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Abstract. It is well-known that quasi-homogeneity is characterized by equalityof theMilnor and
Tjurina numbers for isolated complex analytic hypersurface singularities and for certain
low-dimensional singularities. In this paper weprove that this characterization extends to isolated
purely elliptic complete intersection singularities, with bounds on neither the embedding
codimension nor the dimension of the singularity.
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Introduction

The famous theorem of K. Saito [Sa] from 1971 states that an isolated hypersurface
singularity is quasi-homogeneous (i.e. has a goodC�-action) if and only if theMilnor
number equals the Tjurina number. The question of characterizing quasi-
homogeneity for other types of singularities has subsequently occupied many
authors (see, e.g., [Wal], [G2], [Wahl2], [HM], [XY], [V], to mention but a few),
and Saito's result has been extended to isolated complete intersection singularities
of dimension 1 by G.-M. Greud, B. Martin and G. P¢ster [GMP] (see also [G2,
2.6(3)]) and dimension 2 by J. Wahl [Wahl2] using rather different techniques.

In this paper we shall focus on higher-dimensional isolated complete intersection
singularities. The Milnor number and Tjurina number are de¢ned for such
singularities, and it is natural to ask if Saito's result generalizes? The main theorem
below gives an af¢rmative answer for purely elliptic singularities (1.4) which form
the border line between rational and `general' singularities (they are Du Bois
but non-rational or, in different terms, log-canonical but non-canonical). In contrast
with earlier results it is interesting to note that within the class of purely elliptic
singularities there are no bounds on dimension and embedding codimension.

Throughout the paper a singularity will mean a germ �X ; x� of aC-analytic space.
For an isolated complete intersection singularity (ICIS for short) one de¢nes the
Milnor number m � m�X ; x� as the number of spheres appearing in the vanishing

Compositio Mathematica 124: 111^121, 2000. 111
# 2000 Kluwer Academic Publishers. Printed in the Netherlands.

https://doi.org/10.1023/A:1002458318707 Published online by Cambridge University Press

https://doi.org/10.1023/A:1002458318707


cohomology, and the Tjurina number t � t�X ; x� is the C-dimension of the space
T 1
X ;x of ¢rst-order deformations of �X ; x�.See [L] for details.
MAIN THEOREM. Let �X ; x� be a purely elliptic ICIS of dimension nX 2. Then
�X ; x� is quasi-homogeneous if and only if m � t.

The `only if'-part is due to Greuel [G1, Satz 0.3] and holds for any ICIS of positive
dimension.

To ¢nd suf¢cient conditions for a purely elliptic ICIS �X ; x� to be
quasi-homogeneous we start in Section 1 with a discussion on the Hodge type
�0; s� of �X ; x�, 0W sW nÿ 1, as de¢ned by S. Ishii [I]. This invariant may be de¢ned
from the mixed Hodge theory on the �nÿ 1�-cohomology of the link of �X ; x� and
measures the `purity' of a certain component of the Hodge-graduation. It will
be clear (1.9) that Hodge type �0; nÿ 1� is a necessary condition for quasi-
homogeneity, but it is not quite suf¢cient when nX 3 (1.11).

E. Looijenga and J. Steenbrink gave in [LS] a formula expressing for any ICIS
�X ; x� with nX 2 the difference mÿ t as a sum of non-negative terms computed from
the Hodge theory of the link and cohomological data of a choice of resolution. We
extract from these data a non-negative analytic invariant w � w�X ; x� satisfying
mÿ tX w. When �X ; x� is purely elliptic the only possible values of w are 0 and
1, and we prove that w � 0 precisely when �X ; x� is quasi-homogeneous (Thm 2.6).
This result is sharper than (and clearly implies) the `if'-part of Main Theorem since
the difference mÿ t generally is much greater than w.

The proof that w � 0 implies quasi-homogeneity owes much to the ideas and tech-
niques in the papers [I] and [Wahl2] by S. Ishii and J. Wahl. For any good resolution
�Y ;D� ! �X ; x� of a purely elliptic ICIS �X ; x� satisfying w � 0 there is a dis-
tinguished `essential' exceptional irreducible component DJ WD. We produce a
vector ¢eld (i.e. a derivation) ~x on �X ; x� that lifts to a meromorphic vector ¢eld
on Y with a well-described logarithmic vanishing along DJ , whose action on the
Zariski tangent space is non-nilpotent. By a theorem of Scheia and Wiebe [SW] this
ensures quasi-homogeneity except in a more delicate special case which is treated
separately.

