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The arithmetic of Prym varieties in genus 3

Nils Bruin

Abstract

Given a curve of genus 3 with an unramified double cover, we give an explicit description
of the associated Prym variety. We also describe how an unramified double cover of a non-
hyperelliptic genus 3 curve can be mapped into the Jacobian of a curve of genus 2 over its
field of definition and how this can be used to perform Chabauty- and Brauer–Manin-type
calculations for curves of genus 5 with an fixed-point-free involution. As an application,
we determine the rational points on a smooth plane quartic and give examples of curves
of genus 3 and 5 violating the Hasse principle. The methods are, in principle, applicable
to any genus 3 curve with a double cover. We also show how these constructions can be
used to design smooth plane quartics with specific arithmetic properties. As an example,
we give a smooth plane quartic with all 28 bitangents defined over Q(t). By specialization,
this also gives examples over Q.

1. Introduction

In this article, we investigate the arithmetic of unramified double covers of non-hyperelliptic curves
of genus 3. This research is inspired by the recent success in applying the theory of unramified
double covers of hyperelliptic curves to the problem of determining the set of rational points on such
curves [Bru02, Bru03, BF05, Wet97]. Combined with explicit Chabauty methods, this has yielded
very practical methods for obtaining often sharp bounds on the number of rational points on a
hyperelliptic curve. In the hyperelliptic case, the construction of unramified covers is particularly
easy to make explicit using Kummer theory. There has been some limited work investigating how
these ideas may be generalized to unramified covers of higher degree of hyperelliptic curves [BF03].

In this article, we generalize in a different direction. We derive the general form of a curve C
of genus 3 over a field K of characteristic zero that allows an unramified double cover π : D → C
defined over K. A non-hyperelliptic curve of genus 3 with an unramified double cover allows a
smooth plane projective model of the form

C : Q1(u, v,w)Q3(u, v,w) = Q2(u, v,w)2,

where Q1, Q2, Q3 ∈ K[u, v,w] are quadratic forms, such that the unramified double cover of C has
a canonical model in P4 of the form

D :


Q1(u, v,w) = r2,

Q2(u, v,w) = rs,
Q3(u, v,w) = s2.
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We also describe how the associated Prym variety (the connected component of the kernel of
π∗ : Jac(D) → Jac(C) that contains the origin O of Jac(D)) can be described explicitly as Jac(F )
of some genus 2 curve F over K:

F : y2 = −det(M1 + 2xM2 + x2M3),

where Mi is the symmetric 3 × 3 matrix such that

(u, v,w)Mi

u
v
w

 = Qi(u, v,w).

Combined with earlier work, this gives a complete description of how principally polarized
Abelian surfaces arise as Prym varieties in genus 3 over base fields of characteristic zero which
are not necessarily algebraically closed (see Theorem 5.1).

The description of Prym(D/C) as Jac(F ) over C can already be found in [ACGH85, Exer-
cise VI.F]. For arithmetic applications, we need the result in a more general setting. If C has a
rational point, then the trigonal construction gives a Galois-theoretic way of describing the Prym
variety as the Jacobian of some curve (see [Don92] and [Rec74]). Here, we refine the description to
arbitrary characteristic zero base fields. The results should generalize to base fields of arbitrary odd
characteristic.

We show how D can be mapped into Prym(D/C) over K, without an explicit rational degree
one divisor class on D (see Proposition 6.2). We can thus use Chabauty-like methods on genus 5
curves in Abelian surfaces to obtain what is, in practice, often a sharp bound on the number of
rational points on D. This can, in turn, be used to obtain a corresponding bound on the number
of rational points on C. As an example, we prove the following.

Proposition 1.1. For the curve

C : (4u2 − 4vw + 4w2)(2u2 + 4uv + 4v2) = (2u2 + 2uw − 4vw + 2w2)2

we have C(Q) = {(0 : 1 : 0)}.
The proof avoids computing the Mordell–Weil group of Jac(C). Instead, it uses the computa-

tionally more accessible Mordell–Weil group of the associated Prym variety, which is an Abelian
surface.

Remark 1.2. The method does not put restrictions on the geometry of C. Indeed, let L be a field
extension ofK such that the group scheme Jac(C)[2] has a non-trivial rational point. Let d = [L : K].
We can use the construction above to obtain an unramified double cover DL/CL and a corresponding
map DL → Prym(DL/CL). In complete analogy to the treatment of genus 2 in [Bru03], we take
Weil restrictions and obtain a finite étale cover of dimension d varieties �L/K(DL) → �L/K(CL)
and a map �L/K(DL) → �L/K(Prym(DL/CL)). Inside �L/K(CL) we have C = CK and we can take
its preimage D̃ ⊂ �L/K(DL). This will give a degree 2d unramified cover of C, which could consist
of multiple components, depending on the linear dependencies between the L/K-conjugates of the
2-torsion point in Jac(C)[2] corresponding to DL/CL.

DL

��

�� Prym(DL/CL)

��

CL

�� ����������

CK

��

Spec(L)
��������

Spec(K)

�L/K
�

D̃

��

�� �L/K(DL)

��

�� �L/K(Prym(DL/CL))

������������������������

CK

������������
�� �L/K(CL)

��
Spec(K)
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In any case, we end up with an unramified cover D̃/C over K that maps non-trivially into an
Abelian variety of dimension 2d, which has a Mordell–Weil group that is computationally relatively
accessible, because it is isomorphic to Prym(DL/CL)(L). We can then apply Chabauty-like methods
to determine D̃(K) and C(K). The group �L/K(Prym(D/CL))(K) � Prym(D/CL)(L) would be
the hardest ingredient to obtain and it should be noted that the computations involved would
probably be prohibitive, except for very low degree L.

Since the mapping ofD into Prym(D/C) does not require a rational point onD, we can apply this
construction to prove in examples that D(Q) is empty, even if D does have points everywhere locally.
In our computations, we show in certain examples that the image of D(AQ) in Prym(D/C)(AQ)
misses the closure of Prym(D/C)(Q) by combining the local information at a finite number of
primes.

It is reassuring that, at least conjecturally, our computations correspond to determining part
of the Brauer–Manin obstruction of D. By this we mean that if the argument above succeeds in
showing that D has no rational points, then subject to standard conjectures, there is a Brauer–
Manin obstruction to having rational points, i.e. D(AQ)Br is empty. The explanation below is of no
relevance for the rest of this paper, but may be of interest to experts.

Suppose that D is a curve of genus at least 2, defined over a number field K, with points
everywhere locally. Since D is naturally a subvariety of Pic1(D), the scheme representing the functor
X �→ Pic1(D/X), it follows that Pic1(D) has points everywhere locally as well. Since Pic1(D) is a
torsor under Jac(D), it follows that Pic1 represents an element of X(Jac(D)/K) ⊂ H1(K, Jac(D)).
Manin has proved (see [Sko01, Theorem 6.2.3]) that if X(Jac(D)/K) is finite, then the failure of
any X ∈ X(Jac(D)/K) to have points globally, can be explained by the Brauer–Manin obstruction.

If Pic1(D) does have a rational point then it is isomorphic to Jac(D) and hence D can be
considered as a subvariety of Jac(D) (via the Abel–Jacobi map). In this case, Scharaschkin [Sch99]
proves that if X(Jac(D)/K) has trivial divisible subgroup, then D(AK)Br• is a subset of D(AK)• ∩
Jac(D)(K)•. Here, the • symbol means taking the quotient by the connected component. This only
makes a difference at the archimedean components of adelic point sets.

If D does have a degree one divisor, then our map 2(ι∗ − id∗) : D → Prym(D/C) differs by
a translation over a rational point of Prym(D/C) from twice the map obtained via the obvious
projection J(D) → Prym(D/C). Hence, if 2(ι∗− id∗)D(AK)•∩Prym(D/C)(Q)• is empty, then so is
D(AK)• ∩ Jac(D)(K)• and, therefore, D conjecturally has a non-trivial Brauer–Manin obstruction
to having rational points.

Proposition 1.3. The genus 5 curve

D :


(v2 + vw − w2) = r2

(u2 − v2 − w2) = rs
(uv + w2) = s2

and the genus 3 curve

C : (v2 + vw − w2)(uv + w2) = (u2 − v2 − w2)2

over Q both have points everywhere locally, but they have no rational points.

For this example, we find Prym(D/C)(Q) � Z×Z. This illustrates that the method used is not
a special case of a Chabauty-type argument.

