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ASYMPTOTIC BEHAVIOUR OF SMALL SOLUTIONS OF
SINGULARLY PERTURBED PROBLEMS

ZONGMING GUO

We consider the singular limit of small solutions of some singularly perturbed prob-
lems where the nonlinearity changes sign.

1. INTRODUCTION

In this paper we consider the singular limit of positive solutions of

(1.1) -e 2 Au = f{u) in B, u = 0 on dB.

Here B is the unit ball in RN (N > 2), e > 0. We are interested in the asymptotic
behaviour of positive solutions for small positive e in the case that /(0) = 0, / '(0) = 0
and / changes sign on [0,oo). More precisely, we assume / € C1+<7((0,oo)) nC°([0,oo))
with 0 < a < 1 satisfying the following conditions:

(/i) / (°) = 0, / has two positive zeros a and b such that a < b, f'(b) < 0, and
/ has no other positive zeros;

(/2) (s - a)f'(s) < f{s) on (a, b), and there is a p > N{N - 2)'1 such that
lim s1~p/'(s) exists and is negative;

rb rP
(/3) / f{s)ds > 0 and (3 is the unique number in (a, 6) such that / f{s)ds = 0.

Jo Jo
Problem (1.1) has appeared in various models in applied mathematics, including

population genetics and chemical reactor theory (see, for example [7] and the references
therein) and has been studied by many authors, see, for example, [9, 10, 4, 7]. The case
that / '(0) = 0 can be viewed as a border line case of singular perturbation problems (see
[6]). Benci and Cerami [1] raised the question what happens for the structure of positive
solutions in this borderline case, also called the zero mass case [2].

In [7], Jang studied the problem similar to (1.1), but with /'(0) < 0 and a general
smooth domain fl. He found a positive small solution ue of (1.1), which has only one
maximum point PE € ft when ft is a convex domain. In [10], under the same conditions
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as in [7], Ni, Takagi and Wei showed that vc(y) := ue(ey + Pe) -» V as e -»• 0 in ̂ ( R * )
where V = V(x) is the unique positive (radial) solution of

(1.2) AV + f(V) = 0 in KN, V{x) -> 0 as \x\ -> oo

and

(1.3) limdist(P£, dQ) = maxdist(P,dft).

To obtain the mentioned results, the authors always use the fact that V decays exponen-
tially as |x| —> oo (since / '(0) < 0). Meanwhile, Dancer [4] studied (1.1) in a domain D
of type RN with / ' (0) = 0. He showed that when / satisfies {f\)-{fz), (1.1) has exactly 2
positive solutions ue, u^ with 0 < ||u||oo < b for all small positive e: ue is a large solution,
that is, uc —¥ b uniformly on compact subsets of D as e —> 0; u^ is a small solution, that
is, Halloo < b and ve(y) := u^ey) -> V as e -t 0 in Cfoc(R

N) where V̂  = V(i) is the
unique positive (radial) solution of

(1.4) AV + f{V)=Q in RN, V'(\x\) < 0, V(x) -> 0 as | i | -^ oo.

We easily see that the conclusions of [4] are definitely true on the unit ball. In this paper
we shall analyse the exact behaviour of u^ as e —¥ 0. Notice that the arguments in [7, 10]
can not be used here, since in our case /'(0) = 0. The main difficulty is that in our case,
the decay rate of the unique positive (radial) solution of the problem (1.4) obtained in
[4] is not exponential.

2. A N UPPER BOUND FOR y^

In this section we exhibit a property of u^, in that it can be globally bounded by
means of a function KeN~2\x^~N for e sufficiently small and some appropriately chosen
constants K > 0 independent of e. We consider the problem along some subsequences of
e.

By [5], we know that y^ is a radial function and u^(r) < 0 for r G (0,1]. Therefore,
y^ satisfies the problem

(2.1) -(rN-l£)' = TN-lE-*f{3u)i*%\), 4(0) = 0, ^(1) =0.

THEOREM 2 . 1 . Let u^ be the small solution of problem (2.1). Then there exists

£o > 0 such that for 0 < e < so

M,(r) ^ KeN-2r2-N for r € (0,1),

where K > 0 is independent ofe.
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PROOF: It follows from [4] that for e sufficiently small,

maxUj. = u^(0) > p .

