
Diversifying to Reduce Conservation
Outcome Uncertainty in Multiple
Environmental Objectives

Amy Ando, Aparna Howlader, and Mindy Mallory

In this paper we develop tools and intuition for portfolio optimization for multiple
conservation objectives. We show it is more efficient to optimize a conservation
portfolio for multiple goods jointly, allowing planners to exploit information
about multiple dimensions of correlations between goods. We identified a new
type of correlation that is important for optimal conservation planning of
multiple objectives under uncertainty: scenario correlation between objectives in
a given part of the landscape. The conservation planner faces a different kind of
problem if the objectives at hand respond similarly rather than differently to
climate shocks in subregions of the planning area.
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Introduction

Climate change is happening. Scientific consensus tells us that some change is
unavoidable (Pielke et al. 2007), and likely scenarios will induce irreversible
detrimental changes such as frequent droughts and sea level rise (Solomon
et al. 2009). Plausible changes threaten 15–35 percent of all species with
extinction (Thomas et al. 2004). Forecasts of climate change are uncertain for
many reasons (Moss et al. 2010), and thus the effects of climate change on
habitat quality and species’ ranges are also uncertain. How can we best
invest the resources we have to protect species diversity and environments
that provide many ecosystem services when we do not know where any of
the features we seek to protect will be in the future?
This paper provides an overview of lessons about conservation planning

learned from previous research (displayed schematically in Figure 1). Rich
bodies of work have provided insights into conservation planning without
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considering uncertainty, in cases of single and multiple conservation objectives.
Some research has begun to inform how to plan conservation networks for a
single objective in the face of uncertainty. However, while technical literature
in finance has studied algorithms for multiple objective optimization that
minimizes uncertainty, little has been done to provide guidance for that
endeavor in the world of natural resource conservation.
After we survey research that has already been done on conservation

planning, we introduce a new framework for multiple-objective conservation
planning under uncertainty. We demonstrate some features of this approach
in a stylized example. Finally, we outline a typology of correlations among
conservation objectives that can help shape intuition about this complex
optimization problem in conservation planning.

Conservation Planning Lessons Learned from Previous Research

Single Objective with Certainty

Research on conservation reserve site selection began with efforts to choose
sites to accomplish a single conservation objective. In this early work,
uncertainty was implicitly assumed away, and conservation sites were chosen
by applying algorithms to current or historic data on ecological and economic
features of the landscape.
Several reviews have already been written about this area of research.

Newbold and Siikamaki (2015) give an excellent overview of the actual
programs used for single-objective conservation planning and how they have
evolved over time, and Boyd, Epanchin-Niell, and Siikamäki (2015)

Figure 1. Research on Conservation Planning and Uncertainty
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thoroughly review the body of research on return on investment conservation
site-selection research. Our purpose here is not to replicate those reviews in
detail. Instead, we highlight a few particularly notable pieces of intuition
about conservation planning that have emerged from that body of work and
provide just a few examples of papers that developed those ideas.
Early research in conservation planning was dominated by biologists and

ecologists and showed that optimal conservation frameworks choose lands to
protect that had large value of the conservation goal at hand. Myers et al.
(2000), for example, demonstrated that conservation networks can do well
by protecting “hotspots” with many different species. Researchers such as
Kati et al. (2004) showed how planners could exploit complementarity in the
species located on different sites to enhance the total value of the network.
The research community struggled with solutions to the problem of executing
conservation planning with limited data on species and habitat worldwide,
though relying on data of surrogates for total conservation value such as
flagship species can be of limited use (Andelman and Fagan 2000).
Economists joined this research, making the fundamental point that cost-

effective conservation planning must consider the costs of different potential
sites in a reserve network as well as the benefits (Naidoo et al. 2006). For
example, Ando et al. (1998) showed that the cost of a stylized network to
protect all the listed endangered species in the country could be 30 percent
lower if the algorithm chooses sites to protect the species at minimum total
cost rather than with minimum number of sites.
Work continued to add factors that should be considered in order to most

cost-effectively conserve resources. It makes sense to prioritize sites that are
actually at risk for development, rather than protecting lands that will not be
compromised even if left outside of protected area networks (Costello and
Polasky 2004). However, the nature of development threat can change over
time, and one must account for the fact that protecting one area today may
increase the development threat to areas nearby, as developers are drawn to
the amenity value of conservation (Armsworth et al. 2006; Dissanayake and
Önal 2011). If the species or ecosystems to be protected are sensitive to
fragmentation, techniques can be used to improve the spatial configuration of
networks of reserves (Briers 2002; Önal and Briers 2005; Lewis and Wu
2015). Finally, if one seeks to maximize the benefits of conservation to people
and not just the continued existence of species in the landscape, reserve site
selection should consider proximity of reserves to populations of people who
would gain benefit from them, because many elements of the value of
conservation diminish with distance (Ando and Shah 2010).

