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Abstract
The COVID-19 pandemic has forced governments around the world into drastic measures
without the normal evidence base or analyses of consequences. We present a quantitative
model that can be used to rapidly assess the introduction and interaction of nonpharma-
ceutical infection prevention measures (NPI) both in rapid a priori predictions and in
real-world a posteriori evaluations. Two of the most popular NPIs are imposing minimum
physical interpersonal distancing and the use of face coverings. The success of both mea-
sures is highly dependent on the behavior of the public. However, there is very little pub-
lished information about the interactions between distance, mask wearing, and the
behavioral adaptations that they are likely to generate. We explore the relation between
these two fundamental NPIs and the behavioral responses that they may induce, consid-
ering both risk compensation and social norms enhancement. At present, we do not have
the necessary information to parameterize our model to a sufficient degree to generate
quantitative, immediately applicable, advice, but we explore a vast parameter space and
illustrate how the consequences of such measures can range from highly beneficial to
paradoxically harmful in plausible real situations.
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Introduction

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has
led to some of the most widespread, drastic, and rushed public health measures
the world has ever seen. Due to a lack of either a vaccine or effective therapeutics,
authorities across the globe rely on nonpharmaceutical infection prevention measures
(NPIs) in order to contain the virus. Under pressure for timely interventions, these mea-
sures are typically introduced hastily and inconsistently, often without the possibility for
evidence-based decision-making, and, therefore, there is no alternative but to rely on a
posteriori observational analysis to determine their effectiveness. In fact, in many cases, it

© The Author(s), 2021. Published by Cambridge University Press. This is an Open Access article, distributed under the
terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unre-
stricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Behavioural Public Policy (2022), 6, 1–12
doi:10.1017/bpp.2021.1

https://doi.org/10.1017/bpp.2021.1 Published online by Cambridge University Press

https://orcid.org/0000-0002-3188-8255
mailto:oliver.kacelnik@fhi.no
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/bpp.2021.1


is not clear that decision makers and authorities are even aware of what kind of infor-
mation they may need to predict the consequences of specific measures.

The most popular nonpharmaceutical NPIs are an increase in interpersonal dis-
tancing, the use of face covers, and handwashing. In each case, effectiveness is
strongly dependent on the behavior of the public, but behavior is often overlooked
and excluded from both predictive and a posteriori analyses. This may be partly
due to the near absence of tools suitable to assess how the NPIs interact with the
behavioral adaptations that they are likely to elicit. We present a quantitative frame-
work aimed at exploring these relationships, considering that regulations can induce
both risk-compensatory adaptations and social norms enhancement, depending on
the circumstances. The information necessary to parameterize our framework to a
degree that would allow it to generate immediately applicable predictions is not yet
available, but we explore a vast parameter space and illustrate how the consequences
of different measures can range from highly beneficial to paradoxically harmful in
plausible real situations. We highlight what needs to be known to devise policies likely
to achieve the desired consequences.

To anticipate behavioral responses is complex because the same regulation or
advice can affect the public’s behavior in opposite directions (Hedlund, 2000; Chu
et al., 2020; Martin et al., 2020). On the one hand, it is known that people regulate
the amount of risk they are willing to take through what is known as ‘risk compen-
sation’. This implies that individuals behave as if they had a ‘risk thermostat’: when a
measure protects them from a given hazard without changing the setting of the
thermostat, they modify their behavior so as to maintain the level of risk they are will-
ing to tolerate. Evidence for such effects is particularly compelling in sport activities
and in the behavior of car drivers: cyclists are more adventurous when induced to
wear a helmet, and car drivers increase their speed when forced to wear seat belts
(Lund Zador, 1984; Adams, 1995; Morrongiello et al., 2007; Rudin-Brown &
Jamson, 2013). On the other hand, there is also evidence showing that information
that increases the salience of social norms can lead to changes in compliance. If peo-
ple are informed of whether others are following or breaching a given norm, they
adjust their own behavior (Bicchieri & Xiao, 2009; Bicchieri, 2016; Civai & Ma,
2017; Betsch et al., 2020), so that prescribing the use of face masks may bring the
infection risk to the attentional fore and enhance interpersonal distancing. Such rela-
tions could explain outcomes in studies that found a positive correlation between
NPIs such as mask wearing and personal distancing.