1. Purely Elliptic Singularities

1.1. Let �X ; x� be a normal isolated singularity of dimension nX 2, and let
�Y ;D� !p �X ; x� be a good resolution, i.e. Y is a non-singular space,
D � pÿ1�x�red is a divisor with normal crossings, and p induces an isomorphism
of Y nD and X n fxg. We will assume that each irreducible component of D is
non-singular.

Choose representatives X ;Y such that X is a good contractible Stein represen-
tative of the singularity �X ; x� and Y � pÿ1�X �. Put U � X n fxg (which we identify
via p with Y nD). Then U is homotopy equivalent to the link of �X ; x�. Let Op

Y
(resp. Op

U ) denote the sheaf of holomorphic p-forms on Y (resp. U).
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Recall that the singularity �X ; x� is rational ifHi�OY � � 0 for i > 0, while �X ; x� is
Du Bois [St1, 3.6] if the natural mapHi�OY � !

qi
Hi�OD� is an isomorphism for i > 0.

By [St1, Lemma 2.14] qi is surjective for all i, hence rational singularities are also Du
Bois. Moreover, �X ; x� is Du Bois if and only if Hi�OY �ÿD�� � 0 for i > 0.

1.2. Now assume that �X ; x� is Gorenstein. By Serre duality and the theorem of
Grauert and Riemenschneider Hi

D�OY � � 0 for i 6� n, so Hi�OY � � Hi�OU � � 0
for i 6� 0; nÿ 1. Therefore, �X ; x� is rational (resp. Du Bois) if and only if
Hnÿ1�OY � � 0 (resp. Hnÿ1�OY �ÿD�� � 0). The composite

Hnÿ1
D �OY �ÿD��,!Hnÿ1�OY �ÿD��,!Hnÿ1�OY �

factors through Hnÿ1
D �OY � � 0, hence Hnÿ1

D �OY �ÿD�� � 0, and dually,
H1�On

Y �D�� � 0. It is now immediate that �X ; x� is Du Bois if and only if
H0�On

Y �D�� ! H0�On
U � is surjective. Similarly, �X ; x� is rational if and only if

H0�On
Y � ! H0�On

U � is surjective.

1.3. Du Bois and rational singularities are also characterized in terms of their
discrepancies. Write KY � p�KX �DI ÿDJ , where DI and DJ are effective excep-
tional divisors having no irreducible components in common. (The notation is
due to Ishii [I, Def. 3.3] who calls DJ the essential divisor of p.) A choice
o 2 H0�On

U � of generator (as a cyclic H0�OX �-module) gives rise to an isomorphism

o : OY �DI ÿDJ� !� On
Y : �1:3:1�

Using Serre-duality and the theorem of Grauert and Riemenschneider it is not hard
to show that the natural map Hnÿ1�OY � ! Hnÿ1�ODJ � is an isomorphism.

By the above, �X ; x� is rational (resp. Du Bois) if and only if DJ � 0 (resp.
DJ WD). Note that the condition DJ � 0 also de¢nes canonical singularities, while
DJ WD de¢nes log-canonical singularities.

DEFINITION 1.4 [Wat, 3.16]. A normal Gorenstein singularity �X ; x� is called
purely elliptic if it is Du Bois but not rational (equivalently, the essential divisor
DJ is reduced and non-trivial).

From the discussions in 1.1 and 1.3 we see that for a Du Bois singularity there are
natural isomorphisms

Hnÿ1�OY � !� Hnÿ1�OD� !� Hnÿ1�ODJ � �1:4:1�:
These spaces are trivial in the rational case and one-dimensional as vector spaces in
the purely elliptic case.

