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Dipole and stellarator geometries are capable of confining plasmas of arbitrary
neutrality, ranging from pure electron plasmas through to quasineutral. The diocotron
mode is known to be important in non-neutral plasmas and has been widely
studied. However, drift mode dynamics, dominating quasineutral plasmas, has
received very little by way of attention in the non-neutral context. Here, we show
that non-neutral plasmas can be unstable respect to both density-gradient- and
temperature-gradient-driven instabilities. A local shearless slab limit is considered
for simplicity. A key feature of non-neutral plasmas is the development of strong
electric fields, in this local limit of straight field line geometry, the effect of the
corresponding E × B drift is limited to the Doppler shift of the complex frequency
ω → ω − ωE. However, the breaking of the quasineutrality condition still leads to
interesting dynamics in non-neutral plasmas. In this paper we address the behaviour
of a number of gyrokinetic modes in electron–ion and electron–positron plasmas with
arbitrary degree of neutrality.
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1. Introduction
Plasmas of arbitrary neutrality, ranging from pure electron plasmas through to

standard quasineutral ion–electron plasmas, can be confined in both stellarator (CNT)
(Pedersen et al. 2004) and levitated dipole (RT-1, APEX) geometries (Pedersen et al.
2003; Yoshida et al. 2006). Despite their laboratory and astrophysical relevance,
relatively little has been done in terms of investigating the myriad of instabilities
which can exist in such plasmas. In this work, we aim to examine certain classes of
instabilities driven by two motivating examples.

1.1. Conventional plasmas
The Columbia Non-neutral Torus (CNT) is the first stellarator designed specifically
to the study of pure electron and other non-neutral plasmas (Pedersen et al. 2004).
Experiments undertaken at CNT have demonstrated that stable pure electron plasmas
can enjoy good confinement. Stellarators are ideal candidates for the study of
non-neutral plasmas as they are able to confine both signs of charge simultaneously
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and do not require internal currents for confinement. As such, stellarators are able to
confine plasmas of arbitrary degree of neutrality (from pure electron to quasineutral).
Stellarators present fundamental advantages for the study of non-neutral plasmas.

Despite enjoying good confinement properties, low-β plasmas confined in toroidal
magnetic geometries can develop low frequency instabilities which propagate at
velocities of the order of the E×B rotation velocity of the plasma. Indeed such low
frequency instabilities have been observed in CNT.

One type of plasma oscillation which is of particular importance in quasineutral
plasmas are drift waves. Of particular relevance to this work, such oscillations have
also been observed for quasineutral plasmas in CNT. In their weakly non-neutral
plasmas, multiple modes are excited and it becomes impossible to identify clear
drift-wave signals (Sarasola & Pedersen 2012). However, one might speculate that
drift waves are amongst this medley of different modes, partly guided by the relative
simplicity of the physical mechanisms involved. Drift waves are low frequency
plasma oscillations driven by density and temperature gradients. Drift waves are well
understood in quasineutral plasmas but have received little by way of theoretical
attention in non-neutral plasmas.

Drift waves draw energy from the gradients of density and temperature in the
plasma. The occurrence of these waves requires only that one species responds to the
wave in an adiabatic fashion, thus Debye shielding the disturbance, due to either the
difference in mass ratio, universal modes and ion-temperature-gradient (ITG) driven
modes, or to finite Larmor radius (FLR) effects for electron-temperature-gradient
(ETG) driven modes. The trigger for instability is the build up of electrostatic
potential due to the different particle responses to an imposed perturbation. As
discussed by Dubin (2010), this in no way relies on different species having different
signs of charge. The generality of these physical mechanisms lead us to believe that
non-neutral plasmas can exhibit drift-wave phenomena.

Here, we use gyrokinetic theory to examine the stability of drift waves in plasmas
of arbitrary neutrality in a shearless slab.

1.2. Electron–positron plasmas
The stability properties of non-neutral electron–positron plasmas will be of particular
importance in the upcoming experiments to create and confine the first laboratory
electron–positron plasma using a dipole field generated by a levitated magnetic coil
(Saitoh et al. 2015). Such a plasma ought to enjoy remarkable stability properties
and a wealth of literature exists examining the stability of such systems. It has
been shown by Helander (2014) that neutral pair plasmas possess unique gyrokinetic
stability properties due to the mass symmetry between the particle species. For
example, drift instabilities are completely absent in straight magnetic field geometry,
e.g. in a slab, provided that the density and temperature profiles of the two species
are identical (‘symmetric’ pair plasmas). The symmetry between the two species
is broken if the temperature profiles of the electrons and positrons differ or there
is an ion contamination. In these regimes, drift instabilities can be excited even in
unsheared slab geometry (Mishchenko et al. 2018b). In a sheared slab, pure pair
plasmas are prone to the current-driven reconnecting instabilities (Zocco 2017), but
there are no drift waves. Note that asymmetry between the species is needed also
in this case since the ambient electron flow velocity must differ from the positron
one for the ambient current to be finite. In contrast to slab geometry, a dipole
magnetic field has finite curvature. In this case, the symmetry between the species is
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Non-neutral gyrokinetic stability 3

broken by curvature drifts and the plasma is also driven unstable by temperature and
density gradients (Helander 2014), even without ion contamination and for identical
temperature profiles of the two species. This result also persists in the electromagnetic
regime (Helander & Connor 2016). The nonlinear stability of dipole pair plasmas
has also been addressed by Helander (2017). More recently, Mishchenko, Plunk &
Helander (2018a) performed a detailed study of the gyrokinetic stability of pure pair
plasma in the dipole geometry, making use of both the Z-pinch and point-dipole limits.
Again, it was found that such pair plasmas can be driven unstable by a combination
of magnetic curvature, density and temperature gradients. Such instabilities in more
complicated geometries such as the tokamak and the stellarator was also recently
addressed using a gyrokinetic code by Kennedy et al. (2018).

One can effectively summarise previous results in one key statement: electron–
positron plasmas are driven unstable by symmetry breaking between the two species.
In this paper, we propose plasma non-neutrality as another way to break the species
symmetry even in the simplest unsheared slab geometry.