Multiple Objectives with Certainty

Conservation planners often need to make investment decisions that involve
multiple species or multiple ecosystem benefits (Pukkala 1998; Williams
et al. 2008; Bennett, Peterson, and Gordon 2009; Nelson et al. 2009;
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Goldstein et al. 2012; Schwenk et al. 2012; Seppelt, Lautenbach, and Volk 2013;
Chadés et al. 2015; Vogler et al. 2015). Thus, research on conservation planning
moved rapidly into the study of how best to choose investments to make in
natural capital, such as protected areas, to promote multiple ecosystem
services (Kareiva et al. 2011).
Polasky et al. (2005) show how multiple objective ecosystem-service

optimization can usefully be deployed at many different scales. Di Fonzo et al.
(2016) incorporated multiple characteristics of biodiversity protection in the
conservation planner’s objective function. Similar approaches exist in
landscape planning, including multiobjective forest planning (Mendoza, Bare,
and Campbell 1987; Pukkala 1998; Uhde et al. 2015) and multiobjective
land-use planning (Krcmar, van Kooten, and Vertinsky 2005). Environmental
economists have studied tradeoffs between multiple economic and
environmental objectives (Nijkamp 1975; Rodríguez et al. 2006; Mantoglou
and Kourakos 2007; Kennedy et al. 2008; Maringanti, Chaubey, and Popp
2009; White, Halpern, and Kappel 2012; Gramig et al. 2013; Lester et al.
2013; Lahtinen, Hämäläinen, and Liesiö 2017).
This research has collectively produced some basic intuitive insights. Selection

of protected areas (or other environmental investments) can accomplish Pareto
efficient combinations of outcomes if, but only if, that selection jointly optimizes
all the objectives and successfully exploits complementarities among the
objectives. Two objectives can be what we will call “spatial correlates,” such that
they tend to co-occur in the landscape, and an action that benefits one will
benefit the other. Indeed, the whole concept in conservation biology of using
data on surrogate species to plan conservation for a less well-documented
species depends on those things being spatial correlates (Caro and O’Doherty
1999). Alternatively, they can be what we call “spatial anticorrelates,” and the
conservation planner will face a production possibilities frontier (PPF) over
the two objectives with stark tradeoffs between them. For example, lands
that are best for carbon sequestration often do not harbor the most
biodiversity (Siikamäki and Newbold 2012), and Lester et al. (2013) give a
taxonomy for different types of tradeoffs that might exist between ecosystem
service in marine settings. The landscape patterns and PPFs for the two cases
are illustrated in Figure 2 for hypothetical objectives of birds and frogs.
Recent multidisciplinary work has also produced insight about conservation

with multiple objectives and complex human behavior. Protected area selection
can yield inefficient combinations of biodiversity and human welfare if human
behavioral responses to protected areas are not accounted for in the site
selection process (Bode et al. 2015). Additionally, optimal multiple-objective
plans are difficult to put in place if actual conservation is carried out by
multiple organizations that focus on subsets of objectives and do not fully
coordinate their actions (Bode et al. 2011).
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Single Objective with Uncertainty

In recent years, climate change went from being an abstract potential threat to a
phenomenon that was almost certain to threaten the biodiversity that
conservationists were working to protect (Araújo et al. 2011). Scientists
started incorporating climate change uncertainty into single-objective
conservation planning research, finding methods to reduce uncertainty in the
success of the networks of lands we protect (Carvalho et al. 2011; Dawson
et al. 2011; Schuetz et al. 2015; Tulloch et al. 2015; Wright et al. 2015;
Dittrich, Wreford, and Moran 2016; Jones et al. 2016).
Research by ecologists produced intuitive insights infused with their

knowledge of and concern for details about species and ecosystems

Figure 2. Multiobjective Spatial Correlation and Production Possibility
Frontiers
Icon Source: The Noun Project https://thenounproject.com.