Also note that while, at least conjecturally, the curve D in Proposition 1.3 has a non-trivial
Brauer–Manin obstruction to having points, the same does not immediately follow for C. Hence,
the proof of Proposition 1.3 does not suggest that C(AQ)Br is empty, although undoubtedly it is.
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In addition, we investigate the arithmetic implications of the geometric description of the fibres
of the Prym map between moduli spaces, corresponding to the functor Prym : {π : D → C} �→
{Prym(D/C)}, given in [Ver87]. For a general principally polarized Abelian surface A we denote
the standard map Z → End(A) by n �→ [n]. Kummer surface K = A/〈[−1]〉 has a singular quartic
model in P3, with a singular locus consisting of 16 points, corresponding to A[2]. Translation by A[2]
induces automorphisms on K, given by linear transformations on P3. We write P̂3 for the space of
planes in P3. Verra [Ver87] shows that over C, the fibre of Prym over a principally polarized surface
A is birational to P̂3/A[2]. In fact, he gives a very precise description of the fibre as a blow-up of this
space, where the exceptional components contain the moduli points corresponding to hyperelliptic
or degenerate curves C.

In particular, a non-hyperelliptic genus 3 curve C over C which has a double cover D such that
Prym(D/C) = A can be obtained as a plane section of K, with D the pull-back of C to A. Any two
such plane sections of K in the same A[2]-orbit give isomorphic covers D/C.

In this article we explain how, given a genus 2 curve F over a number field K and a genus 3
plane section C of K = Jac(F )/〈±1〉, we can obtain a model for C of the type Q1Q3 = (Q2)2.
Since a sufficiently general plane section of K is non-singular and thus of genus 3, it shows that any
Jacobian of a genus 2 curve over K can be realized as a Prym variety of a non-hyperelliptic genus 3
curve over K. In fact, this particular construction certainly works over any odd characteristic base
field with sufficiently many elements. We can phrase this in entirely elementary terms as follows.

Proposition 1.4. Let k be an infinite field of odd characteristic and let f ∈ k[x] be a square-free
polynomial of degree 5 or 6. Then there exist symmetric matrices M1,M2,M3 ∈ Q3×3 such that

f = det(M1 + xM2 + x2M3).

We use this construction to obtain a systematic way of constructing curves of genus 3 with all 28
bitangents defined over a non-algebraically closed field, for instance Q(t) (see § 7). By specialization
of t, this gives infinitely many examples of curves over Q with rational bitangents. This strengthens
a result in [Edg94], where an example is given with all bitangents defined over R. See [Sch98]
or [Cay79] for an approach via interpolation.

Finally, it should be noted that not all covers π : D → C defined over K with Prym(D/C) = A
and C non-hyperelliptic, have C occurring as a plane section of the associated Kummer surface K
defined over K, since not all rational points of P̂3/A[2] are covered by rational points of P̂3. This
follows, for instance, from the fact that this does not even hold for the quotient by one 2-torsion
point, i.e.

P3

/〈
1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


〉

has rational points that do not lift to P3.

2. Preliminaries

First we fix some notation. Let K be a field and let C be a complete, absolutely irreducible algebraic
curve over K. We write κC for a canonical divisor on C over K. For a divisor D ∈ Div(C), we
write [D] for its class in Pic(C) and |D| for the complete linear system corresponding to D and
l(D) = dim |D|. We say that a divisor D on C is a gr

d if deg(D) = d and l(D) > r. We write
W r

d ⊂ Picd(C) for the classes of all such gr
d. By abuse of notation, we also write W r

d for the
corresponding subscheme of the scheme representing the functor Picd(C).
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2.1 Unramified double covers and Prym varieties

Let π : D → C be an unramified finite morphism of degree two between curves over a field K and
let ι : D → D be the non-trivial involution of D over C. It follows by the Riemann–Hurwitz theorem
that g(C) > 0 and that

g(D) = 2g(C) − 1.

The kernel of π∗ : Jac(D) → Jac(C) has two connected components. The component that contains
0 coincides with the image of (id∗ − ι∗) : Jac(D) → Jac(D).

Definition 2.1. Let π : D → C be an unramified finite morphism of degree two between curves over
a field K. We write Prym(π) = Prym(D/C) for the connected component of the identity-element
of ker(π∗ : Jac(D) → Jac(C)). We call this the Prym variety of D/C.

Thus, Prym(D/C) is an Abelian subvariety of Jac(D). The principal polarization on Jac(D)
restricts to a principal polarization on Prym(D/C). Historically, Prym varieties were considered
interesting primarily because they give examples of principally polarized Abelian varieties that are
not Jacobian varieties. However, if dim(Prym(D/C)) � 2, then Prym(D/C) generally is a Jacobian
variety.1 See [ACGH85, VI-C] or [Mum74] for details.

2.2 Prym varieties in the hyperelliptic case

In contrast to the general situation, the Prym variety associated to an unramified double cover of a
hyperelliptic curve is closely related to a Jacobian variety. In fact, the Prym variety is isomorphic
to the product of Jacobian varieties of subcovers, which themselves are again hyperelliptic.

Let us first assume that C is a double cover of a P1 defined over a field K of odd characteristic.
Then C has an affine model of the form

C : y2 = f(x)

where f ∈ K[x] is a square-free polynomial of degree 2g(C)+2. Kummer theory tells us exactly what
the unramified degree two extensions of K(C) are. For any factorization f = f1f2, with f1, f2 ∈ K[x]
and of even degree, we have a curve D given by the affine model{

y2
1 = f1(x)
y2
2 = f2(x)

and an unramified morphism of degree two:

π : D → C
(x, y1, y2) �→ (x, y1y2) = (x, y).

Then there are the two obvious curves

F1 : y2
1 = f1(x)

F2 : y2
2 = f2(x)

1It can also be the product of two elliptic curves, in which case it is a Jacobian of a reducible curve.
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with the obvious projections π1 : D → F1 and π2 : D → F2. This yields the familiar diagram
associated to biquadratic extensions.

D
π2

���
��

��
��

�

π

��

π1

����
��

��
��

F1

x
���

��
��

��
� C

x

��

F2

x
����

��
��

�

P1

In addition, if f1, f2 are quadratic conjugate over some quadratic extension L over K then this
construction will also yield an unramified double cover D over C, defined over K, because
the construction of D is symmetric in F1, F2.

Proposition 2.2. Let C,D,F1, F2, π, π1, π2 be defined as above. Then

π∗1 + π∗2 : Jac(F1) × Jac(F2) → Prym(D/C)

is an isomorphism of Abelian varieties.

Proof. First, we prove that π∗1 indeed maps Jac(F1) into Prym(D/C). To that end, take the generic
point (x1, y1) ∈ F1. We have π∗1(x1, y1) = (x1, y1,

√
f2(x1))+(x1, y1,−

√
f2(x1)). Under π, this maps

to the divisor cut out by x = x1. This shows that π∗π∗1 : Jac(F1) → Jac(C) is constant and, hence,
(π∗π∗1)|Jac(F1) is the zero map. By symmetry it follows that Jac(F1)× Jac(F2) lands in the kernel of
π∗ under π∗1 + π∗2 and, since it is connected and covers 0 ∈ Jac(D), lands in Prym(D/C).

The fact that (πi)∗ ◦ π∗i = [2] for i = 1, 2 already assures that Jac(F1) × Jac(F2) is isogenous
to Prym(D/C). A quick way to see that they are actually isomorphic is by noting that F1 and F2

can be arbitrary hyperelliptic curves and that, by construction, the isogeny would have to depend
functorially on F1 and F2. In general, Jac(F1) × Jac(F2) has no non-trivial polarization-preserving
isogenies and hence there are no other candidates for Prym(D/C).

Remark 2.3. The result in Proposition 2.2 is easily extended to the situation where f1, f2 are
quadratic conjugate over some quadratic extension L over K. Then, over L we still have Jac(F1) →
Prym(D/C) and by taking Weil restrictions we see that �L/KJac(F1) = Prym(D/C) = �L/K

Jac(F2).

Remark 2.4. In general, a hyperelliptic curve C over K is a double cover of a curve L of genus 0.
We can express K(L) as some quadratic extension of K(P1). Relative Kummer theory allows us to
describe Prym(D/C) in terms of Jacobians of subcovers of D/L in exactly the same way as above.

2.3 Linear subspaces on quadrics
It is well known that on a non-singular quadric in P3, there are two rulings of lines with the property
that a line from one ruling intersects a unique line from the opposite ruling and that two lines from
the same ruling do not intersect. We need a simple lemma that classifies whether the two rulings
are split or quadratic conjugates.