Overall, NPI effects are variable and likely to be highly dependent on the situation
and demographic targeted. From the point of view of health authorities, it is the net
effect when compensatory behavior is included that should inform the selection of a
suitable NPI. However, behavioral factors are poorly researched and they are rarely
integrated in the analyses. We use the term ‘raw effect’ for the risk reduction due
to the implementation of an NPI in the absence of any other change in behavior
(i.e., just wearing masks or washing hands without any other change in an indivi-
dual’s actions). In contrast, the ‘net effect’ includes the changes in risk when add-
itional behavioral impacts are considered. It is important to establish the
circumstances in which raw and net effects may be sufficiently different to warrant
modification of the prevention strategy.
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The framework described below focuses on decision-making, a posteriori analysis,
and justification of regulations regarding social distancing and face covering in the
context of SARS-CoV-2, but the modeling strategy is applicable to other situations
where the ultimate efficacy of NPIs depends on behavior. We start with a description
of the expected interactions between social distancing and face mask wearing, and
then develop a formal model that explicitly incorporates potentially critical behavioral
adaptations that could affect prescriptive regulations.

The need for a framework suitable to integrate sources of variance in the efficacy of
NPIs is evidenced by the conflicting outcomes observed across different types of
implementation. Schünemann et al. (2020) express the problem thus:

Despite advances in pharmacological treatment and early vaccine development,
reducing transmission of the virus with the use of facemasks (referring to med-
ical or surgical masks, N-95 and similar respirators, cloth masks, and bandan-
nas) by health-care workers and the public alike remains a hotly debated
topic due to politicisation of discourse and decision making.

Hopefully, evaluating potential outcomes in a formal mathematical framework will
explain some of the observed variance and increase the effectiveness of public health
decisions.

Distance

Increasing distance between a source of infection and a potential new host reduces the
risk. As we will show, however, the shape of the function describing the decline in
transmission likelihood as a function of physical separation is crucial when it
comes to predicting the impact of face-covering regulations. This function depends
on the relative participation of particles of different size: larger particles (droplets
>5 μm) fall due to gravity, and their contribution declines more steeply with distance
than that of smaller airborne particles (aerosols) that reach farther and lose impact as
they dilute in larger volumes of air with greater distance from the source (Morawska
& Milton, 2020; CDC Scientific Brief, 2020). Both decline with distance, but the shape
of the function is different. For our model, we assume that ceteris paribus, the prob-
ability of virus transmission between an infected and a healthy individual, declines
following a sigmoid (inverted ‘S’) function of their separation. One reason to expect
an inflection is the different behaviors of droplets and aerosols, with aerosols declin-
ing through dilution rather than gravity and taking greater relative responsibility
beyond the range of reach of droplets. For any particular distancing and form of
interaction, we assume that wearing a face mask reduces the probability of transmis-
sion by a multiplicative factor, the value of which depends on the quality of the mask
and the correctness of use.

Face covering

The properties of different kinds of mask have a long history of being quantified in
healthcare settings and as a public health measure, especially in Asia. However, masks
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are tested and specialized for different settings and needs. The protective qualities of
FFP3, FFP2/N95, Type II, and Type I masks are relatively well documented in terms
of their physical properties as barriers and when used by trained individuals.
However, the pandemic has introduced commercial face masks and homemade
face coverings into the mass market with little or no quality control, and it is fair
to assume that in current real-life scenarios, there is a large diversity of face-covering
devices with vast variation in efficacy (Greenhalgh et al., 2020). Physical performance
as particle filters is readily obtainable, but it is not a fail-safe indicator of disease
transmission prevention. In Norway, for example, it was estimated that, assuming a
mask efficacy of 40% reduction of relative risk (RR) and low background prevalence,
200,000 people would need to wear face masks to prevent one new infection per week,
but this is entirely dependent on very specific assumptions (Iversen et al., 2020;
Schünemann et al., 2020).

Relative versus absolute risk

We characterize the efficacy of any configuration of parameters in terms of reduction
in RR by a factor assumed to be representative of average properties of the face covers
prevalent in the population of interest. In the absence of richer information, we will
assume that the RR reduction factor for any specific kind of face mask is constant
across the distance of interaction. This assumption may prove to be insufficient in
the future. Reductions in absolute risk (AR), however, are more significant, and we
estimate them by combining RR reduction with distance-specific risk.

In summary, we examine how physical distance, mask wearing, and behavior
interact to determine the potential effects of regulations prescribing social distancing
and face covering. We aim at producing a tool for quantitative decision-making and a
conceptual framework to identify the critical parameters that should inform
evidence-based health regulations.