Note: In the context of conservation portfolio design, an asset is a sub-region into which conservation
could be allocated. Goods that are spatial correlates (anti-correlates) have outcomes that are positively
(negatively) correlated across assets.
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(Mawdsley, O’Malley, and Ojima 2009). Some research calls for protection of
land that can serve as corridors between where species are and where they
are likely to be in a future climate (Williams et al. 2005; Alagador, Cerdeira,
and Araújo 2016). In general, a more connected landscape of natural areas
will be more permeable to species that are migrating in response to climate
changes (Theobald et al. 2012). Conservation planners can prioritize climate
refugia—places where the climate is not likely to change much, or where the
species present will be robust to any changes that occur (Groves et al. 2012).
Economists tackled spatial conservation planning under climate risk by

adapting a portfolio optimization tool from the finance literature (Markowitz
1952, 1968), modern portfolio theory (MPT), to analysis of portfolios of
conservation land investments (Ando and Mallory 2012; Convertino and
Valverde 2013; Mallory and Ando 2014; Anderson et al. 2015; Shah and
Ando 2015; Ando et al. 2018a). Spatial conservation portfolio analysis divides
a landscape into subregions, among which the planner is choosing to divide
total conservation investment. The planner gathers data from ecologists on
how well the conservation objective (say, a species population) does in each
subregion in a wide range of possible climate scenarios, and uses those data
to calculate the expected value of the objective in each subregion, how much
that value varies with scenarios (the standard deviation of each subregion),
and how outcomes are correlated across different parts of the landscape (the
covariances between each pair of subregions.) With that information, the
MPT algorithm can choose what fraction of the total conservation investment
to put in each of the subregions to minimize total outcome uncertainty for a
given level of expected value for the outcome. Details are given in Ando and
Mallory (2012).
Some general intuition can be gleaned from that set of papers. First, the

probabilities of different climate outcomes affect what are the best choices to
make for current conservation investments. It is difficult to estimate the
likelihood of climate scenarios, but some effort in this area could produce
useful tools (Dessai and Hulme 2004; Beaumont, Hughes, and Pitman 2008).
Second, low-cost risk reduction is possible for a wider range of objectives for
which one might do conservation planning. Furthermore, the outcomes
derived from MPT recommendations can be much better than the results of
simple diversification (Ando et al. 2018a).
Third, MPT works most effectively in certain types of cases (Ando et al.

2018a). One factor that facilitates reduction of uncertainty without sacrificing
much expected value is if several spatial sub-regions have future outcomes
that are negatively correlated with each other. We say that two subregions
display negative single-objective asset correlation if outcomes for a given
conservation good are negatively correlated in a pair of assets. Figure 3 shows
a case on the left that has negative asset correlation, and a case on the right
with positive asset correlation. This concept has been a driving analytical and
numerical feature of financial portfolio analysis for decades, as investors
intuitively and numerically choose combinations of assets such as stocks and
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bonds that are negatively correlated with each other to diversify risk in overall
returns of their portfolio. Conservation planners can use knowledge about such
correlations between different parts of a landscape to develop intuition about
how to diversify conservation risk.

Multiple Objectives with Uncertainty

In finance and engineering, much research has been done on multiple-objective
portfolio optimization to reduce uncertainty in outcomes. That research
produces no intuition that is helpful for the conservation planning
community, but we outline what has been done as a guide for interested
readers who might benefit from technical innovations in that research.
Research in finance and engineering on MPT with multiple objectives has

used evolutionary algorithms (Coello, Van Veldhuizen, and Lamont 2002;
Jin and Branke 2005; Ruzika and Wiecek 2005; Branke et al. 2009;
Anagnostopoulos and Mamanis 2011; Metaxiotis and Liagkouras 2012; Lwin,
Qu, and Kendall 2014), genetic algorithms (Ulungu and Teghem 1994; Deb
2001; Sardou et al. 2015), and lexicographic multiobjective programming
(Sherali 1982). Piecewise-hyperbolic and hyperboloidic Pareto spaces were
introduced by Steuer, Qi, and Hirschberger (2005, 2006) to study how to
incorporate multiple attributes in a portfolio selection model including
dividends, liquidity, turnover, number of securities in the portfolio. Other
studies incorporated new dimensions in the mean-variance optimization
problem including features such as skewness and kurtosis (Lai 1991; Anson,
Ho, and Silberstein 2007; Ballestero et al. 2007; Jana, Roy, and Mazumder
2007; Aouni 2009; Clemen and Smith 2009; Anagnostopoulos and Mamanis

Figure 3. Single-Objective Asset Correlation
Icon Source: The Noun Project https://thenounproject.com.