It is once again pertinent to comment on how one might expect drift waves to
be driven unstable in this case as there is certainly no species which now responds
to the wave in an adiabatic fashion. That is, in electron–positron plasmas both
species must be treated kinetically. However the underlying physical mechanism is
simple, the unbalanced number of particles means that even though both species
respond kinetically, there is no need for the drift contributions (which are in opposite
directions due to the charge asymmetry) to locally cancel and therefore electrostatic
potential can still accumulate.

Such plasmas are also physically realisable. During the upcoming PAX/APEX
experiments it will be possible to operate the experiment in such a way that the
plasma will be non-neutral. There is also relevance to the upcoming experiments
during the accumulation process, singly charged electron plasmas and positron plasmas
will be confined separately in modified Penning–Malmberg traps and hence we declare
an interest in the stability of pure electron and positron plasmas as well as mixtures.
The non-neutrality of these plasmas leads to the generation of large electric fields
within the plasma which can impact the plasma stability. Here, we aim to present a
simplified discussion on gyrokinetic modes in non-neutral plasmas.

Electron–positron plasmas ought to be ideal for modelling with gyrokinetics. The
reason being that in the planned experiments the Debye length will exceed the
gyroradius by several orders of magnitude. As the Debye length must be small
compared to the system size, this means that the gyrokinetic ordering will be well
satisfied for such plasmas.

1.3. Electron–antiproton plasmas
One can also use the tools described within this paper to tackle questions pertaining
to the stability of multi-species non-neutral plasmas with only one sign of charge.
An example of such a system is commonly encountered in the manufacture of cold
antihydrogen for laser spectroscopy studies. In experiments such as ATHENA, low
temperature antihydrogen atoms are formed from the interaction of several thousands
of antiprotons with a dense positron plasma (Amoretti et al. 2002). Before being fed
into the positron plasma, the antiprotons are cooled through the interaction with a cold
dense electron plasma. This is an example of a non-neutral mutli-species plasma where
all species have the same sign of charge.

Such non-neutral systems have been studied by Dubin (2010) using a fluid model
with an adiabatic light species, discussing both the simplified slab geometry considered
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here in tandem with a more experimentally relevant cylindrical geometry. It was
found here that non-neutral plasmas consisting of two or more species can exhibit
ion sound waves, drift waves and ion temperature-gradient waves, provided that
certain conditions are met even in a more complex realistic geometry. Here, we will
try to compliment this model using gyrokinetic theory to examine the stability of
drift waves in such plasmas in a shearless slab.

1.4. Overview
In this paper we begin by extending the results of Mishchenko et al. (2018b),
performing a detailed study of the gyrokinetic stability of electron–positron–ion
plasmas in slab geometries where we relax the condition of quasineutrality to derive
and numerically solve a dispersion relation. We also investigate the particle fluxes
due to the instabilities considered. The structure of this paper is as follows. In
§ 2 we introduce the analytical theory of non-neutral local gyrokinetic stability and
derive the dispersion relation. We then give a brief discussion of some physical
considerations and limits of our model. In § 3 we solve the dispersion relation for
solutions of the sound wave type and give analytic estimates of the frequency. In
§ 4 we consider modes driven by density gradients. We solve the dispersion relation
numerically for a range of different parameters and provide analytic estimates of
the growth rate and real frequency. We elucidate the difference between non-neutral
and quasineutral plasmas in this parameter regime, notably the existence of a second
stability threshold for plasmas with large deviations from quasineutrality. In § 5
we discuss modes driven by the temperature gradient of the light species. Namely
we investigate the stability of non-neutral plasmas with sufficiently large positron
(electron) fractions to positron (electron)-temperature-gradient-driven instabilities. In
§ 6 we investigate the stability of non-neutral plasmas contaminated by an ion species.
In § 7 we give our conclusions, highlighting the difference between these classes of
instabilities in non-neutral plasmas compared to their quasineutral counterparts.

2. Gyrokinetic theory
Following Helander (2014), Helander & Connor (2016), Mishchenko et al. (2018a)

and Mishchenko et al. (2018b), we will use gyrokinetic theory to analyse the stability
of electron–positron–ion plasmas in this work, retaining the possibility of arbitrary
degree of deviation from quasineutrality.

2.1. Dispersion relation
It is convenient to write the gyrokinetic distribution function in the form

fa = fa0

(
1−

eaϕ

Ta

)
+ ga = fa0 + fa1, fa1 =−

eaϕ

Ta
fa0 + ga. (2.1a,b)

Here, fa0 is a Maxwellian, a is the species index with a= e corresponding to electrons,
a= p to positrons and a= i to the heavy ion species. We take care here to point out
that in this work we will concern ourselves with both positively charged ions and
negatively charged antiprotons, both of which will be denoted by the same subscript,
the charge on species i will be assumed positive unless explicitly stated otherwise;
ρ = b× v/Ωa is the species gyroradius and Ωa the species cyclotron frequency. The
remainder of the notation is standard.
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The potential function for this system is given by

φ = φ0 + χ, (2.2)

where φ0 is the background electrostatic potential due to the non-zero equilibrium
electric field in the plasma, χ = ϕ − v‖A‖ is the usual gyrokinetic potential with ϕ
the perturbed electrostatic potential and A‖ the perturbed parallel magnetic potential.

In this notation, the linearised gyrokinetic equation is

(ω− kαφ′0 −ωda − k‖v‖)ga =
ea

Ta
(ω− kαφ′0 −ω

T
?a)(ϕ − v‖A‖)J0

(
k⊥v⊥
Ωa

)
fa0, (2.3)

with J0 the Bessel function, k⊥ the perpendicular wave number, k‖ the parallel
wavenumber. Other notation employed here is

ωT
?a =ω?a

[
1+ ηa

(
v2

v2
tha
−

3
2

)]
, v =

√
v2
‖ + v

2
⊥, k⊥ =

√
k2

x + k2
y , kα =

ky

B
(2.4a−d)

ω?a =
kαTa

ea

d ln na

dx
, ηa =

d ln Ta

d ln na
, vtha =

√
2Ta

ma
, ωda = k⊥ · vda, (2.5a−d)

with

vda =
v2
⊥

2Ωa
b×∇ ln B+

v2
‖

Ωa
b× (b · ∇b). (2.6)

Here we will choose the sign convention such that ω?i 6 0, ω?p 6 0, and ω?e > 0. In
our slab geometry x denotes the direction of any non-uniformity in the plasma profiles.
For simplicity we will assume kx = 0 and k⊥ = ky throughout the paper.