Model and results

Our model is based on the following assumptions:
When both an infected and a healthy person meet, the probability of contagion C

declines as a function of distance D, following the sigmoid relation implemented in
the following equation:

C(D) =
Cmax + Cmin∗D−k

1
2
∗Dk

1+ D−k
1
2
∗Dk

, (1)

where
Cmax: upper limit of the transmission probability. Intuitively, it is the probability of

contagion in an interaction at close proximity, in the absence of mask wearing. When
scaled from a pairwise interaction to group analyses, this number represents a statis-
tical summary of many contributing factors, such as the proportion infected in the
population, the demographics and cultural habits of the group in question, and the
number and duration of interactions.
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Cmin: lower asymptote of the transmission probability. This parameter can be
intuited as the risk of contagion when distance is sufficiently large for risk to
approach the background risk in the environment, without a directional component.

D1/2: Distance at which the probability of transmission C(D) is half way between
Cmax and Cmin.

k: A parameter controlling the sensitivity of contagion to distance.
Using Equation (1), we model the expected effect of legislation imposing face cov-

ers. The expected change in RR is a function of the four parameters in Equation (1)
(Cmax, Cmin, D1/2, and k) and two additional ones. First, a parameter α, when multi-
plied by risk in the absence of mask wearing, yields a lower level of risk (0≤ α≤ 1). In
our model, the reduction in risk described by α is the raw effect. We use α to quantify
the reduction in infection risk, which is dependent on, but not identical to, the mask
specification based on the mask filtration rate of infective droplets and aerosols.
However, we can take the mask specification as our source of information, treating
a device certified to filter out 95% of infective particles as reducing transmission to
5% of the unprotected condition. Thus, mask efficacy equals 100*(1− α); if a
mask is certified (or claimed) to reduce transmission by 95%, the value of α is 5%.
Second, a parameter β, which describes the change in social distance due to changes
in behavior; if an individual who would typically keep a separation of 1 m changes to
0.8 m when wearing a mask, then β = 0.8. Risk compensation, namely, a reduction
in distancing when wearing a mask, occurs when β < 1, while social norm enhancing
occurs when the imposition of mask wearing elicits greater distancing, and then β > 1.

We now express the net probability of infection at a given distance by including
both the efficacy of the average device and the consequent behavioral response. For
simplicity, and to make the transition to a population-level interpretation more direct,
we do not distinguish whether both effects act through two or just one of the inter-
acting subjects. Different cases can be readily incorporated into the model. We refer
to the net probability of transmission given an obligatory mask-wearing normative as
C(D)|m and model it using the following equation:

C(D)|m = /∗
Cmax + Cmin∗D−k

1
2
∗(b∗D)k

1+ D−k
1
2
∗(b∗D)k (2)

Equation (2) quantifies the net risk of infection when masks with a filtration rate of
100*(1 −∝) induce a behavioral distance modification response β. In this equation, D
is the physical distance that members of the target demographic group would typic-
ally keep in the absence of the obligatory face-covering normative.

Figure 1 shows a graphic version of the model for illustrative purposes.
The figure illustrates that the effect of interventions such as prescribing mandatory

face covering is complex and can conceivably even result in the opposite of what is
intended. This highlights the need for making explicit assumptions for each of the
intervening factors. A first step is to identify a quantitative index to inform decision-
making, and this requires choosing informative output variables.

Behavioural Public Policy 5

https://doi.org/10.1017/bpp.2021.1 Published online by Cambridge University Press

https://doi.org/10.1017/bpp.2021.1


AR versus RR changes

Two indices of the effect of NPIs are RR and AR changes. We compute RR by expres-
sing the probability of infection after both mask wearing and behavioral adjustment
(Equation 2) as a fraction of raw risk (Equation 1), so that values below 1 are bene-
ficial and those above are harmful.