Note: In the context of conservation portfolio design, an asset is a subregion into which conservation
could be allocated. With negative(positive) asset correlation, the outcome for a single good is negatively
(positively) correlated between assets across climate scenarios.
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2010; Usta and Kantar 2011; Bhattacharyya, Chatterjee and Kar 2013; Utz et al.
2014; Kourtis 2015). Babaei, Sepehri, and Babaei (2015) describes a
multiobjective mixed integer programming algorithm to implement portfolio
optimization based on information about the dependence structure among
the financial returns and presence of fat-tailed return distributions.
A few papers in the conservation planning literature have tackled the problem

of systematically diversifying against risk when optimizing conservation
investments to produce multiple distinct objectives. Knoke et al. (2016) study
the problem of multiple forest conservation objective optimization under
uncertainty, but their methodological approach assigns fixed weights on the
objectives. Cabral et al. (2017) more flexibly model fishery management
choices with multiple ecosystem service objectives, but their model only
permits uncertainty in one of the objectives. There is much work left to be
done in this area of research.

Conservation Planning for Multiple Objectives with Uncertainty

We develop a new approach to multiobjective portfolio optimization, as follows.
For expository purposes, we build a conceptual model in which a planner is
choosing a network of conservation sites to support two conservation
objectives: waterfowl habitat, or “birds” (B), and amphibian habitat, or
“frogs” (F). The conservation planner is choosing quantities of lands to
protect in each of the subregions of a landscape so that future levels of B and
F are high, but the planner does not know what the future climate (and thus
future levels of B and F on any given portfolio of lands) will be.
In conservation portfolio theory models, a portfolio defines the fractions

(known technically as weights) of the total investment that are put into each
of the sub-regions in which the planner could conserve lands. Since the
fractions add up to one, there is no explicit budget constraint; the weights in
a portfolio dictate how the available budget is divided among the subregions.
For a given portfolio of lands, the outcomes of B and F are random variables
that are jointly distributed with means μB and μF, standard deviations σB and
σF, and covariance σBF.
The conservation planner values both objectives and gains total conservation

value V from them according to a function V¼ V(B, F|α).
We assume that the value V is increasing in both B and F, the two goods are

somewhat (though not completely) substitutable, and α is a preference
parameter that determines how much B is preferred to F in the objective; α
lies between zero and one.
Suppose the decision maker obtains utility U from realized conservation

production value V according to an expected utility function that displays risk
aversion such that utility diminishes with the variance of V. Then as Markowitz
(1952) showed, the conservation investor will want to choose weights on the
subregions to define a portfolio that minimizes the variance of V for a given level
of expected value, or maximizes the expected value of V for a given level of variance.
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For a set of technical assumptions1, we can show that the planner will want to
choose weights for portfolios of lands that yield high values of μB and μF, low
values of σB and σF, and negative values for the covariance between B and F.
This is intuitively sensible because the planner seeks a portfolio with high
expected value of V, which increases with the expected values of the two
goods that contribute to V. Similarly, the planner seeks a portfolio with low
variance of V. Clearly the variance of V is lower if the variance of the
outcomes of each of its components is low. Less obviously, the variance of V
is also lower if the covariance between the outcomes in the portfolio for the
two objectives is negative. A conservation portfolio is internally buffered
against having high variance in V if when birds do badly at least frogs do well
(and vice versa).
To find efficient portfolios of protected lands for multiple objectives, the

planner can take the following steps (Ando et al. 2018b). First, choose
preference parameters on the objectives in the conservation value function.
Second, calculate values of V for all the sub-regions in all the climate
scenarios for which data are available. Third, carry out a standard MPT
analysis as in Ando and Mallory (2012) to find portfolios that maximize the
expected value of V for a given variance. This yields an efficient frontier in
terms of V. Fourth, use the weights associated with each of the efficient
portfolios on the frontier to calculate the resulting expected values and
standard deviations for each of the separate conservation objectives. These
can be graphed to view the tradeoffs between uncertainty and expected
values embedded in the efficient frontier. Fifth, the first four steps can be
repeated for different values of the preference parameters to explore how
outcomes for the different goods vary depending on that choice.
We illustrate this method with simulated data. Birds and frogs provide

uncertain conservation value in four sub-regions, so that [B, F]
0
is an eight by

one vector of random variables distributed jointly normal according to
½B; F�0 ∼Nð½μB; μF �0; ΣÞ, where [μB, μF]