The influence of the background electric field is only felt through the term

kαφ′0 = k⊥ · vE0, vE0 =
1
B

b×∇φ0, (2.7a,b)

a quantity which is locally constant. We will discuss the consequences of this local
approximation at the end of the section.

In slab geometry ωda = 0 and hence our equation may be trivially solved to give

ga =
ω− kαφ′0 −ω

T
?a

ω− kαφ′0 − k‖v‖

ea fa0

Ta
J0(ϕ − v‖A‖)fa0. (2.8)

This equation is supplemented by Poisson’s equation and the parallel Ampere’s law
for the perturbation. These equations read(∑

a

nae2
a

Ta
+ ε0k2

⊥

)
ϕ =

∑
a

ea

∫
gaJ0 d3v, A‖ =

µ0

k2
⊥

∑
a

qa

∫
v‖gaJ0 d3v. (2.9a,b)

For the electromagnetic dispersion relation we will find it convenient to define the
function

Wna =−
1

nav
n
tha

∫
ω− kαφ′0 −ω

T
?a

ω− kαφ′0 − k‖v‖
J2

0 fa0v
n
‖

d3v, (2.10)
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which may be evaluated to obtain

Wna = ζa

{(
1−

ω?a

ω− kαφ′0

)
ZnaΓ0a +

ω?aηa

ω− kαφ′0

[
3
2

ZnaΓ0a − ZnaΓ?a − Zn+2,aΓ0a

]}
.

(2.11)

Here, the following notation has been used

1
λ2

Da
=

q2
ana

ε0Ta
,

1
λ2

D
=

∑
a

1
λ2

Da
, ba = k2

⊥
ρ2

a , ρa =

√
maTa

|ea|B
, (2.12a−d)

Γ?a = Γ0a − ba[Γ0a − Γ1a], Γ0a = I0(ba)e−ba, Γ1a = I1(ba)e−ba, (2.13a−c)

Zna =
1
√

π

∫
∞

−∞

xne−x2

x− ζa
, ζa =

ω− kαφ′0
k‖vtha

. (2.14a,b)

We can substitute our equation for the gyrokinetic distribution function into each of
the field equations and use the notation given above to obtain

(1+ k2
⊥
λ2

D)ϕ +
∑

a

λ2
D

λ2
Da
(W0aϕ −W1aA‖vtha)= 0, (2.15)

A‖ +
1
c2

∑
a

vtha

k2
⊥λ

2
Da
(W1aϕ −W2aA‖vtha)= 0. (2.16)

This gives rise to the dispersion relation(
1+ k2

⊥
λ2

D +
∑

a

λ2
D

λ2
Da

W0a

)(
1− 2

∑
a

βa

k2
⊥ρ

2
a

W2a

)

+ 2
∑

a

λ2
D

λ2
Da

W1avtha

∑
a

βa

k2
⊥ρ

2
a

W1a

vtha
= 0. (2.17)

Here βa = µ0naTa/B2, the usual plasma beta. We will restrict our attention to the
electrostatic limit, corresponding to βa = 0. This dispersion relation clearly reduces
to the result of Mishchenko et al. (2018b) in the limit of quasineutrality.

2.2. Quasilinear particle fluxes
Following Helander & Zocco (2018), we define the cross-field particle flux of species
a to be given by

Γa =Re
〈∫

(vE · ∇ψ)fa d3v

〉
, (2.18)

where the angular brackets denote the flux surface average

〈· · ·〉 = lim
L→∞

∫ L

−L
(· · ·)

dl
B(l)

/∫ L

−L

dl
B(l)

, (2.19)

which we remark has no effect in the straight field line limit considered here.
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The non-neutral drift waves reported in this paper can also lead to cross-field
particle diffusion. The particle flux due to drift-wave instabilities in standard
electron–ion plasmas has been studied in the aforementioned paper by Helander
& Zocco (2018). Here, we are able to simplify certain aspects of the calculations by
the restrictions placed on the geometry whilst introducing further complications by
the non-neutrality.

We have already found that the equation for the perturbed part of the distribution
function is given in the local limit by (2.3). Hence, the quasilinear particle flux of
species a is given by

Γa =Re
〈∫

(vE · ∇ψ)fa d3v

〉
= Im

1
B

〈∫
kyϕ

?gaJ0 d3v

〉
, (2.20)

which yields

Γa =
ky

B
Im
〈∫

ω− kαφ′0 −ω
T
?a

ω− kαφ′0 − k‖v‖

ea fa0

Ta
J2

0 |ϕ|
2fa0 d3v

〉
=

ky

B
Im
〈

naea

Ta
W0a|ϕ|

2

〉
. (2.21)

Hence, one obtains

Γa =
ky

B
Im
〈

naea

Ta
|ϕ|2ζa

{(
1−

ω?a

ω− kαφ′0

)
Z0aΓ0a

+
ω?aηa

ω− kαφ′0

[
3
2

Z0aΓ0a − Z0aΓ?a − Z2,aΓ0a

]}〉
. (2.22)

We remark that it is of course very simple to extend the particle flux to the
electromagnetic case, however the focus of this work is exclusively on βa = 0
plasmas and hence we shall not do so here.

It is well known that gyrokinetic transport is intrinsically ambipolar (Sugama et al.
1998) and it is easy to verify that this result also holds true in the non-neutral case.
We calculate ∑

a

eaΓa = ε0ky|ϕ|
2Im

(∑
a

W0a

λ2
Da

)
= 0, (2.23)

where the final equality follows immediately from the electrostatic limit of the
dispersion relation (2.17).