1.5. Now recall that the cohomology groups of U (for any normal singularity �X ; x�)
carry canonical mixed Hodge structures [St1, Sect. 1]. We let hi;j denote the �i; j�'th
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mixed Hodge number of Hnÿ1�U;C�, i.e.

hi;j � dim GriFGrWi�jH
nÿ1�U;C�: �1:5:1�

By the semipurity theorem [St1, Cor. 1.12], hi;j � 0 unless i; jX 0 and i � jW nÿ 1.
From [LS] we obtain isomorphisms

Gr
p
FH

p�q�U;C� !� Hq�Op
Y �logD� 
 OD�; �1:5:2�

where Op
Y �logD� is the sheaf of holomorphic p-forms on Y with logarithmic poles

along D. In particular,

Gr0FH
nÿ1�U;C� !� Hnÿ1�OD�:

When �X ; x� is purely elliptic, it follows from the remark after De¢nition 1.4 that
hnÿ1�OD� � 1. Consequently, exactly one of the numbers h0;i is equal to 1, while
the rest vanish.

DEFINITION 1.6 [I, Sect. 4]. A purely elliptic singularity �X ; x� is of Hodge type
�0; s�, if h0;s � 1.

Clearly, 0W sW nÿ 1 when n is the dimension of �X ; x� and �0; s� its Hodge type.
Note that the Hodge type �0; s� is also characterized by the demand that

Hnÿ1�ODJ � � Gr0FH
nÿ1�DJ ;C� is pure of weight s (by (1.4.1)), hence our de¢nition

of Hodge type is equivalent to the one given by Ishii (see [I, Def. 4.1] and the
following remark).

We will give two characterizations of �X ; x� being of Hodge type �0; nÿ 1�. The
¢rst is essentially proved in [I, Thm. 4.3] and the proof is taken from there.

LEMMA 1.7. Assume that �X ; x� is purely elliptic of dimension n. Then �X ; x� is of
Hodge type �0; nÿ 1� if and only if the essential divisor DJ is irreducible.

Proof. If DJ is irreducible, then DJ is non-singular and the mixed Hodge structure
on Hnÿ1�DJ ;C� is pure of weight nÿ 1. By the remark following De¢nition 1.6,
�X ; x� must be of Hodge type �0; nÿ 1�.

Conversely, assume �X ; x� is of Hodge type �0; nÿ 1�. If DJ � D1 �D2 for
non-trivial effective divisors D1;D2, then by Mayer-Vietoris,

Gr0FGrWnÿ1H
nÿ2�D1 \D2;C� ! Gr0FGrWnÿ1H

nÿ1�DJ ;C� !
Gr0FGrWnÿ1H

nÿ1�D1;C� �Gr0FGrWnÿ1H
nÿ1�D2;C�

is exact. Now,

Gr0FH
nÿ1�Di;C� � Hnÿ1�ODi � � 0; i � 1; 2

by [I, Cor 3.9], while GrWnÿ1H
nÿ2�D1 \D2;C� � 0 since D1 \D2 is complete of
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dimension < nÿ 1. Thus, Gr0FGrWnÿ1H
nÿ1�DJ ;C� � 0. But this contradicts our

assumption on the Hodge type of �X ; x�, so DJ is indeed irreducible. &

LEMMA 1.8. Assume that �X ; x� is purely elliptic of dimension n. Then

h0�Onÿ1
Y �logD� 
 OD�W 1

with equality if and only if �X ; x� is of Hodge type �0; nÿ 1�.
Proof. By (1.5.2), h0�Onÿ1

Y �logD� 
 OD� is equal to dim Grnÿ1F Hnÿ1�U;C�, hence by
semipurity to hnÿ1;0 � h0;nÿ1. The result is now obvious from the de¢nition of Hodge
type and the discussion prior to it. &

1.9. Examples of purely elliptic singularities. As we shall be mostly concerned with
purely elliptic n-dimensional (nX 2) singularities of Hodge type �0; nÿ 1�, let us give
a brief recipe of how to produce examples.