Relative Risk Change = C(D)|m
C(D)

(3)

Changes in AR are of greater epidemiological significance and may be preferable to
evaluate measures and communicate risk to the general public. This is given by the
difference, rather than the ratio, between net and raw risk, expressed as a percentage,

Figure 1. Interaction between distance, mask efficacy, and behavioral response, with illustrative para-
meters. For the figure, wearing a mask is assumed to reduce contagion at a given distance by 30%
(α = 0.7), and the change in physical distance is assumed to be a risk-compensatory reduction of 50%
(β = 0.5). The thick black line shows the function describing the raw probability of contagion as a function
of physical distance in the absence of any nonpharmaceutical intervention (Cmax = 0.7; Cmin = 0.1; D1/2 =
1 m; k = 5). The lighter thinner curve shows the corresponding function when wearing a mask with 30%
efficacy. The interaction with behavior is shown for subjects that in the absence of any instructions would
keep a distance of 1.5 m. Solid arrows: (1) mask-mediated drop in contagion probability in the absence of
risk compensation; (2) modification of physical distance due to a behavioral risk compensation of 50%;
(3) net risk after the intervention. The dotted black arrow points to raw risk in the absence of any inter-
vention, and the dashed blue-gray one to net risk after both factors are considered. In this (illustrative)
example, the behavioral response relative to mask quality is sufficient to result in a net risk increase. It is
obvious that the relation between net and raw risk is dependent on the shape of the functions and the
magnitude of the effects.
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as follows:

Absolute Risk Change = 100∗[C(D)|m− C(D)] (4)

Figure 2 shows the effects of obligatory mask wearing in terms of relative (left) and
absolute (right) risk changes for the parameters used in Figure 1. For the purpose of
evaluating expected changes to inform decisions, the differences are substantial, and
they highlight why the two metrics must be made transparent.

For the illustrative parameters that we used, the introduction of obligatory mask
wearing has a beneficial effect on the wearers at short distances, is harmful around
the distances that current legislation in most Western countries uses as guidance
for distancing, and then declines in significance.

These illustrative results are not intended as ready-to-use quantitative estimates of
the risk expected effect of a specific law or guideline, because they are dependent on
our choice of arbitrary parameters. To further illustrate the variation in what might be
expected, we show, in Table 1, a few illustrative cases.

The vast variety in potential changes highlights the importance of taking policy
decisions with a suitably parameterized model that takes behavior into account
and of communicating absolute as well as RR consequences. Once a model like the
one presented here is available, the obstacle posed by uncertainty about specific par-
ameter values can be mitigated by exploring the behavior of the model in as wide a
parameter space as possible. The true efficacy of masks to prevent infection must be
measured in the field, but mask rating can be used as a substitute, to assign a range of
values to α. For the behavioral responses, the task is more difficult because the impact
of imposing obligatory protection measures could correlate positively or negatively
with risk-taking responses. As mentioned earlier, obligatory mask use may lead
some individuals to increase social separation, while others may shift to closer inter-
actions than when uncovered.

In the next section, we keep fixed the relation between risk when unprotected and
physical separation (using the parameters in Figure 1 to compute Equation 1) and
explore the influence of α and β, the parameters representing mask efficacy and
behavioral responses. We sample the range of mask efficacy across the possible
range, in steps of 10%, and explore behavioral responses ranging from extreme risk
compensation, when obligatory mask wearing leads to reducing social distance to
one-tenth of the original (β = 0.1) to cases where it leads to an increase in distancing
of 50% (β = 1.5). We repeat the calculations at four initial distances (1, 1.5, 2, and
3 m), which cover the range used by many health authorities as guidance for protective
social separation.

Figure 3 shows that when variation in mask efficacy and behavioral response are
considered jointly, there exists regions of the α, β parameter space where imposing
the use of masks has beneficial effects and regions where the net effects are harmful.
The boundaries of these regions change drastically with the distance being consid-
ered. Further, the effect of distance on the sign of the effect can be nonmonotonic
(see Figure 2), and the magnitude of these effects differs notably when relative or
absolute changes in risk are considered. For variations in AR, effects when raw risk
is low (at large physical distances) can be negligible. Our sensitivity analysis does
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Figure 2. Relative (left) and absolute change in risk of contagion relative to raw risk, after regulatory introduction of mask wearing, computed with the illustrative para-
meters used in Figure 1. The physical distance in the abscissa indicates the social distancing for a given target group in the absence of intervention. The importance of
communicating AR rather than RR is stressed by the vertical lines: the relative net effect (left) varies between a drop in contagion at a close proximity (b, 0.75 m) of about
20% and an over twofold risk increase at intermediate distances (a, 1.5 m). In contrast, the changes in absolute vary between a drop of roughly 12% (a) and an increase
of 24% (b) across the same range.
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not explore other significant factors, among which the most important is background
raw risk. Equivalent proportional risk variations cause different modifications in AR
when background prevalence differs, and the latter must be considered when evalu-
ating a measure against its costs. In our model, background prevalence determines the
upper and lower levels of transmission (Cmax and Cmin) and is modified through the
shape of the effect of distance function.