In this work, we will numerically calculate the quantity

Λa =
eaΓa

ε0|ϕ|2
. (2.24)

Here, |ϕ|2 is a scaling factor associated with the saturation amplitude of the
fluctuations, which does not need to be determined explicitly as we are primarily
interested in the directions of the fluxes and any interesting behaviour exhibited. To
this end, we remark that Λa is simply the particle current up to an unknown positive
constant. We are able to calculate the quantity Λa for the entire parameter range but
note here that we only expect these to make some physical sense in the parameter
ranges where the growth rate γ > 0 i.e. where there is actually an instability present.
It is worth remarking that usually one expects |ϕ|2= 0 in the stable domain and hence
the quasilinear fluxes Γa = 0 in these domains. This rule of thumb is generally, but
not always true and it may be the case that even in linearly stable domains, there is
a particle transport driven by subcritical turbulence, i.e. the system is formally stable
to small perturbations, but, given a large enough initial perturbation, it transitions to
a turbulent state.
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2.3. Physical assumptions
In the local limit considered here, we have relegated the effect of the background
electric field into a Doppler shift of the complex frequency ω→ω− kαφ′0. This result
has a simple physical interpretation, namely that in the frame rotating with the E×B
velocity, the nascent electric field generated by the plasma is identically zero. Hence
in this rotating frame we achieve precisely the result of Mishchenko et al. (2018b).
We note that in our model, the Doppler shift is arbitrary. The reason for this is that
φ0 does not appear explicitly in the zeroth-order Poisson equation for the length scales
considered here: φ′′0/φ0 � k2

⊥
. It may appear at first glance that this trivialises the

dynamics of non-neutral plasmas insofar as one might expect the problem reduces
exactly to Mishchenko et al. (2018b). This is not the case.

Despite the relatively straightforward, physically pleasing relationship between the
dispersion relation for non-neutral and quasineutral plasmas in the local limit, there
is more subtle difference at play. We recall that in Mishchenko et al. (2018b) it was
necessary for there to be symmetry breaking due to either the temperature profiles or
ion contamination for instabilities to be excited. In a non-quasineutral plasma, there is
another degree of freedom in the system as it permissible to violate the quasineutrality
condition. A key stability parameter for three component non-neutral plasmas was the
species fraction

νa =
na

ne
, (2.25)

where we note that a quasineutral plasma must satisfy the quasineutrality constraint∑
a

νa = 2. (2.26)

For a non-neutral plasma we have no such constraint and
∑

a νa may be arbitrary.
Indeed, it is now possible to break the symmetry of the density profiles of even a
simple pair plasma. This leads to a diversification in the types of gyrokinetic modes
which can arise in such plasmas. Indeed, it is precisely this symmetry breaking
(allowing us to take in pair plasma ne 6= np for example) that gives rise to instabilities.

Here we consider a local theory including ambient electric field, always present
in a non-neutral plasma, but neglect the shear of this field. This is an important
approximation which will be relaxed in future work. Indeed, it must be relaxed for
the diocotron instability (Davidson 1974). It is well known that the global diocotron
mode, an analogue of the shearing Kelvin–Helmholtz instability, plays a pivotal role
in the dynamics of non-neutral plasmas. We plan to address this more complex
question with a global gyrokinetic code in the future. In this paper we will consider
only the local limit and concentrate solely on drift mode dynamics.

It is also pertinent to comment on the use of Ampere’s law in our derivation
above. One ought to question whether there is a need to include the displacement
current on the basis that we have included Debye shielding in Poisson’s equation.
Here, Debye shielding is important due to having a sufficiently small plasma βa
(which here means that βa . v2

tha/c
2). This makes it necessary to include Debye

shielding effects as λ2
Da/ρ

2
a = (1/2βa)(v

2
tha/c

2) and hence we expect the Debye length
to be comparable to the electron Larmor radius. However, as pointed out by Barnes,
Abiuso & Dorland (2018) we note that even when λ2

Da/ρ
2
a ∼ 1, the displacement

current appearing in Ampere’s law is negligible in the gyrokinetic ordering compared
to the plasma current. In this ordering the displacement current must only be retained
when taking the divergence of Ampere’s law.
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3. Gyrokinetic stable modes
We first consider the case of a conventional electrostatic electron–hydrogen plasma,

whilst dropping the usual assumption of quasineutrality. In this case, our dispersion
relation (2.17) reduces to

1+ k2
⊥
λ2

D +
λ2

D

λ2
De

W0e +
λ2

D

λ2
Di

W0i = 0. (3.1)

In the absence of density and temperature gradients and assuming that both species
have equal temperatures, i.e. Ti = Te, we can further simplify the dispersion relation
to obtain

1+ k2
⊥
λ2

D +
1

νi + 1
[νiζiZ0iΓ0i + ζeZ0eΓ0e] = 0. (3.2)

In a quasineutral hydrogen plasma, the additional constraint enforces the relation
νi = 1 and we trivially recover equation (3.3) (e.g. Fried & Gould 1961; Yegorenkov
& Stepanov 1988), which describes the plasma stability in the absence of density and
temperature gradients and assuming Ti = Te

1+ k2
⊥
λ2

D +
1
2 [ζiZ0iΓ0i + ζeZ0eΓ0e] = 0. (3.3)

This equation has an infinite number of solutions which can be of either the ion type
with ζi > 1 and ζe� 1, or the electron type with ζe > 1. Mishchenko et al. (2018b)
investigate these sound wave solutions for quasineutral hydrogen plasmas, electron–
positron plasmas and electron–positron–ion plasmas.