Let f : Cn�t ! Ct be a polynomial map whose vanishing de¢nes the germ �X ; 0�
of an ICIS at 0. Assume that f is weighted homogeneous with respect to the standard
coordinates x1; . . . ; xn�t (resp. y1; . . . ; yt) of strictly positive integral weights
w1; . . . ;wn�t (resp. d1; . . . ; dt) in the source (resp. target). Then o (1.3.1) may be
chosen weighted homogeneously as

o � dx1 ^ . . . ^ dxn�t
df1 ^ . . . ^ dft

: �1:9:1�

Thus, o is of weight Q � �w1 � � � � � wn�t� ÿ �d1 � � � � � dt�. Let B!p Cn�t be the
weighted blow-up of the source. Then the strict transform Y of X is a V-manifold,
i.e. has only (cyclic) quotient singularities, and the exceptional divisor D � Y
has V-normal crossings. From [St2, 2.6 and Cor. 3.4] it is not hard to see that
the invariants Hnÿ1�OY � and Hnÿ1�OY �ÿD�� of 1.1 can be computed from this situ-
ation (that is, we don't need a full resolution; a V-resolution suf¢ces). An easy com-
putation now shows that �X ; 0� is rational (resp. Du Bois) if and only if Q > 0
(resp. QX 0), thus �X ; 0� is purely elliptic precisely when Q � 0. In this case,
�X ; 0� is of Hodge type �0; nÿ 1� since D is a complete V -manifold.

1.10. Now de¢ne a new map-germ f 0 � f � g : �Cn�t; 0� ! �Ct; 0� by adding to f a
holomorphic map g � �g1; . . . ; gt� for which all monomials in gi are of weight
> di for all i � 1; . . . ; t. Let �X 0; 0� be its vanishing. Then the weighted blow-up
p from before gives a V-resolution Y 0 ! X 0 in a neighbourhood of 0, and the excep-
tional divisor D0 � Y 0 is isomorphic to D as analytic spaces. It follows from the
reasoning above that �X 0; 0� is purely elliptic of Hodge type �0; nÿ 1� if Q � 0.

1.11. From weight considerations in the space T 1
X ;0 of ¢rst order deformations of

�X ; 0� (see, for instance, [PW, Prop. 10.5.16]) it follows that any deformation of
a purely elliptic surface singularity of the above type is trivial (�X ; 0� and �X 0; 0�
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are isomorphic for all choices of g) and indeed, a purely elliptic Gorenstein surface
singularity is quasi-homogeneous if and only if it is of Hodge type �0; 1�; see 2.8.
For dimensions nX 3 however, starting with a weighted homogeneous f with
Q � 0, the generic choice of g will produce a purely elliptic �X 0; 0� of Hodge type
�0; nÿ 1� which is not quasi-homogeneous.

2. Quasi-Homogeneity of Purely Elliptic ICISs

2.1. Throughout this section �X ; x� will be an ICIS of dimension nX 2. Then the
Milnor number m and the Tjurina number t are well-de¢ned. Our main concern
is to ¢nd conditions that ensure quasi-homogeneity in the purely elliptic case.
By 1.9, a necessary condition for �X ; x� to be quasi-homogeneous is that it is of
Hodge type �0; nÿ 1�, but by 1.11 this is generally not suf¢cient. We shall see that
the extra condition needed is that the natural map

b : H0�Onÿ1
Y �logD�� ! H0�Onÿ1

Y �logD� 
 OD� � Grnÿ1F Hnÿ1�U;C� �2:1:1�

be surjective. (Here and in the following, we apply the de¢nitions in 1.1.)
This may be motivated as follows. It is a well-known fact that �nÿ 1�-cohomology

of U may be identi¢ed with the �nÿ 1�-hypercohomology Hnÿ1�O�Y �logD�� of the
complex O�Y �logD�, and that the ¢ltration b̂ete would compute the Hodge ¢ltration
if Y were complete. Now that Y is not complete, the ¢ltration b̂ete is affected
by the analytic behaviour of Y `at in¢nity' and will not in general give the Hodge
¢ltration; but it does when �X ; x� quasi-homogeneous [V, Thm. 3.3], and b will then
be surjective.