0
is an eight by one vector of means for

values of birds and frogs in each region, and Σ is the covariance matrix. We
generated 100 draws of B and F, representing 100 possible future climate
scenarios. Then we performed the multiobjective portfolio analysis described
in the five steps in the preceding paragraph.2 In our simulation we set
[μB, μF]

0 ¼ [12, 4, 20, 5, 3, 30, 1, 12], which reflects a case where on average,
subregions that are good for frogs are bad for birds, and vice versa. The
resulting jointly optimized multiobjective efficient frontier is shown in a solid
line in Figure 4. As expected, the curve is upward sloping, displaying the
usual tradeoff between risk and expected return for the aggregate
conservation value V.

1 In a more technical working paper (Ando et al. 2018b), we show this result formally for B and F
distributed jointly normal, and V¼ αB + (1� α)F.
2 We used the function genPositiveDefMat in the clusterGeneration R package to generate Σ.
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Theory tells us that the planner does well to analyze the objectives together
so that choices can be made to account for the value of having negative
covariance between the outcomes of the different objectives. How valuable is
that coordination? To understand the importance of analyzing both objectives
simultaneously in a portfolio analysis, we carry out the following thought
experiment. We calculate the weights of the portfolios that would result if we
separated MPT analyses for each of the objectives and then allocated α of our
investment according to the weights in the efficient portfolios for B and (1�α)
of our investment according to the weights in the efficient portfolios for F.
The expected returns and standard deviations for V that result from that

strategy are shown in Figure 4 in the separately optimized multiobjective
frontier (the dashed line that lies below the solid line), which achieves 13
percent lower expected returns on average than the fully efficient frontier.

Figure 4. Efficient Multiobjective Portfolio Frontier
Notes: (1) The portfolios represented by the solid efficient frontier labeled “Multiobjective Frontier”
come from carrying out MPT for V assuming α¼ 0.5. (2) The portfolios represented by the dashed
frontier labeled “Separate Objectives Frontier” come from the following steps: (a) Carry out MPT
separately for Birds and for Frogs (b) Combine the Bird and Frog portfolios by calculating ER[V] and SD
[V] for a hypothetical portfolio that has wi ¼ ½ wiB þ ½ wiF. (d) Graph the results.
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Portfolios on the jointly optimized multiobjective efficient frontier for a given
value of α have values for the expected returns and standard deviations for each
of the separate objectives. By calculating and plotting those values in PPFs, the
planner can see the qualitative nature of those tradeoffs and how they change as
you alter the value of α.
Panel (a) of Figure 5 shows that among portfolios for a given value of α (such

as 0.5, the value used in Figure 4 as well), the expected return on Birds is
decreasing with the expected return on Frogs. This is because in the
particular simulation example we chose, regions that are good for birds are
not good for frogs on average. Points on the jointly optimized multiobjective
efficient frontier in Figure 4 that happen to correspond to portfolio weights
that favor high average returns in Birds will deliver relatively low returns on
Frogs on average. This natural hedge between Bird and Frog returns is fully
exploited in the jointly optimized portfolios, allowing the jointly optimized
multiobjective efficient frontier in Figure 4 to lie above and to the left of the
separately optimized frontier.
Panel (a) shows that when α ¼ 0.25, and the planner favors Birds in V, this is

reflected in the solid line that is relatively high in the Bird dimension and low in
the Frog dimension. Similarly, when α ¼ 0.75, the planner favors Frogs in V,
and this is reflected in the long-dashed line being high in the Frog dimension
and low in the Bird dimension. Panel (b) shows a similar pattern in standard
deviations for the two goods; the fully optimized portfolios produce PPFs
with relatively low standard deviations for the good that is more highly
valued. If a planner is not exactly sure what their implicit value weights are,
they could produce multiple PPFs like these for inspection to decide what
kinds of tradeoffs between the two conservation goods they would like to
accept.
Panel (b) shows that among portfolios for a given value of α, the standard