Regarding the latter, and given the absence of precise quantitative information, we
hypothesized the shape of the raw risk variation with distance, the mean quality of
mask being used, and the magnitude and sign of the behavioral responses. For this
reason, the results shown in our figures and table are not meant to be used on
their own but to expose the need for fieldwork aimed at quantifying the relevant
parameters for each situation. Our hypothetical transmission versus social distance
function may well be inaccurate, but decision makers evaluating the potential conse-
quences of public health measures ought to replace it and the remaining parameters
by better estimates when available, rather than proceeding without a predictive model.

Conclusion

The net consequence of any nonpharmaceutical public health intervention cannot be
divorced from the behavioral adjustments it causes. If, for instance, promulgating the
obligatory use of face masks induces a particular section of the population to com-
pensate for the perceived reduction in risk by relaxing other preventive measures

Table 1. Illustrative cases based on the risk versus distance function shown in Figure 1 (Cmax = 0.7, Cmin =
0.1, D1/2 = 1, k = 5). The bold cells show cases where the intervention may result in an increase in the net
risk of infection.

Case 1 Case 2 Case 3 Case 4 Case 5

Pre-NPI social distance during
pandemic (m)1

1 1.5 1.5 2 2

Pre-NPI risk of infection 40% 17% 17% 12% 12%

Mask protective performance2 70% 50% 70% 70% 99%

Behavioral distancing response, β3 0.50 0.50 0.50 0.50 0.50

Post-NPI social distance (m)4 0.5 0.75 0.75 1 1

Risk with mask if social distancing
is unaltered

12% 8% 5% 4% 1%

Risk with mask at modified social
distancing

20% 29% 18% 12% 4%

Relative risk5 0.50 1.71 1.06 1.00 0.33

Net mask effect, AR (%) −20% 12% 1% 0% −11%

Notes:
1Social distancing typical of targeted demographic in the absence of NPI.
2Mass protective performance = 100(1 − α). This is lower than the specified filtering rate under lab conditions.
3Factor by which distancing changes in response to NPI.
4Social distancing when wearing mask.
5Net risk/pre-NPI risk.
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Figure 3. Net change in AR of contagion between unprotected (raw) interactions and those after the implementation of compulsory mask wearing, at four initial physical
distances. The surfaces show the signed difference between the probability of contagion after and before the change. All four panels show net change as a percentage,
for mask efficacy ranges from 90% (α = 0.1) to 10% (α = 0.9) and risk-compensation distance response from an extreme distance reduction (β = 0.1) to an enhancement of
distancing of 50% (β = 1.5). Raw risk parameters are the same as in Figure 1. Notice that the positive differences indicate a harmful increase in contagion probability. The
greatest beneficial reduction in AR occurs at the front-right corner, when the mask blocks 90% of viral transmission, and obligatory mask wearing increases distancing by
50%. Original physical separations are indicated by the emoji.
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such as distancing, physical contact, or handwashing, then the projected benefits can
be far off the mark. Adding behavioral predictions is, thus, not optional but essential
to take well-founded political decisions. Our model shows that under reasonable
assumptions, interventions such as the obligatory use of face masks in public settings
can have positive or negative consequences. This article demonstrates the importance
of having a tool to make rational decisions based on quantitative approximations of
the likely effects. Our implementation is based on functions and parameters that are
not empirically validated, and for this reason, we do not intend to provide quantita-
tive predictions but rather highlight what knowledge is necessary and inform what
data should be extracted from previous experience. It is highly likely that risk-
compensation behavior will differ greatly across demographic groups. For instance,
sections of the population with a propensity to steep discounting of the future can
well decide that risky activities such as attending a mass event fall below the risk
threshold when wearing a mask, while the same category of person might have stayed
at home otherwise. Other sections instead may be induced to substantially reduce
their exposure if mask wearing acts as an enhancer of distancing norm compliance.

We anticipate that other authors may differ over the substantial decisions we have
taken in shaping our model, particularly about the shape of the function relating the
raw risk of transmission as a function of distance. We made our modeling choices
based on reasoning about available information and would welcome better sugges-
tions. We would consider our contribution successful if it served to promote further
discussion using explicit hypotheses about the relevant interacting factors.

Acknowledgments. We are grateful to our colleagues Carlos Bernstein, Edward Mitchell, Adam Oliver
and Hanne-Merete Eriksen-Volle for helpful comments on a previous version.
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