2.2. We shall make use of the following formula due to E. Looijenga and J.
Steenbrink [LS], valid (as most of what we have to say in 2.2^2.4) for any ICIS
of dimension at least 2,

mÿ t �
Xnÿ2
i�0

hi;0 � a1 � a2 � a3: �2:2:1�

The hi;j were de¢ned in (1.5.1), while the ai are non-negative integers de¢ned relative
to a choice of good resolution. It is not very instructive to include the de¢nitions of
the ai here. Most important for our purpose is the fact that a3 dominates the
dimension of Cokerb. Hence, the assumption m � t implies that b is surjective
and that Gr0FH

nÿ1�U;C� is pure of weight nÿ 1 (Thus, in the purely elliptic case
�X ; x� is of Hodge type �0; nÿ 1�).

2.3. But we can be more speci¢c. From [V, Lemma 2.7] we get the formula

a2 � a3 � en;02 � dim Cokerb: �2:3:1�
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Here en;02 is the dimension of the cokernel of the natural map

H0�Onÿ1
Y �logD��ÿD�� !d H0�On

Y �: �2:3:2�

For later use we note that there is a spectral sequence

Ep;q
1 � Hq�Op

Y �logD��ÿD�� �)Hp�q�O�Y �logD��ÿD�� � 0 �2:3:3�

with Ep;q
1 � 0 if p� q > n ([St2, Thm. 2(b)], [V, 2.2, 2.4]). Clearly, en;02 � dimEn;0

2 .

2.4. Let us de¢ne w � w�X ; x� �Pnÿ2
i�0 hi;0 � dim Cokerb. It follows from [V, Prop.

4.2] that w is an analytic invariant for any ICIS �X ; x�. Note that the codomain
of b has dimension hnÿ1;0 � h0;nÿ1 by semipurity, so w � dim Gr0FH

nÿ1�U;C� ÿ rkb.
The following lemma is now immediate once we observe (by consulting [LS]) that

a1 � 0 when �X ; x� is Du Bois.

LEMMA 2.5. Let �X ; x� be a purely elliptic ICIS of dimension nX 2. Then

(1) mÿ t � w� en;02 :

(2) w � 1ÿ rkb.
(3) The only possible values of ware 0 and 1, and w � 0 if and only if �X ; x� is of Hodge

type �0; nÿ 1� and b is surjective.

The Main Theorem is a corollary to the following theorem.

THEOREM 2.6. Let �X ; x� be a purely elliptic ICIS of dimension nX 2. Then the
following are equivalent

(1) �X ; x� is quasi-homogeneous.
(2) m � t.
(3) w � 0.
(4) �X ; x� is of Hodge type �0; nÿ 1� and b is surjective.
(5) b is non-trivial

2.7. As mentioned earlier, �1� �) �2� is due to Greuel [G1, Satz 0.3]. The impli-
cations �2� �) �3� () �4� () �5� follow from Lemma 2.5. It remains to give a
proof of �4� �) �1�. This will be done in 2.9^2.14 below.

2.8. It is well-known that a purely elliptic surface ICIS (i.e. n � 2) is either a cusp (if
of Hodge type �0; 0�) or simply elliptic (if of Hodge type �0; 1�) [Wat, Thm. 3.20].
With Theorem 2.6 we can prove the slightly weaker statement that �X ; x� is
quasi-homogeneous if and only if it is of Hodge type �0; 1�. This follows immediately
from the formula

mÿ t � w � h0;0 �2:8:1�
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which holds for any Du Bois ICIS of dimension 2 since a2 � a3 �
e2;02 � dim Coker b � 0. (Indeed, E0;1

1 � 0 by the Du Bois property, hence
E2;0
2 � E2;0

1 � 0 and E1;1
1 � E1;1

1 � 0. Since Coker b embeds into the Serre-dual
H1

D�O1
Y �logD�� of E1;1

1 , the claim follows.)

2.9. Proof of �4� �) �1�: As usual, let YY �logD� � Hom�O1
Y �logD�;OY � denote the

sheaf of analytic vector ¢elds on D with logarithmic vanishing along D. By (1.3.1),
contraction of p�o yields an isomorphism

YY �logD��DI ÿDJ �D� !� Onÿ1
Y �logD�: �2:9:1�

Assuming condition (4) in Theorem 2.6 (as we do throughout), surjectivity of b
implies via (2.9.1) that

0! H0�YY �logD��DI ÿDJ�� ! H0�YY �logD��DI ÿDJ �D��
! H0�YY �logD��DI ÿDJ �D� 
 OD� ! 0;

�2:9:2�

is exact. Here H0�YY �logD��DI ÿDJ �D� 
 OD� � C by Lemma 1.8 since �X ; x� is
of Hodge type �0; nÿ 1�.