Lemma 2.5. Let K be a field of characteristic different from two and let M ∈ K4×4 be a symmetric
matrix describing a non-singular quadric Q ⊂ P3. The two rulings of lines on Q are individually
defined over K exactly if det(M) is a square in K. Otherwise, they are quadratic conjugate.

Proof. First assume we have a point x0 ∈ Q(K). Let V = {x : x0
tMx = 0} be the plane tangent to

Q at x. The intersection V ∩Q consists of exactly two lines through x0, one from each of the rulings.
With a change of basis, we can assume that x0 = (1 : 0 : 0 : 0) and that the points x1 = (0 : 1 : 0 : 0)
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and x2 = (0 : 0 : 1 : 0) lie on V as well. It follows that

M =


0 0 0 d
0 a b ∗
0 b c ∗
d ∗ ∗ ∗

 ; det(M) = d2(b2 − ac).

We see that Q intersected with the line through x1,x2 is described by the equation ax2
1 + 2bx1x2 +

cx2
2 = 0, which is split exactly if b2 − ac is a square. The lemma follows.
If Q(K) is empty, then we base change to K(Q), where we have the generic point (x0 : x1 : x2 :

x3) ∈ Q(K(Q)). Since K is algebraically closed in K(Q), the pair of rulings (defined over K) is split
over K(Q) if and only if they are split over K. Furthermore, det(M) is a square in K if and only if
it is in K(Q).

3. Non-hyperelliptic curves of genus 5 with an unramified involution

Let K be a field of characteristic zero and let D be a non-hyperelliptic curve of genus 5 with a
fixed-point-free involution ι over K. Let π : D → C = D/〈ι〉 be the quotient map by the action
of ι. The Riemann–Hurwitz formula yields that C is of genus 3. Let κC be a canonical divisor on
C and let 〈u, v,w〉 = |κC | be coordinates on the associated canonical model of C. Note that we do
not insist that C is non-hyperelliptic. By abuse of notation, we also write u, v,w for the pull-backs
u ◦ π, v ◦ π,w ◦ π. We write κD = π∗(κC), which is again canonical. There are functions r, s on D
with r + r ◦ ι = s+ s ◦ ι = 0 such that 〈u, v,w, r, s〉 = |κD|.

We identify D with the canonical model associated to κD, being the image of (u : v : w : r : s) :
D → P4. In this notation,

ι : (u : v : w : r : s) �→ (u : v : w : −r : −s).
We let Λ be the linear system of quadrics containing D ⊂ P4. A simple comparison of the

dimensions l(κD) = 5 and l(2κD) = 12 yields that Λ � P2. We let (λ1 : λ2 : λ3) be coordinates on
Λ such that Q1, Q2, Q3 ∈ Λ(K) correspond to (1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1), respectively.

Note that |κD| has a decomposition into the +1-eigenspace 〈u, v,w〉 and the −1-eigenspace 〈r, s〉
of ι. The involution ι acts identically on the corresponding linear subspaces {r = s = 0}, {u = v =
w = 0} ⊂ P4.

We recall that a curve is called trigonal if it admits a degree three map to P1.

Lemma 3.1. With the notation above, D is not a trigonal curve.

Proof. Since a trigonal curve remains trigonal upon base extension, it suffices to prove the lemma
for algebraically closed K. Suppose that D were trigonal.

We argue following [ACGH85, p. 207]. The fibers of the degree three map D → P1 form a base-
point-free linear system of degree three. Let D be the divisor corresponding to one such fiber. Then
D is a g1

3 . Note that if D were a g2
3 , then removing a point from D would yield a g1

2 and, hence, D
would be hyperelliptic, which we assumed not to be the case. Hence, |D| � P1.

As is argued in [ACGH85, p. 207] (using the Brill–Noether residue theorem; see, for instance,
[Ful69, ch. 8]), a curve of genus 5 can have at most one divisor class of type g1

3 . Therefore, ι∗ :
Div(D) → Div(D) induces an involution on |D|. Since an involution on P1 has two fixed points,
there are two effective degree three divisors that are fixed under ι∗. It follows that ι has a fixed
point on D, which contradicts our assumption.

Lemma 3.2. With the notation above, D = Q1 ∩ Q2 ∩ Q3. Furthermore, the Qi can be chosen to
be non-singular and D misses the singular locus of any quadric containing D.
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Proof. First note that if the statement of the lemma is false, then it is also false over the algebraic
closure of K. Therefore, it suffices to prove the lemma for algebraically closed K. By Petri’s the-
orem [ACGH85, p. 131], a canonical model of a non-hyperelliptic, non-trigonal curve of genus 5 is
the intersection of quadrics.

Next we show that a quadric Q ∈ Λ cannot be singular at D. Suppose that P0 ∈ D is a singular
point of some quadric Q ∈ Λ. Note that, if rkQ < 3, then there is a P3 ⊂ Q. Since D ⊂ Q too, we
have that D∩P3 is a curve. The space Λ restricted to that P3 would be at most a pencil of quadrics
and hence contain an intersection of two quadrics. This would imply that D has a component of
genus at most one, which contradicts that D is a curve of genus 5.

Hence, Q is of rank three or four, which implies that Q contains a P1 of planes through the
singular point P0 ∈ D. On each such plane V , the restriction of Λ is a pencil of conics and, hence,
has a base locus of degree four. Since P0 ∈ V ∩D is contained in that base locus, this realizes D as
a degree three cover of that P1. This contradicts that D is non-trigonal.

By Bertini’s theorem [Har77, Chapter III, Remark 10.9.2] it follows that a general member of Λ
is non-singular and hence we can choose the Qi to be non-singular.

Lemma 3.3. With the notation above, we have that ι acts trivially on Λ. Equivalently, for Q ∈ Λ,
we can find quadratic forms Q+ ∈ K[u, v,w] and Q− ∈ K[r, s] such that Q is given by the equation

Q+(u, v,w) +Q−(r, s) = 0.

Proof. First note that ι preserves D and, hence, preserves Λ. Suppose that there is Q ∈ Λ(K) such
that Q �= ι(Q). Then Q − ι(Q) ∈ Λ(K) is not zero. On the other hand, since ι acts trivially on
{r = s = 0}, we have that Q − ι(Q) restricted to {r = s = 0} is zero. Hence, Λ restricted to
{r = s = 0} is a pencil of plane conics and has a base locus of degree four. This yields four points
on D that are fixed points of ι, which contradicts the assumptions.

For an equation of any quadric in Λ(K), this means that the monomials ur, vr, . . . , ws cannot
occur.

4. Special divisor classes of degree four

As in the previous section, let D be a non-hyperelliptic curve of genus 5 over a field K of charac-
teristic zero with an unramified involution ι : D → D. We also adopt the other notation from the
previous section. We consider the scheme of special divisors

W 1
4 (D) = {D ∈ Pic4(D) : l(D) � 2}.

From the Riemann–Roch formula it follows that the residuation map D �→ [κD] − D defines an
involution on W 1

4 .
We denote the locus of singular quadrics in Λ by

Γ = {Q ∈ Λ : det(Q) = 0}.
By Lemma 3.3 we have a decomposition Γ = Γ+ ∪ Γ−, with equations

Γ+ : det(λ1Q
+
1 + λ2Q

+
2 + λ3Q

+
3 ) = 0,

Γ− : det(λ1Q
−
1 + λ2Q

−
2 + λ3Q

−
3 ) = 0.

From the definition it is clear that Γ is at least one-dimensional and, by Lemma 3.2, Γ is at most
one-dimensional too. In fact, it is straightforward to check that

Γ′ = {Q ∈ Λ : rkQ = 3} (1)

is zero-dimensional and is the singular locus of Γ.
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Lemma 4.1. Let D,D′ ∈ Div(D) be effective divisors of degree four with l(D) = 2. Then the
following hold.

(i) There is a unique 2-plane VD such that D = D · VD.

(ii) There is a unique quadric QD ∈ Λ which vanishes on VD. In fact, QD ∈ Γ.

(iii) If VD and VD′ meet in a line, then [D + D′] = [κD].
(iv) If QD = QD′ , then [D′ + D] = [κD] or [D − D′] = 0.
(v) If QD �= QD′ , then [D′ + D] �= [κD] and [D − D′] �= 0.

Proof. (i) The geometric formulation of the Riemann–Roch theorem [ACGH85, p. 12] states that,
for a divisor P1 + · · · + Pr with r � g, we have

l(P1 + · · · + Pr) = r + 1 − rk〈P1, . . . , Pr〉,
so one can take VD to be the plane spanned by the support of D over K.