For non-neutral plasmas, we can make analytical progress for sound waves of the
ion type, satisfying ζi� 1 and ζe� 1. In this regime the following asymptotic forms
of the plasma dispersion function can be used:

Z0(ζi)≈ 2i
√

π exp(−ζ 2
i )−

1
ζi
−

1
2ζ 3

i
, Z0(ζe)= i

√
π− 2ζe, (3.4a,b)

which lead to the approximated dispersion relation for sound waves of the ion type

1+
(

νi

νi + 1
2iζi
√

π exp(−ζ 2
i )−

νi

νi + 1

)
Γ0i +O

(
ζe,

1
ζi

2)
= 0. (3.5)

For simplicity, we will neglect FLR effects implying Γ0i = 1. We are also at liberty
to neglect the small contributions 1/(4ζ 2

i )� 1 relative to the other terms. We then
obtain the dispersion relation in the form

2iνiζi
√

π exp(−ζ 2
i )+ 1= 0. (3.6)

Using the notation ζ = x− iy and assuming x=±(y+∆) with ∆� 1, we arrive at

2νiy
√

2πe−2y∆ exp
[

2iy2
−

3πi
4

]
= 1= exp(2πim), m ∈N. (3.7)

From this, we can write down an infinite family of solutions for sound waves of the
ion type as

ym =

√
πm+

3π

8
≈
√

πm, ∆m =
1

2ym
ln(2νiym

√
2π), xm = ym +∆m. (3.8a−c)
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10 D. Kennedy and A. Mishchenko

One sees that ∆m increases with νi > 1, i.e. the real part of the frequency increases at
νi > 1. The condition ∆m� 1 is violated when νi is large enough and the asymptotic
relations hitherto employed are rendered invalid.

The waves described above are simply Landau damped sound waves propagating in
an electron–ion plasma slab and are stable in both non-neutral and quasineutral
plasmas, a well-established result in the quasineutral case. We note that the
calculations in this section are independent of the species charge and hence the
same Landau damped sound waves can propagate in an electron–antiproton plasma
slab. This idea has been further explored by Dubin (2010) who found that such
waves can propagate with only very weak Landau damping provided that the density
of the heavy species is large compared to that of the light species i.e. νi� 1. In the
analytic model considered here, such an ordering renders the previous assumptions
invalid and the asymptotic limit analysis breaks down.

However, one can of course perform a similar analysis for the case where the
species fraction of the large species is much greater than one. i.e. νi � 1. In this
case, one employs the notation ξ = x(1− i∆). We obtain the results

∆m =−
πm

ln(2νi
√

π)2
, ω= ln(2νi

√
π), γ =−

πm
ln(2νi

√
π)2

, (3.9a−c)

where the lowest-order mode, m= 1, corresponds to the sound wave solution. Hence,
we obtain the result that indeed for sufficiently large ion fraction, sound waves
can propagate in electron–antiproton plasmas with only weak Landau damping, in
qualitative agreement with Dubin (2010).

4. Density-gradient-driven modes
We now turn out attention to unstable modes by allowing gradients in the plasma

profiles. Universal modes are plasma modes which can be driven unstable by density
gradients. For simplicity we assume throughout this section that the temperature
profiles of all species are flat and equal. We will later relax this constraint when we
consider modes driven by temperature gradients. We will also once again focus our
attention on electron–ion plasmas to highlight the difference between quasineutral and
non-neutral plasmas in a perhaps more familiar setting.

The dispersion relation in two-component non-neutral plasma (one light species and
one heavy) has the form,

1+ k2
⊥
λ2

D +
1

νi + 1

∑
a

νaζa

(
1−

ω?a

ω

)
Z0aΓ0a = 0, (4.1)

where, as introduced above, we have employed the notation νa = na/ne for each
species. We once again highlight the difference between quasineutral plasmas,
in which νi = 1, and the non-neutral plasmas considered here where νi can be
completely arbitrary. Taking the limit k‖vthi� ω� k‖vthe we obtain the leading-order
approximations to the plasma dispersion functions,

Z0i ≈−
1
ζi
, Z0e ≈ i

√
π. (4.2a,b)

Hence to lowest order we obtain the dispersion relation

(1+ νi)(1+ k2
⊥
λ2

D)− νi

(
1−

ω∗i

ω

)
Γ0i + iνeζe

√
π
(

1−
ω∗e

ω

)
Γ0e = 0. (4.3)
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(a) (b)

FIGURE 1. The frequency ω, and growth rate γ , of the universal mode (a) and the
associated scaled quasilinear particle fluxes as defined by (2.24) (b) as a function of the
ion density gradient κni in a quasineutral electron–ion plasma. One sees that the ion density
gradient must be larger than some threshold for the mode to become unstable. The growth
rate increases monotonically with the ion density gradient. Parameters as given in the text.

Solution of this equation for ω=ωr + iγ assuming γ �ωr is

ωr =−
νiω∗iΓ0i

(1+ νi)(1+ k2
⊥λ

2
D)− νiΓ0i

, γ =
νeωr
√

π

kzvthe
(ω∗e −ωr)Γ0e. (4.4a,b)

One sees that the frequency is determined by the density gradient of the heavy species
(ions) and the growth rate by the density gradient of the light species (electrons). One
requires density gradients of both species to have an instability, implying that both
ωr ∼ |ω∗i|> 0 and γ ∼ω∗e −ωr > 0.

In the quasineutral case, the additional restriction of νe + νi = 2 renders the growth
rate monotonic as in Mishchenko et al. (2018b). This behaviour is shown in the
numerical solution of the dispersion relation (2.17) in the quasineutral case shown
in figure 1 where we plot the growth rate and frequency of the universal mode
as a function of κni. Here, we use the parameters λD/ρi = κTeρi = κTpρi = κTi = 0,
kyρi = 2, k‖ρi = 7.4× 10−4 with the notation

κna =−
d ln na

d ln x
, κTa =−

d ln Ta

d ln x
. (4.5a,b)

We note that in the quasineutral case we are forced to set the electron density gradient
through the quasineutrality condition νeω?e+νiω?i=0. In the non-neutral case however,
we have another free parameter in that we may set κni and κne independently.

As such, in non-neutral plasmas, the behaviour of the instability is more interesting.
We have adopted the convention that, ω?i < 0 and hence one expects the frequency
of the universal modes to remain positive as the density profile steepens. This result
lead to a monotonic growth rate in a quasineutral plasma as the growth rate was
proportional to −ωrω?i. In non-neutral plasmas, however, the growth rate depends
nonlinearly on the frequency and is proportional to ωr(ω?e − ωr), so that if ωr >ω?e
the growth rate decreases, which leads to a second stability threshold for the universal
mode. This can be seen in figures 2 and 3 where the full dispersion relation is
solved for the same parameters as above but with the assumption of quasineutrality
relaxed. One would need to revisit the asymptotic analysis and include resonant
contributions etc. to find the analytic stability threshold, however this can easily be
found numerically when required. It is important to note that no such second stability
threshold exists in standard quasineutral plasmas and that this feature is unique to
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(a) (b)

FIGURE 2. The frequency ω, and growth rate γ , of the universal mode (a) and the
associated scaled quasilinear particle fluxes (b) as a function of the electron density
gradient κne in a non-neutral electron–ion plasma. The dependence of the growth rate on
the density gradient becomes non-monotonic so that a second threshold at large density
gradients appears. Parameters as given in the text.