2.10. By Lemma 1.7, DJ is an irreducible exceptional component. From [Wahl1,
1.10.2] we then get an injective morphism

i : ODJ ,!YY �logD� 
 ODJ

de¢ned as follows. If �y1; . . . ; yn� are local coordinates onY centered at some point of
DJ with y1 � 0 a local equation for DJ , then i maps 1 2 ODJ to y1@y1 .

It is easily checked that the identity map of YY �logD� produces a well-de¢ned
morphism

YY �logD� 
 ODJ ! YY �logD� 
 OD�D�DI ÿDJ �;
whose composition with i gives a morphism

f : ODJ ! YY �logD� 
 OD�D�DI ÿDJ �:
By the local expression 1 7! y1@y1 and the fact that DJ is not in the support of
D�DI ÿDJ X 0, f must be injective. Hence,

H0�ODJ � !
f

H0�YY �logD� 
 OD�D�DI ÿDJ ��
is an isomorphism of 1-dimensional vector spaces.

2.11.Now choose xY 2 H0�YY �logD��DI ÿDJ �D�� such that xY projects tof�1� in
H0�YY �logD��DI ÿDJ �D� 
 OD� (cf. (2.9.2)). It is quite standard that H0�YU � �
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H0�YX �, thus xY maps to a vector ¢eld xX on X . This ¢eld preserves the maximal
ideal mX ;x of OX ;x and induces a derivation on mX ;x=m

2
X ;x.

2.12. We proceed as in [Wahl2, 3.12]. In local coordinates as before, centered at a
point of DJ which is regular for D, xY is of the form

xY � y1@y1 � y1x0Y

for some x0Y which is logarithmic alongDJ . Hence, x0Y preserves for all k > 0 the ideal
�yk1� generated by yk1. Let k be the greatest positive integer satisfying p�mX ;x � �yk1�
and pick g 2 mX ;x for which g � p belongs to �yk1� but not to �yk�11 �. Write g � p locally
as yk1h for some h. Then

xX �g� � p � xY �yk1h� � kyk1h� yk�11 @y1 �h� � y1x0Y �yk1h�;

which modulo �yk�11 � gives xX �g� � p � k�g � p�. Since p�m2
X ;x � �yk�11 �, this shows

that xpX �g� is non-trivial in mX ;x=m
2
X ;x for all powers p. Thus, xX acts non-nilpotently

on the Zariski tangent space of �X ; x� at x.
We can now apply [Sw, Thm. 4.1] to conclude that �X ; x� is quasi-homogeneous,

except possibly when �X ; x� is a hypersurface singularity of multiplicity 2 (note that
a positive-dimensional C-analytic ICIS is reduced).

2.13. For the remaining case we must work a bit harder. Assume that �X ; x� is the
hypersurface de¢ned by an analytic map-germ f : �Cn�1; 0� ! �C; 0� of multiplicity
at least 2. Let x1; . . . ; xn�1 be local coordinates on 1n�1 centered at 0, and let
J�f � � � @f@x1 ; . . . ; @f

@xn�1
� denote the Jacobian ideal. Since f has an isolated singularity

we may choose kX 1 so that mk � J� f �, where m denotes the maximal ideal in
the local ring On�1;0 of the germ �Cn�1; 0�. Put R � On�1;0=m�n�1�k�2. Then xX from
2.11 lifts to some vector ¢eld xCn�1 on �Cn�1; 0� which in turn induces aC-derivation
xR on R. Let x0R : R! R denote the semi-simple part of the operator xR. Then x0R is
itself a derivation, polynomial in xR. Clearly xR preserves the ideal ��f � � R generated
by the projection �f of f , hence so does x0R, and we may choose a unit �u 2 R so that �u�f
is an eigenvector for x0R with eigenvalue l 2 C, say. Let u 2 On�1;0 denote a lift of u,
and let x0Cn�1 be a vector ¢eld on �Cn�1; 0� lifting x0R. Then x0Cn�1�uf �ÿ
luf 2 m�n�1�k�2 � m2 � J�f �n�1. By the Brianc° on^Skoda Theorem �uf �n�1 2 J�uf �,
from which J�f �n�1 � J�uf � (indeed, J�f � � J�uÿ1�uf �� is generated by �@�uf �=@xi�
�uf �@ log uÿ1=@xi� for i � 1; . . . ; n� 1), whence x0Cn�1 �uf � ÿ luf 2 m2J�uf �. It follows
that there exists yet another vector ¢eld x00Cn�1 on �Cn�1; 0� satisfying x00Cn�1�uf � � luf
and agreeing with x0Cn�1 up to order 2.