(ii) Since the restriction of Λ to VD has a base locus of degree four, it is a pencil of conics. Hence,
there is a unique quadric QD ∈ Λ that vanishes on VD. Since a quadric in P4 containing a 2-plane
is necessarily singular, it follows that QD ∈ Γ.

(iii) Two 2-planes meeting in a line lie in a 3-plane, say W . Since D + D′ is effective of degree
eight it equals the hyperplane section D ·W . Hyperplane sections of canonical models are canonical
divisors. If D and D′ have intersecting support, then replace D′ by a linearly equivalent effective
divisor D′′. The divisors D′ and D′′ certainly have disjoint support, since otherwise D′ −D′′ would
be the divisor of a function of degree at most three, contradicting Lemma 3.1.

(iv) First suppose that QD is of rank four. Then QD is a cone over a non-singular quadric in P3. The
two line rulings on that quadric give rise to two plane ‘rulings’ on QD. Planes in opposite rulings
meet in a line and planes in the same ruling meet only in the singular point of QD. Hence, if VD and
VD′ belong to opposite rulings, then by part (iii) we have [D + D′] = [κD]. If VD and VD′ belong to
the same ruling, then both D and D′ are residual to an arbitrary divisor from the opposite ruling
and, hence, linearly equivalent.

If QD is of rank three, then QD is a cone over a singular quadric in P3, so there is one ruling
of planes on QD and any two of these meet in a line. It follows by part (iii) that [D + D′] = [κD].
Since this holds for any D′ with QD′ = QD, it follows that [D − D′] = 0.

(v) Given VD, there is a map
P1 → {planes in QD}

parametrizing the ruling on QD containing VD. Each of the planes V in the image of this map
cuts out an effective divisor D′ equivalent to D. By construction, QD′ = QD. This gives an explicit
realization of P1 � |D|, so this accounts for all divisors linearly equivalent to D.

Corollary 4.2. The map

λ : W 1
4 (D) → Γ
[D] �→ QD

is well defined and realizes W 1
4 (D) as a double cover of Γ, ramified over Γ′. The involution of W 1

4 (D)
over Γ corresponds to the residuation map D �→ [κD] −D.

5. The Prym variety in genus 3

We write F for the union of components of W 1
4 (D) above Γ−. If D ∈ F , then QD has a singular

point on {u = v = w = 0}. If the plane VD would not contain that singular point, then QD would
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contain a P3, but this contradicts that rk(QD) � 3 (by Lemma 3.2). Hence, π(VD) is a line and
π∗(D) = [κC ]. It follows that the map

j : F × F → Pic0(D)
D1,D2 �→ D1 + D2 − [κD]

(2)

maps F × F into ker(π∗).
Depending on the type of Γ−, this gives us different descriptions of Prym(D/C). The case

numbering is in correspondence with Table 1.

Case 0: Γ− is a doubled line. This case does not occur because assuming that it does, leads to
a contradiction. By choosing coordinates appropriately, Γ− is described by the equation λ2

1 = 0.
It follows that Q−

1 + λ2Q
−
2 + λ3Q

−
3 is non-singular for all λ2, λ3. It follows that Q−

2 = Q−
3 = 0.

Therefore, D has an intersection with {u = v = w = 0} and thus ι would be ramified.

Case 2: Γ− is a split singular conic, i.e. L1 ∪ L2, for lines L1, L2 over K. In that situation, F
consists of two components E1 and E2, covering L1 and L2, respectively. Each of these covers is
ramified at a degree four locus: the intersection of Li with the other components of Γ. Hence, E1

and E2 are curves of genus 1. In fact, each has a rational point above L1 ∩ L2, so we can identify
them with their Jacobians. We have the map

E1 × E2 → Jac(D)
(D1,D2) �→ D1 + D2 − [κD].

Note that (D1,D2) only maps to O if QD1 = QD2. This can only happen above the (ramified) point
L1 ∩ L2, so the map is an injection. Since E1 × E2 is connected and contains the origin, the image
is contained in Prym(D/C) and because E1 × E2 is an Abelian surface itself, we have the equality

Prym(D/C) ∼= E1 × E2.

Case 3: Γ− is a non-split singular conic. Then, over some quadratic extension K(
√
d) of K, the

conic Γ− splits and the analysis above applies. It follows that in that situation E1 and E2 are elliptic
curves that are conjugate with respect to K(

√
d)/K. By Weil restriction, it follows that

Prym(D/C) ∼= �K(
√

d)/K(E1).

Case 4: Γ− is a non-singular conic. In that case, Q−
1 , Q

−
2 , Q

−
3 are K-linearly independent and

therefore span the space of quadratic forms in r, s. Without loss of generality, we can assume

Q1 : Q+
1 (u, v,w) = r2,

Q2 : Q+
2 (u, v,w) = rs,

Q3 : Q+
3 (u, v,w) = s2.

It follows that Γ− is given by the equation 4λ1λ3 = λ2
2 and we have a parametrization

P1 → Γ−

(x : 1) �→ (1 : 2x : x2).

The curve F is a double cover of Γ−, ramified above Γ+ ∩ Γ−. Using the parametrization above we
obtain an equation of the form

det(Q+
1 + 2xQ+

2 + x2Q+
3 ) = δy2

for some δ ∈ K∗. Note that Γ+ ∩Γ− has no multiple points, since those would correspond to conics
in Λ of rank smaller than three, which contradicts Lemma 3.2. It follows that F is branched over
six points and, hence, is of genus 2.
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Table 1. Structure of the Prym variety.

Case C D Γ− Prym(D/C)

1 Hyperelliptic Hyperelliptic — Jac(F )
2 Hyperelliptic Non-hyperelliptic Split singular E1 × E2

3 Hyperelliptic Non-hyperelliptic Non-split singular �K(
√

d)/K(E)
4 Non-hyperelliptic Non-hyperelliptic Non-singular Jac(F )

In order to determine the correct value of δ, suppose that we have D ∈ F such that 2D �= [κD].
Then D is cut out by a system of planes on Q = λ(D), as defined in Corollary 4.2. If D is rational
over K, then Q and the system of planes must be as well (but note that D itself does not need to
contain rational divisors, nor does the system need to contain any planes rational over K).

If no rational D is available, then we base extend to K(F ) to ensure there is. We only want to
determine the value of δ modulo squares and since K is algebraically closed in K(F ), our results
will be valid as long as we find δ ∈ K.

Using the parametrization of Γ−, there is an (x : 1) ∈ P1(K) such that

Q− = −(r2 + 2xrs+ x2s2).

It follows that (0 : 0 : 0 : x : −1) is the singular point of Q and that Q is a cone over the quadric in
P3 = {s = 0} ⊂ P4 with coordinates (u : v : w : r) given by

Q+(u, v,w) − r2 = 0.

According to Lemma 2.5, this quadric has two rational systems of lines (and, therefore, a cone over
it has two rational systems of planes) if

−detQ+ = −det(Q+
1 + 2xQ+

2 + x2Q+
3 )

is a square in K. It follows that F is isomorphic to

F : y2 = −det(Q+
1 + 2xQ+

2 + x2Q+
3 ).

The map j : F × F → Pic0(D) defined in (2) gives rise to an isomorphism

Prym(D/C) � Jac(F ).

In Cases 2 and 3 above, the Jacobian of D contains elliptic curves E1, E2. In these cases, D is
in fact a double cover of genus 1 curves C1 and C2 with Jac(Ci) ∼= Ei.

The cover can be constructed explicitly in the following way. A linear system of singular quadrics
has a fixed singularity. Therefore, the Q ∈ Li ⊂ Γ− have a fixed singularity Pi on the line {u = v =
w = 0}. When we project D from Pi, we obtain an intersection of two quadrics in P3. Thus, this
presents D as a double cover of a genus 1 curve Ci.

Let σi ∈ AutK(D) denote the involution of D over Ci. We have ι = σ1σ2. In fact, the projection
(u : v : w : r : s) → (u : v : w) corresponds to D → D/〈σ1, σ2〉. This shows that the canonical model
of C is, in fact, of genus 0 and, hence, that C is hyperelliptic. This places us in the situation of § 2.2.

Theorem 5.1. Let K be a field of characteristic zero and let C be a curve of genus 3 over K
with an unramified double cover D/C. Then Prym(D/C) can be described as given in Table 1
depending on the nature of C and D. Models of the curves involved can be described as in Table 2.
For hyperelliptic curves, it is assumed they are hyperelliptic over a P1 over K.
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Table 2. Models of involved curves.