Define ri = ri(e), r2 = r2(e) € (0,1) such that

Ue(n) = a, tu{r2) = a/2.

Making the changes of variables:

(2.2) y = e~lr, ve(y) = u^r),

we have that ve satisfies the problem

(2.3) - ( y w - V e ) ' = yw-V(«e) in (O.e-1), v£(e^) = 0.

(Note that y depends upon e.) It follows from [4] that there exists a subsequence of {ve}
(still denoted by {ve}) such that

v£(y)^V in C,1O(.(0)oo) as e -* 0.

Since u^ is decreasing, then ve is decreasing on (0,e~l). Set yi = j/^e) = e~xrx, y2 =
Ife(£) = £-V2. Then

(2.4) t)E(yi) = a, ve{y2) = a/2

and

(2.5) 2/i -> * i , 2/2 -^ ^2 as e -> 0

where Y\, Y2 £ (0,oo) satisfies

(2.6) V{Y1)=a, V(Y2) = a/2.

On the other hand, it easily follows from (2.3) that yN~1v'e(y) is increasing in (j/i, e"1)
(since ve < a in (j/i.e"1)). Thus,

(2-7) y " - 1 ^ ) > 2/r-X<(2/i) for y € (y^e"1) .

Now we show that there exists A > 0 independent of e such that

(2.8) vr-V,(yi) > -A.

Since ve -> V in C/oc(0, oo), we easily obtain that

v'M -> v'(v) f o r V 6 [»i. 2/2] a s e - > 0,
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where y — limy. It is easily shown that there exists B > 0 independent of e such

that V'(y) > —B for y € [Yi,!^]- This implies that there exists eo > 0 such that for

0 < e < e0,

(2.9) v'E(y) > -{B + 1) for y e [s/i,2/2]-

Therefore, (2.8) can be obtained by the fact that y"~l ->• Y"'1 as e -)• 0. (2.7) and (2.8)

imply that

(2.10) v'e{y) > -Ayl~N for y e [yU£-1).

Integrating (2.10) on (y,e~l), we obtain that

(2.11) v£(y) < j^V2~N for y € [tfi.e"1).

Since ve(y) —> V(y) for any y e [0,j/i] and y e [0, Y\], it follows that there exists
C > 0 such that for e e (0,e0),

(2.12) vs(y)^Cy2-N for ye[0,yi].

(2.11) and (2.12) imply our conclusion by choosing K = max{A/(N - 2), C} . D

3. ASYMPTOTIC BEHAVIOUR OF U^

In this section we turn to a description of the small solution ^(x) defined in Theorem
2.1 as e —> 0. Thus, we consider the problem below along a subsequence of e. As in [3]
and [8] the Pohozaev Identity plays a central role here. For the small solution u^ of (1.1)
it becomes

where F(u) = /0" f(s)ds, y any point in RN and n the outward pointing normal vector
on dB. This yields as a consequence, with y = 0,

and, upon differentiation with respect to y,

The main result in this section is the following theorem:

THEOREM 3 . 1 . Let f satisfy (/1H/3) and let Ug be t ie small solution of problem
(1.1). Then

£2~Nue{x) -> JG0(x) a s £ - > 0 ,
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where Go = G(-, 0) is the Green's function of—A with zero Dirichlet boundary conditions

in B,

J= f f{V(y))dy,
JRN

V(y) is the unique positive (radial) solution of (1.4). Moreover,

{()) ^ [ V(y)f{V(y))dy.
R" * JB.N

To prove this theorm, some basic elliptic estimates will be needed. They are supplied

by the following lemma and corollary which we take from [3] and [8].

LEMMA 3 . 2 . Suppose u is the solution of the problem

—Au = j in fl, u = 0 on dCl,

where Q is a bounded domain in HN with smooth boundary dQ.. Then there is a constant
C > 0, which depends only on Cl, such that

(3-2) ll«lk'.-(n) + l|Vu||co,«(an) ^ C(||ff||L.(n) + ||slU-(«))

for any s < N/(N — 1), any a G (0,1) and any neighbourhood CJ ofdQ.