By Saito's theorem [Sa], �X ; x� is quasi-homogeneous if l 6� 0.

2.14. Assume l � 0. We will show that this leads to a contradiction. Upon replacing
f with uf as de¢ning function for �X ; x� we may assume x00Cn�1 �f � � 0. Let x00X denote
the induced vector ¢eld on X . Then by [L, Lemma 9.6], contraction of o (1.3)
by x00Cn�1 yields an element s in H0�Onÿ1

X �. Obviously p�s 2 H0�Onÿ1
Y �, but since p
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is constant along D and Onÿ1
Y �logD��ÿD� are the forms in Onÿ1

Y whose restriction to
each component of D is trivial, then p�s 2 H0�Onÿ1

Y �logD��ÿD��. We conclude from
(2.9.1) that x00X lifts to a vector ¢eld x00Y 2 H0�YY �logD��DI ÿDJ��. Now we may
repeat the arguments of 2.11 and 2.12 with xY ÿ x00Y in place of xY and conclude
that xX ÿ x00X acts non-nilpotently on mX ;x=m

2
X ;x. But this contradicts the fact that

the action of x00X by construction is the semi-simple part of the action of xX . Thus,
l 6� 0 as desired.

This concludes the proof of Theorem 2.6 &

2.15. Remark. Let �X ; x� be an isolated hypersurface singularity de¢ned by some
f : �Cn�1; 0� ! �C; 0�, nX 2, and let r be the rank of the Hessian of f . As pointed
out by the referee, any such �X ; x� with rX 2 is rational. Thus, purely elliptic
hypersurfaces of multiplicity 2 appear only with r � 1. (And using the procedure
in 1.10 it is straightforward to produce examples of such.) In the light of this remark
we could avoid 2.13 and 2.14 by refering to the following claim at the end of 2.12:

Assume �X ; x� is an isolated hypersurface singularity with r � 1. If there is a
derivation on �X ; x� acting non-nilpotently on mX ;x=m

2
X ;x, then �X ; x� is

quasi-homogeneous.

This claim extends Theorem 4.1 of [SW] and can be proved using this theorem
together with Saito's theorem [Sa]. We omit the details.

2.16. Vector ¢elds on a purely elliptic ICIS. We end with the following description
of the vector ¢elds on a purely elliptic ICIS �X ; x�. This should be contrasted with
the equivariance of the minimal good resolution of a surface singularity [Wahl1].

PROPOSITION 2.17. If �X ; x� is a Du Bois ICIS, then

H0�YX � � H0�YY �logD��DI ÿDJ �D��:

In particular, any vector ¢eld on a purely elliptic �X ; x� lifts to a meromorphic vector
¢eld on Y with logarithmic vanishing along the essential divisor DJ.

Proof. The terms Ep;q
1 of (2.3.3) vanish for p� q > n, and E0;nÿ1

1 � 0 since �X ; x� is
Du Bois. It follows that E1;nÿ1

1 � E1;nÿ1
1 � 0. By Serre-duality, H1

D�Onÿ1
Y �logD�� � 0

so H0�Onÿ1
Y �logD�� ! H0�Onÿ1

U � is an isomorphism. By (2.9.1) this translates to

H0�YY �logD��DI ÿDJ �D�� � H0�YU � � H0�YX �;
as claimed. &
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Note added in proof. Recently the author has proved the main theorem also for
complete intersections which are not purely elliptic. To appear.
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