Case Models

1 C: y2 = Q(x)R(x) where deg(Q) = 2, deg(F ) = 6
D: y2

1 = Q(x) and y2
2 = R(x)

F : y2
2 = R(x)

2 C: y2 = R1(x)R2(x) where deg(R1) = deg(R2) = 4
D: y2

1 = R1(x) and y2
2 = R2(x)

E1: Jac(y2
1 = R1(x))

E2: Jac(y2
2 = R2(x))

3 C: y2 = NK(
√

d)[x]/K[x]R(x) where deg(R) = 4
D: (x, y0, y1) satisfying (y0 + y1

√
d)2 = R(x)

E: Jac(y2 = R(x))

4 C: Q+
1 (u, v, w)Q+

3 (u, v, w) = Q+
2 (u, v, w)2 with Q+

i quadratic forms

D:


Q+

1 (u, v, w) = r2

Q+
2 (u, v, w) = rs

Q+
3 (u, v, w) = s2

F : y2 = −det(Q+
1 + 2xQ+

2 + x2Q+
3 )

6. Mapping D into Prym(D/C)

As was shown in § 5, if C is hyperelliptic, then D is a cover of the curves that span Prym(D/C).
Hence, it is obvious how to map D into Prym(D/C). In this section we show how D can be mapped
into Prym(D/C) if C is non-hyperelliptic.

First, if we have a rational point P0 ∈ D(K), we can embed D in Jac(D) via the Abel–Jacobi map

D → Jac(D)
P �→ [P − P0].

When we combine this map with the projection map (id∗ − ι∗) : Jac(D) → Prym(D/C), we obtain
the Abel–Prym map

D → Prym(D/C)
P �→ [P − ι(P )] − [P0 − ι(P0)].

In general, we do not have a rational base point P0 at our disposal. We give an alternative
map, based on the description of Prym(D/C) as Jac(F ) for some component F of W 1

4 (D). This
map turns out to correspond to 2(ι∗ − id∗) : Pic1(D) → Prym(D/C). Thus, the image of D is a
translation of twice an Abel–Prym embedding of D.

Let P0 be a point on D and let L be the tangent line of C at π(P ). Then L · C, being a linear
section of a canonical model, determines an effective canonical divisor on C. Consequently, for some
P1, P2 ∈ D we have that π∗(L ·C) = 2P0 + 2ι(P0) +P1 + ι(P1) +P2 + ι(P2) is an effective canonical
divisor on D.

We use the notation from § 3. Furthermore, we write TangD(P ) for the tangent line of D at
P and for a quadric Q ⊂ Pn and T1, T2 ∈ Pn we write T t

1QT2 for the matrix product, where Q is
identified with its representing (n + 1) × (n + 1) symmetric matrix and T1, T2 are interpreted as
(n+ 1)-dimensional column vectors of projective coordinates.
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Lemma 6.1. With the notation as above, let P be a point in D(K).

(i) There are two divisors D1,D2 on D (with D1 = D2 in degenerate cases) such that Di � 2P
and [Di] ∈ F (K) ⊂W 1

4 (K).

(ii) Let P1, P2 be the points on D such that D1 = 2P + P1 + P2. Then D2 = 2P + ι(P1) + ι(P2).

(iii) Let T ∈ TangD(P ) with T �= P . If D ∈ F with D = 2P + P1 + P2, then x = x∗(D) satisfies

(T t ·Q1 · T ) + 2x(T t ·Q2 · T ) + x2(T t ·Q3 · T ) = 0.

(iv) The map

ϕ : D(K) → Div2(F/K)
P �→ [D1] + [D2]

is defined over K.

Proof. (iii) Note that D ∈ F implies l(D) = 2. By Lemma 4.1 we have TangD(P ) ⊂ VD ⊂ QD. This
implies that T ∈ QD for some (and, hence, for all) T ∈ TangD(P ) with T �= P . Using that Γ− � P1

via (1 : 2x : x2) �→ (x : 1), we get the desired equation.

(i) From part (iii), we know that there are two quadrics Q ∈ Γ− containing TangD(P ). We show that
such a quadric is QD for some D ∈ F such that D � 2P . Consider the plane V spanned by TangD(P )
and a singular point (0 : 0 : 0 : x : −1) of Q. Then V ⊂ Q. The proof of Lemma 4.1(v) points out
that then D = V · D represents a divisor class in W 1

4 (D) and that Q = QD. By construction, we
have D � 2P .

If there is another divisor D′ � 2P with QD′ = Q, then D−D′ or D− ι∗(D′) is principal. Taking
the image under π∗ would give a divisor of a degree two function on C, which contradicts that C is
not hyperelliptic.

(ii) Note that π∗(D2) = π∗(D1) = C · TangC(π(P )). If D2 = 2P + P1 + ι(P2), then 2P + P1 must
lie on the line VD1 ∩ VD2 . Since D is canonical, it follows that l(2P + P1) = 2. This contradicts
Lemma 3.1. It follows that D2 must be as stated.

(iv) Verify that σ(ϕ(P )) = ϕ(σP ) for σ ∈ Gal(K/K) via direct computation.

Proposition 6.2. Let C be a non-hyperelliptic genus 3 curve over a field K of characteristic zero
and let D/C be an unramified double cover with ι : D → D the associated involution. Let F be the
genus 2 curve given by Theorem 5.1 such that Jac(F ) = Prym(D/C) and let ϕ : D → Div2(F ) be
the map defined in Lemma 6.1. Then we have

2(ι∗ − id∗) : D(K) → Prym(D/C)(K)
P �→ [ϕ(P ) − κF ].

Proof. Using Lemma 6.1(ii), we have ϕ(P ) = 4P + P1 + P2 + ι(P1) + ι(P2). Using that [κD] =
[2P + 2ι(P ) +P1 +P2 + ι(P1) + ι(P2)], we have [ϕ(P )− κD] = 2P − 2ι(P ) as an element of Pic(D).
Note that [κD] = [D + ι(D)] for any [D] ∈ F ⊂ W 1

4 (D), so identifying Pic(F ) ⊂ Pic(D), we get
[κF ] = [κD]. This proves the proposition.

Remark 6.3. It is worth noting that the map (ι∗−id∗) : D → ker(π∗) does not mapD to Prym(D/C).
To see this, note that Prym(D/C) = Jac(F ) for some genus 2 curve F . Any degree zero divisor class
on F can be represented as the difference of two points on F , so we have that Prym(D/C) = F−F . If
P ∈ D(K) has [ι(P )−P ] ∈ Prym(D/C), then we can find [D1], [D2] ∈ F (K) such that [ι(P )−P ] =
[D1 − D2]. Since F ⊂W 1

4 (D), we can choose effective representatives D1,D2 with a given point in
the support. Hence, we can assume that D1 = ι(P ) + P2 + P3 + P4 and D2 = P + P5 + P6 + P7.
Note that P2, P3, P4 are not collinear, because if they were, then the geometric formulation of the
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Riemann–Roch theorem [ACGH85, p. 12] would imply that l(P2 + P3 + P4) = 2, so D would be
trigonal or hyperelliptic.

Therefore, P2, P3, P4 already determine the plane VD1 . If P5 + P6 + P7 = P2 + P3 + P4, then
we would have that both P and ιP lie in the same plane VD1 , which would yield a g2

5 on D.
However, then the Riemann–Roch theorem tells us that κD − P − ι(P ) − P2 − P3 − P4 would be a
g1
3 and therefore D would be trigonal.

It follows that the non-zero divisor P2 +P3 +P4 −P5 −P6 −P7 is linearly equivalent to zero, so
D is hyperelliptic or trigonal, contradicting Lemma 3.1.

Lemma 6.1 together with Proposition 6.2 provide an explicit way of mapping D into an Abelian
surface Prym(D/C) � Jac(F ). By slight abuse of notation, we write ϕ : D → Jac(F ).

For explicit computations, Abelian surfaces have proven to be rather unwieldy. In many cases,
enough of the group variety structure remains in the associated Kummer surface K = Jac(F )/〈−1〉.
The surface K is naturally expressed as a quartic surface in P3. We use the map2 from [CF96, 3.1]

k : Jac(F ) → K
[(x1, y1) + (x2, y2) − κF ] �→ (1 : x1 + x2 : x1x2 : . . . ) = (k1 : k2 : k3 : k4)

which expresses Jac(F ) as a double cover of K, ramified at Jac(F )[2], which maps to the singular
locus of K. The equation of K is of the form

K : (k2
2 − 4k1k3)k2

4 +K3(k1, k2, k3)k4 +K4(k1, k2, k3) = 0,

where K3 and K4 are homogeneous forms of degrees three and four, respectively (see [CF96] for
explicit formulae). Hence, K is itself a double cover of the projective plane with coordinates (k1 :
k2 : k3) outside the point (0 : 0 : 0 : 1).