(a) (b)

FIGURE 3. The frequency ω, and growth rate γ , of the universal mode (a) and the
associated scaled quasilinear particle fluxes (b) as a function of the ion density gradient
κni in a non-neutral electron–ion plasma. The dependence of the growth rate on the density
gradient becomes non-monotonic so that a second threshold at large density gradients
appears. Parameters as given in the text.

(a) (b)

FIGURE 4. The frequency ω, and growth rate γ , of the universal mode (a) and the
associated scaled quasilinear particle fluxes (b) as a function of the antiproton density
gradient κni in a non-neutral electron–antiproton plasma. The dependence of the growth
rate on the density gradient becomes non-monotonic so that a second threshold at large
density gradients appears. Parameters as given in the text.

non-neutral plasmas. We see a similar pattern with a sufficiently large density gradient
stabilising the universal mode for electron–antiproton plasmas as shown in figure 4. It
is interesting to note that instability in antiproton–electron plasmas requires κniκne< 0,
this condition is only necessary for plasmas where each species has the same sign
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of charge. This result agrees with those obtained by Dubin (2010) using an analytic
model in a cylindrical geometry. It is also interesting to note that these modes have
a different sign of frequency compared to the modes in plasmas where the different
species have different signs of charge.

The scaled fluxes Λa are also shown in figures 1–4. We immediately note once
again by inspection that the quasilinear transport is ambipolar, as proven previously.

5. ETG instability

We now turn our attention to the case where temperature gradients are present in
the plasma, this is likely to be of importance to the PAX/APEX investigations. In the
aforementioned experiments, it is planned to confine an electron–positron plasma in a
vacuum vessel using a levitated coil. In order to accomplish this goal, the electrons are
to be injected with an electron gun whereas the positrons will be supplied from the
research neutron source at the Technical University of Munich. This separate injection
may afford different temperature profiles to the two species.

For simplicity we will now consider flat density profiles. We will find it convenient
to define ωTa = ηaω?a = kyTa/(eaB) d ln Ta/dx, which is finite also at zero density
gradient.

We will allow symmetry breaking not only through relaxation of the quasineutrality
condition, but also by allowing each plasma species to have different temperature
profiles. To this end, we introduce the notation

ν̂a =
2νa/τa∑
a′ νa′/τa′

, (5.1)

where νa = na/ne and τa = Ta/Te. It is important to note that quasineutral plasmas
satisfy both

∑
a νa= 2 and

∑
a ν̂a= 2 whereas in non-neutral plasmas these quantities

are both arbitrary. If the temperatures of all species are equal (τa= 1) in such plasmas
then ν̂a = νa.

We seek to use our machinery to examine the behaviour of electron and positron
temperature-gradient-driven modes. Using this notation and restricting our attention
to the case where the only gradients present are electron and positron temperature
gradients, the dispersion relation reduces to

1+ k2
⊥
λ2

D +
∑

a=p,e,i

ν̂a

2
ζaZ0aΓ0a +

∑
a=p,e

ν̂a

2
ζa
ωTa

ω

(
3
2

Z0aΓ0a − Z0aΓ?a − Z2aΓ0a

)
= 0. (5.2)

We assume that k⊥ρi� 1 but k⊥ρe,p� 1, which yields

Γ0i = 0, Γ?i = 0, Γ0(e,p) = 1, Γ?(e,p) = 1, (5.3a−d)

and also make the assumption of large frequencies ω� k‖vth(e,p), allowing us to use
an asymptotic form of the plasma dispersion function. Namely, we can make use of
the relations

Z0(ζe,p)≈−
1
ζi
−

1
2ζ 3

i
, Z2(ζi)≈−

1
2ζ
−

3
4ζ 3

, (5.4a,b)

where the second expansion follows immediately from the recurrence relation Z2(ζ )=

ζ + ζ 2Z0(ζ ) which itself follows straightforwardly from (2.14).
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(a) (b)

FIGURE 5. The frequency ω, and the growth rate γ , of the ETG instability (a) and the
associated scaled quasilinear particle fluxes (b) as a function of ion fraction νi, in a non-
neutral electron–ion plasma. Parameters as given in the text.

These simplifications reduce the dispersion relation in the leading order to(
1−

ν̂e + ν̂p

2
+ k2
⊥
λ2

D

)
+
ν̂eτeωTe + ν̂pτpωTp

4ωζ 2
e

= 0. (5.5)

This dispersion relation is valid in plasmas of arbitrary neutrality since the ion
response is negligible due to Γ0i ≈ 0 at large k⊥ρi. One can solve this leading-order
approximation to the dispersion relation analytically to obtain the unstable branch

ω=
1

21/3

(
ν̂eτeωTe + ν̂pτpωTp

2(1+ k2
⊥λ

2
D)− ν̂e − ν̂p

)1/3
(

1
2
+ i

√
3

2

)
. (5.6)

This equation immediately leads to the first interesting result that even pure electron
plasmas can sustain unstable electron temperature-gradient-driven (ETG) modes. This
is easily seen by simply noting even when νi= νp= 0 the unstable branch still exists.

Another interesting result here is the existence of such modes in pair plasma with
no ion contamination. In Mishchenko et al. (2018b) it was found that temperature-
gradient-driven instabilities can exist in pair plasmas in a slab only if the temperatures
of the two species differed. However, in non-neutral plasmas the ETG mode can also
be unstable even in a pure pair plasma where the electrons and positrons have the
same temperature profiles provided that νp 6= 1. Again this is also seen from the
asymptotic solution to the dispersion relation.

