w(θ) for simpler equations, although they can be
related by a simple linear transformation.

1.2. Cross-covariance derivation with the halo model
The cross covariance between these two probes involves the halo-galaxy-galaxy angular
bispectrum in the squeezed limit (Lacasa & Rosenfeld, in prep.) :

Cov
(
N̂cl(iM , iz ), C

gal
� (jz , kz )

)
=

∫
dM1 dz123

4π

dV

dz1

d2nh

dM dV

∣∣∣∣
M 1 ,z1

bhgg
0�� (M1 , z123) (1.3)

b0�� is a projection of the 3D bispectrum, for which we need a non-linear model. In
the framework of the halo model + HOD, I have shown that the bispectrum (or higher
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orders) can be computed with a diagrammatic formalism (Lacasa et al., 2014). See the
diagrams for this hgg bispectrum in the left panel of Fig. 1.

1.3. Current results
I have shown that the equations for the covariance can be rewritten in terms of effective
quantities, e.g. (Lacasa & Rosenfeld, in prep.) :

Cov2PT

(
N̂cl(iM , iz ), C

gal
� (jz , kz )

)
=

δjz ,kz

4π

∫
ngal(z2)2 dV1 dV2

ΔNgal(jz )2 4Fsqz bgal,eff
1 (k�, z2)2

ρbhalo,eff
1 (iM , z1)PDM(k�, z2)Δ0,P (z1 , z2) (1.4)

These intermediate quantities are integrated over the halo mass and contain the HOD
and mass function dependency. They can be compared to measurement on data or to
other modeling, providing the possibility for some model independence.

I have built a fast and efficient code to compute the different terms of the covariance ;
the plots in Fig. 2 illustrate the numerical results. We see that different terms can become
important depending on mass and redshift. The code runs in ∼ 1 CPU-second, and is
thus adequate to be integrated into an MCMC pipeline.

2. Likelihood
2.1. Joint non-Gaussian likelihood

Cluster counts follow a Poissonian distribution (up to sample variance), thus one cannot
assume that the joint likelihood of X = (counts, wgal(θ)) is Gaussian.
To tackle this, I expanded the joint likelihood with the Gram-Charlier series, around
a fiducial independent case. I am then able to resum the expansion into (Lacasa &
Rosenfeld, in prep.) :

L(X) = exp
[
−

∑
i,j

〈ci wj 〉c (log λi − Ψ(ci + 1)) (T wC−1ej )
]
L(counts) L(w) (2.1)

This analytic form is well-behaved (positive), can be extended straightforwardly to in-
clude sample variance, and has correct asymptotic behaviour at large Ncl (Gaussian with
the correct covariance matrix).

2.2. Bayesian hyperparameters
Hyperparameters (HPs) allow to detect over/underestimation of error bars, or inconsis-
tencies between data sets (see e.g. Hobson et al. 2002). The method is at the moment only
adapted to Gaussian distributions, thus not for Poissonian cluster counts. It is however
mathematically impossible to keep the Gaussian properties of HPs in the Poissonian case
(that is, rescaling the variance while keeping the mean). However I found a prescription
which approximately respect them. On the right panel of Fig. 1 are shown three pdfs,
corresponding to three different values of the Bayesian HP α.
This will allow the use of HPs for the cluster counts - galaxy 2-pt combination, after
further extension (sample variance, correlation with wgal as treated in Sect. 2.1).

3. Conclusion and perspectives
I sketched how to combine cluster counts and galaxy 2-pt measurements for increased

cosmological constraints, from the physical modeling to the likelihood. In the context of
the halo model, I introduced a diagrammatic method allowing elegant computation of
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Figure 1. Left : Diagrams for the hgg bispectrum : 3h, 2h 2h, 2h 1h2g, 2h 1h1g, 1h2g and
1h1g. The 3h diagram has two contributions : non-linear evolution of dark matter (2PT), and
second-order halo bias (b2 ). Right : pdfs for a Poisson law and a Bayesian hyperparameter.
α = 1 corresponds to the original Poisson law (with parameter λ = 10). Note how the mean is
approximately independent of α while the variance scales as 1/α, as intended.

Figure 2. Terms of the covariance for some bins of mass and redshift. From left to right :
log M=13-14 & z=0.2-0.3 ; log M=15-16 & z=0.2-0.3 ; log M=13-14 & z=0.9-1. The b2 term
can be either positive (high z, galaxies are biased) or negative (low z, galaxies are antibiased).
Colored figures are available online as supplementary material.

the equations involved. I derived a non-Gaussian joint likelihood using Gram-Charlier
series, and showed how to introduce Bayesian HPs to a Poissonian distribution.

Further work will be necessary to include experimental effects in the covariance and
the likelihood : photo-z errors, purity... Next order derivation of the joint likelihood may
also be necessary to solve a small bias issue at low Ncl , and the bayesian hyperparameters
method need to be extended to cluster sample variance and correlation with galaxies. In
the medium term, I aim to build a full MCMC pipeline of cluster-galaxy combination,
for realistic forecasts and application to DES data.

Further details on the model, method, and forecasts will be available in Lacasa &
Rosenfeld (in prep.)

4. Figures
Due to the size constraint of this proceeding, I had to cram together the figures below.
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