Since ι∗ ◦ 2(ι∗ − id∗) = −1 ◦ 2(ι∗ − id∗), we see that D → kϕ(D) factors through D/〈ι〉 = C.
Furthermore, if D ∈ Div2(F ) is effective and (k1 : k2 : k3 : k4) = k([D − κF ]), then x∗(D) satisfies

k3 − k2x+ k1x
2 = 0.

This gives us a procedure to compute many pointwise images for kϕ.

(1) Choose an extension L and a point P ∈ D(L) (since D is given as a degree eight curve, there
is an abundance of suitable degree eight extensions).

(2) Following Lemma 6.1, choose T ∈ TangD(P ) and set

(k1, k2, k3) = (T t ·Q1 · T,−2T t ·Q2 · T, T t ·Q3 · T ).

(3) If k3 − k2x + k1x
2 is irreducible of degree two over L, then there is a unique point (k1 : k2 :

k3 : k4) ∈ K(L) that has an L-rational preimage in Jac(F ). This is the desired image.

The irreducibility in the last step corresponds to P1, P2 from Lemma 6.1(ii) being quadratic conju-
gate over L. In that case, the divisor P1 + ι(P2) is not L-rational and, hence, rationality tells which
divisor to pick. If P1, P2 are themselves L-rational, then the above procedure does not compute
sufficient information to distinguish between 2P + P1 + P2 and P + ι(P ) + P1 + ι(P2).

The procedure above yields a way to compute the equations of kϕ(D). First, one gathers many
pointwise images for points over extensions L and then one interpolates for low degree rational
forms vanishing on those points. As we will see, kϕ(D) is the intersection of K with another degree
four surface.
2If F is given by the equation y2 = f0 + f1x + f2x

2 + · · · + f6x
6, then

k4 =
2f0 + f1k2 + 2f2k3 + f3k2k3 + 2f4k

2
3 + f5k2k

2
3 + 2f6k

3
3 − 2y1y2

(x1 − x2)2
.
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Lemma 6.4. With the notation above, the image of D under k ◦ ϕ is of degree at most 16.

Proof. We compute the degree of the image by computing the degree of the intersection with k1 = 0.
By change of basis we can assume that Q3 is of rank four. According to Lemma 6.1(iii), a point
P ∈ D has k1 = 0 if Q3 contains the plane VD for some D � 2P . The two plane rulings on Q3 give
rise to two degree four covers D → P1, where the fibres are the divisors cut out by the VD in the
ruling. From Riemann–Hurwitz it follows that for each ruling there are 16 ramified fibres, i.e. D

of the form 2P + P1 + P2. Hence, we see that there are 32 points on D (counted with appropriate
multiplicity) that land on k1 = 0. Note that the image of D under kϕ factors through D/〈ι〉, so the
degree of kϕ(D) is at most 16.

The procedure above has been implemented as a routine for the computer algebra system
MAGMA [BCP97]. See [Bru04].

7. The fibre of the Prym map in genus 3

Given a genus 2 curve F , we have an Abelian variety Jac(F ) and a quartic surface Jac(F )/〈−1〉 =
K ⊂ P3, with a singular locus consisting of the image of Jac(F )[2]. There is an obvious way of
realizing Jac(F ) as a Prym variety of a non-hyperelliptic curve of genus 3. Pick a plane V ⊂ P3 such
that C := V ∩K is a non-singular quartic curve. It follows that C stays away from the singular points
of K and thus does not meet the ramification locus of k : Jac(F ) → K. Therefore, D = k−1(C) is
an unramified cover of C. Either D is connected and, hence, of genus 5 or D is the disjoint union
of two copies of C. Note, however, that C is of genus 3 and, hence, has to be special to fit in an
Abelian surface.

In fact, as Verra [Ver87] proves, over an algebraically closed field, essentially any occurrence of
Jac(F ) as Prym(D/C) occurs for C isomorphic to a linear section of K. The addition of Jac(F )[2]
induces automorphisms of K which are induced by linear transformations of P3. He shows that the
fibre of the Prym map (D/C) �→ Prym(D/C) over Jac(F ) is a blow-up of P̂3/Jac(F )[2], where P̂3

is the space of plane sections of K.
Verra also proves that genus 5 curves D ⊂ Jac(F ) of the form above are, up to translation by a

2-torsion point, Abel–Prym embeddings. We give a short description of a procedure to recover

C : Q+
1 (u, v,w)Q+

3 (u, v,w) = Q+
2 (u, v,w)2

from a plane section of the Kummer surface K = Jac(F )/〈−1〉 for a curve F of genus 2.
First we review some of the basic geometry of Jacobians of curves of genus 2. Let F be a curve

of genus 2. In [CF96], Cassels and Flynn define a projective model of Jac(F ) in P15 with coordinates
(z0 : · · · : z15) with (among others) the following properties.

• There is a symmetric theta divisor Θ on Jac(F ) such that

〈k1, . . . , k4〉 = |2Θ|
and

〈z0, . . . , z15〉 = |4Θ|
with

(k1 : k2 : k3 : k4) = (z14 : z13 : z12 : z5).

• The coordinates (k1 : k2 : k3 : k4) provide a model of the Kummer surface K = Jac(F )/〈−1〉.
• With respect to the action of [−1] ∈ Aut(Jac(F )) on |4Θ|, we have that

〈z0, z3, z4, z5, z10, . . . , z15〉 = 〈k2
1 , k1k2, . . . , k

2
4〉
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is the +1-eigenspace and

〈g0, . . . , g5〉 := 〈z1, z2, z6, z7, z8, z9〉
is the −1-eigenspace.

Let V = {k4 = v1k1 + v2k2 + v3k3} ⊂ P3 be a plane such that C = K∩V is a non-singular plane
section and let (u : v : w) = (k1 : k2 : k3) be coordinates on V (since (0 : 0 : 0 : 1) is a singular point
of K, assuming this suggested form of V is not a restriction). On V , we have that k4 = k4(u, v,w)
is a linear form in u, v,w. The curve C is a non-singular degree four plane curve. It follows that
C is of genus 3 and that (u : v : w) gives a canonical model of C, i.e. that 〈u|C , v|C , w|C〉 = |κC | for
some canonical divisor κC of C. Let D be the pull-back of C along Jac(F ) → K and let κD be the
pull-back of κC . It is a straightforward computation to check that the restriction of 〈z0, . . . , z15〉 to
D gives a linear system contained in |κD| and that generically it gives the complete linear system.

Using the quadratic relations between the zi (see [CF96], [Fly96] and [Fly90] for the explicit
formulae), we can express any gigj as a degree four form in k1, . . . , k4. Hence, we obtain that

(a0g0 + · · · + a5g5)2 = G(a0, . . . , a5; k1, . . . , k4),

where G is homogeneous of degrees two and four in the ai and the kj , respectively.

Insisting that

G(a0, . . . , a5;u, v,w, k4(u, v,w)) = u2Q(u, v,w)

for some quadratic form Q gives nine quadratic equations in a0, . . . , a5. However, a solution to these
equations corresponds exactly to a form Q(u, v,w) on C that becomes a square when pulled back
to D. We know that this happens for exactly two forms Q+

1 (u, v,w) = r2 and Q+
3 (u, v,w) = s2, so

these equations determine a degree two locus in (a0 : · · · : a5).
Solving these equations allows us to determine Q+

1 (u, v,w) and Q+
3 (u, v,w) up to a scalar. The

quadratic form Q+
2 (u, v,w) is then easily determined up to a scalar because this corresponds to the

conic through the intersection of Q+
1 (u, v,w)Q+

3 (u, v,w) = 0 with C. It is then straightforward to
find scalars λ, µ such that

λQ+
1 (u, v,w)Q+

3 (u, v,w) − µQ+
2 (u, v,w)2

equals the equation for C or, equivalently, that

λQ+
1 (u, v,w)µQ+

3 (u, v,w) − (µQ+
2 (u, v,w))2

defines the curve C.

Note that we may find Q+
i that are quadratic conjugate over the base field we are working with,

because of the arbitrary coordinate choice we made when insisting that G = u2Q(u, v,w). The
analysis from § 3 guarantees us that by change of basis (corresponding to Aut(Γ−) or, equivalently,
fractional linear transformations of x) we can in fact obtain rational Q+

1 , Q
+
3 . This yields the follow-

ing amusing result, which is equivalent to saying that all Jacobians of genus 2 curves over Q occur
as Prym varieties of non-hyperelliptic curves of genus 3 over Q.