These behaviours are clearly seen in figures 5–7 where the full dispersion relation
(2.17) is solved for the parameters λD/ρi = 0.1, κTeρi = κTpρi = 0.1, κTi = 0, kyρi = 12
and k‖ρi = 7.4 × 10−4, With different numbers and types of species being shown in
each figure.

For non-neutral electron–ion plasmas, the ETG mode still exists and shows little
deviation as the ion fraction is varied. This is seen in figure 5 where we note that
ETG modes are unstable through a large swathe of ion fractions ranging from a
quasineutral electron–ion plasma (right most point) through to a pure electron plasma
(left most point). Again we see from this solution of the full dispersion relation
that unstable ETG modes can exist even in pure electron plasmas. The ETG mode
can also be unstable in non-neutral pair plasmas for νp < νe (see figure 6) and the
positron-temperature-gradient (PTG) driven instability can appear for νp > νe (see
figure 7). This PTG mode propagates in the opposite direction to the ETG modes.

Similarly the ETG mode also exists in electron–antiproton plasmas as shown in
figure 8. The left most point in this figures of corresponds to a pure electron plasma
is in agreement with the pure electron plasma limit of the previous figures.
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(a) (b)

FIGURE 6. The frequency ω, and the growth rate γ , of the ETG instability (a) and the
associated scaled quasilinear particle fluxes (b) as a function of the positron fraction νp,
in non-neutral pair plasma. We note that in a non-neutral pure pair plasma (i.e. with no
ion contamination) it is still possible to have temperature-gradient-driven instabilities as
there is no requirement for the electron and positron contributions to cancel. Parameters
as given in the text.

(a) (b)

FIGURE 7. The frequency, ω, and the growth rate γ , of the PTG instability (a) and the
associated scaled quasilinear particle fluxes (b) as a function of the positron fraction νp,
in non-neutral pair plasma. We note that in a non-neutral pure pair plasma (i.e. with no
ion contamination) it is still possible to have temperature-gradient-driven instabilities as
there is no requirement for the electron and positron contributions to cancel. Parameters
as given in the text.

(a) (b)

FIGURE 8. The frequency, ω, and the growth rate γ , of the ETG instability (a) and the
associated scaled quasilinear particle fluxes (b) as a function of the antiproton fraction νi,
in non-neutral electron–antiproton plasma. Parameters as given in the text.

Interestingly, both the ETG and PTG modes are stable for pair plasmas which are
‘close’ to quasineutrality, this is easily seen in on figure 6(b) and figure 7(a) where
the growth rate is negative.

One area of investigation which is important experimentally is the effect of large
Debye length on this class of instabilities. In fusion plasmas this effect is usually
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negligible as the Debye length is much smaller than the ion Larmor radius for fusion
relevant parameters. However, for the pair plasma experiment under construction,
this will not be the case. The Debye length of such plasmas is expected to become
comparable to the proton gyroradius. One can see from (5.6) that large Debye
length can have a strongly stabilising effect on the ETG and PTG instabilities in a
non-neutral pair plasma.

Once again we note that the quasilinear particle fluxes obtained numerically are
ambipolar. Furthermore, focussing our attention on figure 6 we can obtain a useful
sanity check on our model. We note that, even though the growth rate is large, the
scaled particle flux (and hence the actual quasilinear particle flux) of both species
tends to zero as νp→ 0. This is again a consequence of ambipolarity.

6. ITG instability
In analogy to the ETG instability, the ITG mode can exist in non-neutral plasma

with a sufficiently large ion fraction νi >νe, see figure 9. Interestingly, the ITG mode
needs some finite fraction of electrons to be unstable, in contrast to the ETG instability
which we found could also exist in pure electron plasma and did not need a finite ion
or positron fraction.

We restrict our attention to a non-neutral electron–ion plasma where the only
gradients present are now ion temperature gradients. The dispersion relation becomes

1+ k2
⊥
λ2

D +
1
2
[ν̂iζiZ0iΓ0i + ν̂eζeZ0eΓ0e] +

ν̂iωTiζi

2ω

(
3
2

Z0iΓ0i − Z0iΓ?i − Z2iΓ0i

)
= 0. (6.1)

We consider the long wavelength limit Γ0a = Γ?a = 1 for all particle species. For the
ITG instability, we can assume that k‖vthi�ω� k‖vth(e,p). Then, the plasma dispersion
function can be expanded as

Z0(ζi)≈−
1
ζi
−

1
2ζ 3

i
−

3
4ζ 5

i
, Z2(ζi)≈−

1
2ξ
−

3
4ζ 3

, Z0(ζe)≈ i
√

π. (6.2a−c)

To leading order, we obtain the dispersion relation

1+ k2
⊥
λ2

D −
ν̂i

2
=−

ν̂iωTi

4ω3
k2
‖
v2

thi. (6.3)

Noting that by convention ωTi < 0, we obtain the unstable branch of the ITG mode

ω=
1

21/3

(
ν̂i|ωTi|k2

‖
v2

thi

2(1+ k2
⊥λ

2
D)− ν̂i

)1/3 (
−

1
2
+ i

√
3

2

)
. (6.4)

We can see immediately from this equation that the ITG frequency is negative, as
expected. One also sees, exactly the same as in the quasineutral case, the factor
(ν̂iωTi)

1/3 appearing in the numerator of the growth rate. However, the dependence of
the growth rate on (ν̂iωTi)

1/3 is no longer monotonic as we are no longer restricted
to the range νi ∈ [0, 1] as we were in the quasineutral case. One can also see
that the ITG mode is stabilised for sufficiently large ion fraction, this can be
seen from the asymptotic solution of the dispersion relation. This behaviour is
seen in the numerical solution of the full dispersion relation (2.17) as shown in

https://doi.org/10.1017/S002237781900059X Published online by Cambridge University Press

https://doi.org/10.1017/S002237781900059X


Non-neutral gyrokinetic stability 17

(a) (b)

FIGURE 9. The frequency, ω, and the growth rate γ , of the ITG instability (a) and
associated scaled quasilinear particle fluxes (b) as a function of the ion fraction νi, in
non-neutral electron–ion plasma. Parameters as given in the text.