deviation on Birds is increasing as the standard deviation of Frogs increases.
This is also an artifact of the particular simulation we did, and could have
different features in other simulations or real applications. In this case, it
comes about because although the covariance matrix on bird returns and frog
returns were generated at random, the outcome turned out to be such that
asset variances are correlated for birds and frogs. For example, portfolios
that have much of the portfolio allocated to asset 4 will be high variance
because for both bird and frog expected returns, this is a high-variance asset.
Conversely, in this particular simulation the third asset was a low variance
asset for both birds and frogs. This was enough to drive an upward slope in
the standard deviation PPF depicted in panel (b).

Intuition on Factors in Covariance Between Multiple Objectives

Scholars of financial portfolio theory have long had an intuitive sense of the
value of exploiting negative correlations between assets for a single objective—
in that case, monetary returns. That same intuition is relevant to the study
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Figure 5. Impact of Preference Parameters on Bundles of Goods Achieved
Note: These figures are created by carrying out MPT for V assuming three different values of the
preference parameter for frogs (α). The expected returns for each separate conservation objective are
calculated for each efficient portfolio; see panel (a). The standard deviations for each separate
conservation objective are calculated for each efficient portfolio; see panel (b).
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of spatial conservation portfolios in the case of a single conservation objective.
Three kinds of correlations are important for the study of multiple conservation
objective portfolios.
Two of those correlations were important in earlier strains of conservation

planning research and have already been discussed in this paper. Spatial
correlations between objectives (Figure 2) affect the tradeoffs between
objectives for a given climate scenario. Asset correlation for a given objective
(Figure 3) affects how well diversification can work to reduce outcome
uncertainty with minimal reduction in the expected value of that objective.
The third type correlation has, to our knowledge, not been extensively

discussed in the conservation planning literature; we refer to it as
multiobjective scenario correlation. Consider that in a given subregion, some
species will do better when climate outcomes are hot, while others may do
better when climate outcomes are cold. If outcomes for two goods within a
subregion are negatively correlated, as on the left side of Figure 6, we say
they are scenario anticorrelates. If outcomes for two good are positively
correlated across climate outcomes (in this example, they both like it cold),
we say they are scenario correlates. Negative scenario correlation provides a
sort of internal buffering—regardless of the climate outcome, at least one of
the conservation outcomes that provides value will do well.

Conclusions

Each new wave of research on conservation planning has provided new
intuition for strategies for allocating scarce resources across a planning

Figure 6. Multiobjective Scenario Correlation
Icon Source: The Noun Project https://thenounproject.com.

Note: Goods that are scenario correlates (anticorrelates) have outcomes that are positively (negatively)
correlated across climate scenarios.
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landscape to achieve the greatest benefits possible. As climate change emerges
as an inevitable threat to biodiversity and other ecosystem services, researchers
develop new tools to try to reduce the uncertainty created by climate change in
the outcomes of the networks of protected areas we put in place.
Research on the economics of reducing outcome uncertainty in a single

conservation objective has already yielded some key insights. The
probabilities attached to different climate outcomes are likely to influence the
best places in which to locate conservation reserves. Exploiting information
about correlations between subregions of the planning landscape can help
the planner to reduce the cost of risk reduction.
In this paper we started the process of developing tools and intuition for

portfolio optimization for multiple conservation objectives. We showed it is
more efficient to optimize a conservation portfolio for multiple goods jointly;
that process allows the planner to exploit information about multiple
dimensions of the correlations between goods.
Previous research on multiple-objective optimization under certainty showed

that optimal actions depend on the spatial correlation between objectives in the
landscape. Previous research on single-objective optimization under
uncertainty showed that optimal actions depend on the correlation between
sub-regions of the landscape in future outcomes for that objective. This paper
identified a third correlation that is important for optimal conservation
planning of multiple objectives under uncertainty: scenario correlation
between objectives in a given part of the landscape. The conservation planner
faces a different kind of problem if the objectives at hand respond similarly
rather than differently to climate shocks in subregions of the planning area.
Future research would do well to explore qualitative patterns in the nature of
multiple-objective portfolio optimization solutions for different correlation
typologies.
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