Proof of Proposition 1.4. Take the curve of genus 2

F : y2 = f(x)

and take a sufficiently general plane section of the associated Kummer surface. Using the construc-
tion above, we obtain a cover D → C such that Prym(D/C) = Jac(F ). Section 3 tells us that F
must be of the described form and the outline above explains how one can find the representation
explicitly.
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In fact, the model of C as a plane section of a Kummer surface K completely encodes the 28
bitangents of C as well. The 16 tropes of K cut out bitangents on C. The remaining 12 bitangents
come in pairs, making up the six singular conics in the family Q+

1 + 2xQ+
2 + x2Q3.

This gives us a way to search for genus 3 curves with all bitangents rational. First, start with a
Kummer surface K with 16 rational tropes (i.e. the Kummer surface of the Jacobian of a genus 2
curve with six rational Weierstraß points). Then, select a plane V such that C := V ∩ K is of
the form

Q+
1 (u, v,w)Q+

3 (u, v,w) = Q+
2 (u, v,w)2,

where the singular conics in Q+
1 + 2xQ+

2 + x2Q3 are split.

Remark 7.1. These conics are all split or non-split simultaneously. In order to see that, we have to
look a bit closer to the relation between Jac(C)[2] and pairs of bitangents. Each of the 63 non-trivial
2-torsion points can be represented by a pair of bitangents in six ways. Furthermore, the bitangents
of C split over the same extension as Jac(C)[2].

The 16 tropes give rise to at least
(16

2

)
/6 = 20 non-trivial rational points in Jac(C)[2]. Thus,

Jac(C)[2](K) ⊃ (Z/2)5 and has index at most two in Jac(C)[2](K). It follows that the action of
Galois on Jac(C)[2](K) factors through a group of order at most two. Hence, if not all bitangents
are rational over K, then they must be conjugate over the one quadratic extension corresponding
to this group of order two.

Example
A curve of genus 3 with all 28 bitangents rational. Take

F : y2 = x(x− 2)(x − 1)(x+ 1)(x+ 3).

The corresponding Kummer surface is

K : 36k4
1 + 84k3

1k3 − 24k2
1k2k3 − 12k2

1k2k4 + 65k2
1k

2
3 + 4k2

1k3k4 − 24k1k
2
2k3 + 4k1k2k

2
3

+ 14k1k2k3k4 + 14k1k
3
3 − 4k1k

2
3k4 − 4k1k3k

2
4 + k2

2k
2
4 − 2k2k

2
3k4 + k4

3 = 0.

We take the plane section
V : k1 + k2 + tk3 + k4 = 0.

Projecting onto (u : v : w) = (k1 : k2 : k3), we obtain

C : Q+
1 (u, v,w)Q+

3 (u, v,w) = Q+
2 (u, v,w)2,

where

Q+
1 = (36t− 82)u2 + (6t− 80)uv + (−11t+ 14)uw + (6t+ 2)v2 + (t+ 14)vw + tw 2,

Q+
2 = (−3t+ 40)u2 +

(
−1

2
t− 9

)
uv +

(
−6t2 +

11
2
t+ 51

)
uw +

(
−1

2
t− 7

)
v2

+
(
−1

2
t2 − 2t+ 2

)
vw +

(
−t2 +

1
2
t+ 7

)
w2,

Q+
3 = (6t+ 2)u2 + (t+ 14)uv + (t2 + 2t− 4)uw + tv2 + (2t2 − t− 14)vw + (t3 − t2 − 8t+ 2)w2.

The 16 bitangents coming from the tropes are given by the polynomials

u, w, 4u− 2v + w, 5u+ 3v + (t+ 1)w, 4u+ v + (t+ 2)w, u+ 7v + (t− 1)w,
u− v + w, 7u+ v + (−t− 3)w, 9u+ 3v + w, 7u+ v + (t+ 1)w,
5u− v + (−t+ 1)w, u− v + (−t+ 3)w, 2u− 4v + (−t+ 2)w,
10u− 2v + (t− 4)w, u+ v +w, 2u+ 2v + tw .
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The remaining 12 bitangents come from the six singular quadrics. They are split if 196 + 20t− 23t2

is a square. Therefore, we substitute

t :=
4s2 − 10s − 6
2s2 + s+ 3

and obtain the bitangents given by the polynomials

(s+ 21)u + (7s + 3)v + (s− 3)w, (10s + 11)u+ (−2s + 5)v + (−2s− 1)w,

(8s3 + 2s2 + 11s− 3)u+ (2s3 + 5s2 + 5s+ 6)v + (8s3 + 17s2 − s− 6)w,

(10s3 − s2 + 12s− 9)u+ (−2s3 − 7s2 − 6s − 9)v + (−2s3 + 5s2 + 30s − 9)w,

(4s3 + 4s2 + 7s+ 3)u+ (2s2 + s+ 3)v + (2s2 + 3s− 3)w,

(2s3 − 5s2 − 9)u+ (−2s3 − 3s2 − 4s− 3)v + (2s3 + 7s2 + 4s− 1)w,

(2s3 + 7s2 + 6s+ 9)u+ (2s3 + s2 + 3s)v + (2s3 + s2 − 3s)w,

(4s3 + 10s2 + 10s + 12)u+ (−2s3 + s2 − 2s+ 3)v + (s3 + 4s2 − 5s)w,

(4s3 + 16s2 + 13s + 21)u+ (−4s3 − 5s+ 3)v + (4s3 + 16s2 − 3s− 3)w,

(10s3 + 23s2 + 24s + 27)u + (6s3 + s2 + 8s− 3)v + (6s3 − 5s2 − 20s+ 7)w,

(14s3 + 13s2 + 24s + 9)u+ (2s3 − 5s2 − 9)v + (−10s3 − 35s2 + 9)w,

(4s3 − 8s2 + s− 15)u + (4s3 + 4s2 + 7s + 3)v + (4s3 − 8s2 − 23s + 9)w.

8. Applications to finding rational points on curves of genus 3

In this section, we will apply the concepts of covering collections (see [Bru02, BF05, CW32, Wet97])
and Chabauty methods (see [Col85, Fly97]) to a curve C of genus 3 with an unramified double
cover D. We end up determining the rational points on a curve of genus 5 inside the Jacobian of a
curve F of genus 2. The hardest piece of information we need is the Mordell–Weil group of Jac(F ).
Computationally, this is much more attractive than applying Chabauty methods directly to an
embedding of C in its own Jacobian. In the latter case, we would have to analyze the Mordell–Weil
group of Jac(C).

In addition, the techniques we present here do not depend on the existence of an embedding of C
in Jac(C). As a result, we see that we can even use the construction to exhibit part of a local–global
obstruction for C and D having rational points.

Let K be a number field and let C be a non-hyperelliptic curve of genus 3 with an unramified
double cover D over K. As we have seen in § 3, it follows that there exists a smooth plane model of
C of the form

Q1(u, v,w)Q3(u, v,w) = Q2(u, v,w)2,

where Q1, Q2, Q3 ∈ K[u, v,w] are quadratic forms. Without loss of generality, we can assume that
Q1, Q2, Q3 have integral coefficients. Furthermore, we have a collection of twists of D, each covering
C, of the form

Dδ :


Q1(u, v,w) = δr2,

Q2(u, v,w) = δrs,

Q3(u, v,w) = δs2.

We write O = OK for the ring of integers of K and we consider the projective OK -scheme X
corresponding to the ideal I = (Q1, Q3, Q1Q3 −Q2

2)OK [u, v,w]. Since C is non-singular as a curve
over K, we have that X ×OK

Spec(K) is empty. Let S be a finite set of primes of O containing
all primes of even residue characteristic such that for any prime p of OK not in S, we have that
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X ×OK
Spec(OK/p) is empty. Such a set S is easily computed. Let Resv(P,Q) be the resultant of

the polynomials P,Q with respect to the variable v. Compute

Resu(Resv(Q1, Q3),Resv(Q1, Q2)) = λw16.

One can take S to be the set of prime divisors of λ, together with the primes above two. One may
obtain a smaller set by intersecting such sets S obtained from all different combinations in which
such resultants could be taken. It is straightforward to check that for any point P ∈ C(K) and any
p /∈ S we have that νp(Q1(P )) ∈ 2Z or νp(Q3(P )) ∈ 2Z, because otherwise P would reduce to a
point on X ×OK

Spec(OK/p). We recall the definition

K(S, 2) := {δ ∈ K∗ : vp(δ) ≡ 0 mod 2 for all primes of K satisfying p /∈ S}/K∗2.