(a) (b)

FIGURE 10. The frequency, ω, and the growth rate γ , of the ITG instability (a) and
associated scaled quasilinear particle fluxes (b) as a function of the ion fraction νi, in
non-neutral electron–antiproton plasma. Parameters as given in the text.

figure 9. Here, the dispersion relation is solved for the parameters λD/ρi = 0.1,
κTiρi = κTeρi = 0.02, κn(i,e) = 0, kyρi = 0.3, k‖ρi = 7.4× 10−4.

There is also non-monotonic behaviour displayed by the scaled quasilinear fluxes.
As seen in figure 9 there is a change in the direction of particle transport for
sufficiently large ion fraction.

The antiproton temperature-gradient instability in electron–antiproton plasmas can
be seen in figure 10. It is interesting to note that frequency of these waves are positive,
propagating in the opposite direction to ITG-driven waves in electron–ion plasmas.
Similar to the ITG instability, a finite number of antiprotons are required for the
modes to become unstable.

7. Summary and discussion
In this paper, we have studied the gyrokinetic stability of non-neutral electron–

positron–ion plasmas by solving, both analytically and numerically, the dispersion
relation (2.17) in a slab geometry and relaxing the quasineutrality condition. It has
been found that, much like their quasineutral counterparts, such non-neutral plasmas
can support the gyrokinetic ITG, ETG, PTG, antiproton temperature-gradient and
universal instabilities even in slab geometry. However, we found that in most cases
the physics of these instabilities was different in non-neutral plasmas. We note here
some of the major differences between these gyrokinetic instabilities in quasineutral
and non-neutral plasmas as well as a summary of some qualitative differences which
is shown in table 1.
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Instability Quasineutral Non-neutral

Univ. Exists in standard electron–ion
plasmas. Driven by density gradients.
Growth rate is a monotonic function
of density gradient.

Exists in non-neutral electron–ion
plasmas. Driven by density gradients.
Existence of a second stability
threshold for sufficiently large density
gradients.

ETG/PTG Temperature-gradient driven. Exists
only with finite ion fraction or with
κTe 6= κTp.

Temperature-gradient driven. Both
ETG- and PTG-driven modes exist in
pure electron–positron plasma even
when κTe = κTp.

ITG Temperature-gradient driven. Exists
only with finite electron fraction.

Temperature-gradient driven. Exists
only with finite electron fraction.
Existence of unstable antiproton
temperature-gradient-driven modes in
electron–antiproton plasmas.

TABLE 1. Qualitative differences and similarities between the different types of
gyrokinetic modes arising in both quasineutral and non-neutral plasmas.

Quasilinear cross-field particle flux was investigated for each instability and it was
found that the quasilinear particle flux was intrinsically ambipolar as it is in standard
quasineutral gyrokinetics. We were also able to verify this numerically in each case
and plot a scaled version of the particle current up to an unknown positive constant.

We found many differences between the unstable modes arising in quasineutral and
non-neutral plasmas. Similarly to quasineutral plasmas, we found that non-neutral
electron–ion plasmas can support the universal instability driven by a density
gradient. However, in non-neutral plasmas the universal instability has a second
stability threshold for large density gradients that does not exist in the quasineutral
case. We found that non-neutral plasmas can also support electron and positron
temperature-gradient-driven instabilities. Contrary to the case for quasineutral plasmas,
we found that non-neutral pair plasmas can support both ETG and PTG modes
even when each species has the same temperature and without the need for ion
contamination. We also found that the ETG instability can exist even in pure electron
plasmas and it can hence be reasoned that the PTG instability should also exist in
a pure positron plasma. It was found that similarly to their quasineutral counterparts,
the Debye length has a stabilising effect on temperature-gradient-driven instabilities.
It was found that the quasilinear particle fluxes were ambipolar in each instance.

It is worth remarking that instabilities which exist even in quasineutral plasmas
e.g. ETG in pure pair plasma with different species temperatures (Te 6= Ti) might
somehow be of more importance in the non-neutral setting. In a quasineutral plasma,
different electron and positron temperature profiles are unlikely in steady state, since
the characteristic time of energy exchange between species is comparable to the
Maxwellisation time. However, in non-neutral plasmas, such scenarios become much
more physically realisable. So it might be more likely that this instability manifests
experimentally in non-neutral plasmas. These results may have particular interest in
the upcoming PAX/APEX experiments to investigate the stability of electron–positron
plasmas. Indeed, in the aforementioned experiments it will be necessary to confine
pure electron and pure positron plasmas and hence the stability of such systems is
of great importance.

https://doi.org/10.1017/S002237781900059X Published online by Cambridge University Press

https://doi.org/10.1017/S002237781900059X


Non-neutral gyrokinetic stability 19

The ITG mode also exists in non-neutral electron–ion plasmas. However, the growth
rate is no longer simply monotonic. We also found a change in the flux direction of
both particle species for sufficiently large ion fraction. We also found that temperature-
gradient-driven modes exist even when the heavy species and light species carry the
same sign of charge. We found unstable antiproton temperature-gradient-driven modes
in electron–antiproton plasmas.

We were able to use our model to investigate drift-wave instabilities in fully un-
neutralised multi-species plasmas, that is, plasmas in which all species have the same
type of charge, paying particular attention to electron–antiproton plasmas. We were
able to make contact with some existing work on this subject such as the results of
Dubin (2010) who found similar results using a fluid model with a more realistic
geometry.

We once again remark on some of simplifications invoked in this work. Particularly
our use of a local theory including ambient electric field, always present in
non-neutral plasma, but neglecting the shear of this field assuming the shear length
exceeds the characteristic length of the modes discussed here. Furthermore, the slab
geometry also neglects the centrifugal effect of the E × B plasma rotation in our
stability calculations. It is pertinent to comment that experimentally these effects
can and do have a destabilising influence in addition to the destabilising density-
and temperature-gradient effects considered here. This area also warrants further
investigation using a more sophisticated model. To claim that this model captures all
the non-neutral plasma dynamics would be an egregious oversight, but hopefully the
results presented here do allow us some physical insight into non-neutral plasmas, in
particular highlighting some of the important distinctions between the nature of such
instabilities in quasineutral and non-neutral plasmas. We plan to address the more
complex systems including a shearing electric field in the future.
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