This is a finite subgroup of K∗/K∗2 and we will identify its elements with a finite set of represen-
tatives in K∗.

We obtain the standard lemma, which determines to the twists Dδ to which rational points of
C may lift.

Lemma 8.1. Let C and Q1, Q2, Q3 and S be as above. If (u0 : v0 : w0) ∈ C(K), then there exists
δ ∈ K(S, 2) and r0, s0 ∈ K such that

(u0 : v0 : w0 : r0 : s0) ∈ Dδ(K).

Thus, in order to determine the rational points of C, it suffices to determine the rational points
of Dδ for all δ ∈ K(S, 2). From § 4 we know that for

Fδ : y2 = −δ det(Q1 + 2xQ2 + x2Q3),

we have Prym(Dδ/C) � Jac(Fδ) and Proposition 6.2 gives an explicitly computable map ϕ : Dδ →
Jac(Fδ). We can then proceed to determine ϕ(Dδ(Q)) ∩ Jac(Fδ)(Q) or rather, as it turns out,
k(Jac(Fδ)(Q)) ∩ kϕ(Dδ)(Q).

Example
Chabauty using Prym varieties.

Proof of Proposition 1.1. See [Bru04] for a transcript of the computer calculations. Applying the
method described above we verify that we can take S = {1, 2, 5} and local considerations show that
Dδ(Q) = ∅ for δ �= −1. We find

F : y2 = x5 + 8x4 − 7x3 − 7
2x

2 + 5x− 1

and
Jac(F )(Q) = 〈D〉 = 〈[(2

√
2 − 2, 17

√
2 − 25) + (−2

√
2 − 2,−17

√
2 − 25) − 2∞]〉.

The equation of the associated Kummer surface is

K : 11k4
1 − 28k3

1k2 + 70k3
1k3 + 4k3

1k4 + 32k2
1k

2
2 − 164k2

1k2k3 − 10k2
1k2k4 + 171k2

1k
2
3

+ 14k2
1k3k4 + 4k1k

3
2 − 20k1k

2
2k3 + 14k1k2k

2
3 + 14k1k2k3k4 + 14k1k

3
3 − 32k1k

2
3k4

− 4k1k3k
2
4 + k2

2k
2
4 − 2k2k

2
3k4 + k4

3 = 0

and, using the interpolation procedure described in § 6, we find that the model of C in K given by
kϕ(D) is given by the polynomial equation

ψ = 429 136k4
1 + 1330 784k3

1k3 + 567 232k3
1k4 − 159 200k2

1k
2
2 − 2 866 016k2

1k2k3 + 33440k2
1k2k4

+ 4248 768k2
1k

2
3 + 27552k2

1k3k4 + 881 664k2
1k

2
4 + 288 072k1k

3
2 − 777 432k1k

2
2k3 − 256 928k1k

2
2k4

+ 244 832k1k2k
2
3 + 907 424k1k2k3k4 − 745 472k1k2k

2
4 + 593 152k1k

3
3 − 991 488k1k

2
3k4
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+ 357 440k1k3k
2
4 + 573 440k1k

3
4 + 34895k4

2 − 69 720k3
2k3 + 1120k3

2k4 + 151 704k2
2k

2
3

− 364 448k2
2k3k4 + 226 032k2

2k
2
4 − 251 552k2k

3
3 + 569 376k2k

2
3k4 + 10752k2k3k

2
4 − 315 392k2k

3
4

+ 156 704k4
3 − 167 552k3

3k4 − 283 136k2
3k

2
4 + 200 704k3k

3
4 + 114 688k4

4 = 0.

Using that ϕ : D → Jac(F ) is defined over Q and that Jac(F )(Q) = 〈D〉, we find that a rational
point P ∈ ϕ(D)(Q) must be of the form P = nD for some n ∈ Z. Furthermore, considering F and
K over F13, we find that any such point must have n ≡ ±1 mod 10.

Since Jac(F ) is an algebraic group, we can pick a set of local coordinates z1, z2 on Jac(F ) around
the origin O. We can find formal power series vectors Log(z1, z2) ∈ Q[[z1, z2]]2 and Exp(l1, l2) ∈
Q[[l1, l2]]2 such that for any two points P,Q ∈ Jac(F )(Q[[z1, z2]]) we have

(z1(P +Q), z2(P +Q)) = Exp(Log(z1(P ), z2(P )) + Log(z1(Q), z2(Q))).

Furthermore, if p > 2 is a prime of good reduction then for points in the kernel of reduction

Jac(F )(Qp)(1) = ker(Jac(F )(Qp) → Jac(F )(Fp)),

these power series actually converge and yield an isomorphism

Jac(F )(Qp)(1) � (pZp)2.

Using this, we obtain a power series

ψ(N) = ψ(k((1 + 10N)D)) = ψ(k(D + Exp(NLog(10D)))),

say,

ψ(N) = ψ0 + ψ1N + ψ2N
2 + · · · ∈ Z13[[N ]],

with ψi ≡ 0 mod 13i such that, if P = (1 + 10N)D is a point on ϕ(D)(K), then ψ(N) = 0.
Note that the values of ψ(k(D)), ψ(k(11D)) determine ψ0, ψ1 mod 132, so one does not need an

explicit description of the formal group law on Jac(F ) to obtain an approximation to ψ(N).
Since ψ(k(D)) = 0 and ψ(k(11D)) �≡ 0 mod 132, it follows that ψ1 �≡ 0 mod 132. From

Straßmann’s lemma it follows that ψ(N) has at most one zero for N ∈ Z13 (i.e. N = 0). This
implies that ϕ(D) has only one rational point which reduces to D modulo 13. By symmetry, it
follows that there is also only one rational point reducing to −D modulo 13. On the other hand,
the computation over F13 shows that all rational points of ϕ(D) reduce to ±D modulo 13. Hence,
it follows that

ϕ(D)(K) = {D,−D}
and that C has only one rational point, being (0 : 1 : 0).

Example
Computations in the Brauer–Manin obstruction. Since the embedding of D in Prym(D/C) is in-
dependent of D having any rational points, we can also apply this construction to curves D that
have no rational points, but do have rational points everywhere locally. Using information obtained
from the reduction of Jac(F ) at various primes, we might actually succeed in proving that D(Q) is
empty. Under the assumption that Jac(D) has a finite Tate–Shafarevich group, this corresponds to
computing part of the Brauer–Manin obstruction according to [Sch99].

We consider the curve

C : (v2 + vw − w2)(uv + w2) = (u2 − v2 − w2)2.

It is easily checked that C has points everywhere locally. Furthermore, the set of primes S described
above can be taken to be {2} and Dδ only has points everywhere locally for δ = 1.
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Proof of Proposition 1.3. See [Bru04] for a transcript of the computer calculations. The fact that
D(Qp) and D(R) are all non-empty can be verified with a straightforward computation. To prove
that D(Q) = ∅ we map D into Prym(D/C) = Jac(F ), where

F : y2 = x6 + 2x5 + 15x4 + 40x3 − 10x.

We write ∞+ and ∞− for the two points above x = ∞ on the desingularization of F . We find that

Jac(F )(Q) = 〈D1,D2〉 � Z × Z,

where

D1 = [∞+ −∞−],

D2 =
[{
x2 +

2
5
x+

1
41

= 0, y =
4683
2050

x− 281
410

}
· F − κF

]
.

Considering Jac(F ) modulo 7, we find

ϕ(D)(Q) ⊂ {±9D1,±22D1,±23D1} + 〈55D1,D2 − 15D1〉
and considering Jac(F ) modulo 11, we find

ϕ(D)(Q) ⊂ {±33D1} + 〈93D1,D2 + 46D1〉.
Considering Jac(F ) modulo 112, we find that the two residue classes modulo 11 lift to 11 residue
class modulo

〈11 · 93D1, 11 · (D2 + 46D1)〉.
We combine the information modulo 112 and 7 and express it as congruences modulo

〈55D1,D2 − 15D1, 11 · 93D1, 11 · (D2 + 46D1)〉 = 〈11D1,D2 − 4D1〉.
We obtain

from 7 : ϕ(D)(Q) ⊂ {0,±D1,±2D1} + 〈11D1,D2 − 4D1〉
from 112 : ϕ(D)(Q) ⊂ {±4D1} + 〈11D1,D2 − 4D1〉.

It follows that D(Q) = ∅ and therefore that C(Q) is empty as well.
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