COROLLARY 3 . 3 . In t ie notation of Lemma 3.2, we have for I <m < sN/(N - s),

(a) INk-co) + l|Vu||L2(an) ^ C(||0||L.(n) + ||fflU~M).
(b) If {gn} is a bounded sequence in Lx(r2) and in L°°(w), then the correspond-

ing sequence of solutions {un} has compact closure in Lm(Q,), whilst the
sequence {Vun}, restricted to dQ, has compact closure in L?(dQ).

Now we introduce the rescaled variables:

y = e~lx, ve{y) = u^x)

to determine the behaviour of u^ near the origin.

LEMMA 3 . 4 . We have

ve(y) -> V as £ ->0

uniformly on RN, where V is the unique radially symmetric solution of the problem (1.4).
Moreover,

V(y) = 0(M-("-2>) as |y| -* co.

PROOF: Because the family {ve} is uniformly bounded in Rw, it follows from elliptic
regularity theory that there exists a sequence, also denoted by {v£}, which converges
uniformly on compact sets to the unique positive radial solution of (1.4). It follows from
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the proof of Theorem 2.1 that there is a constant K > 0 which does not depend upon e

such that

(3.3) vt(y) < K\yHN-V in RN

for e small enough. This implies that the convergence of vE to V is actually uniform in
the whole RN and that

V(y) ^ K\y\-(N~V for yeRN. Q

For future reference we note the following limit.

LEMMA 3 . 5 .

(3.4) lime-" Jj{ue)dx = f f(V(y))dy.

P R O O F : Transforming to the variables y and ve, we obtain

e~N I f{u,{x))dx= f f(vt(y))dy.
JB JBC-I

For e sufficiently small, it follows from (3.3) that

Since \f(s)\ ^ 6sp for s G (0, b) with some 6 > 0 and p > N(N - 2)~\ then v 6 LP(RN)
and it follows from Lemma 3.4 and the dominated convergence theorem that

f fMfidy-* [ f(V(y))dy,
JBc-i JRN

from which the assertion follows.

In what follows we shall write

(3.5) J= [ f{V(y))dy.
JRN

The limiting behaviour of the left-hand side of the Pohozaev Identity (3.1) now readily
follows from Lemma 3.5:

lim£-"(iV f F{u.) - ^ f t^/fe
£->0 K

 JB * JB

F{V(y))dy - ^ 1 f V(y)f(V(y))dy.

PROOF OF THEOREM 3.1

We define the function g(x, y) which is the regular part of the Green's function
G(x, y) which solves

= 6y in B, G = 0 on dB
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and is given by the relation

where aN is the area of the unit sphere in RN. To determine the behaviour of y^ away
from the origin and to estimate the right-hand side of (3.1) we define the function

(3.6) wt(x) = e 2 - ^ ( x ) .

By (1.1), we is as solution of the problem

- A m £ = h£(x) in B, wE = 0 on dB

where

(3.7) he(x) = e-vfiue).

According to Theorem 2.1, (3.7) and the conditions on / , we have for x ^ 0,

|M*)| < Ce-Nu£ ^ C(N(N - 2)Y
N-2)/2e-N+^N-^\x^-N^

and so, if x ^ 0, then

(3.8) he(x) -> 0 as £ - > 0

since p > N(N - 2)~l.

On the other hand,

f he(x)dx = e'N I /(UeJdi.
J B J B

Hence, by Lemma 3.5

(3.9) lim / he(x)dx = J.
E~+o J B

From (3.8) and (3.9) we conclude that

he -t J5a as e -* 0,

where <50 is the Dirac mass centred at the origin. This implies, according to Corollary
3.3. that

(3.10) W,- -> JG0 as e -> 0

in Lm(B), as well as in L°°(OJ), where w is any compact subset of B which does not
contain the origin. Here Go — G(-,0), where G is the Green's function of —A with zero
Dirichlet boundary conditions in B. It is given by

https://doi.org/10.1017/S0004972700018955 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700018955


442 Z. Guo [8]

In addition we conclude from Corollary 3.3 that on the boundary dB

(3.12) Vwe -4 JVG0 as e -» 0 in L2{dB).

This yields for the right-hand side of (3.1)

,3,3) ^«/„*•<»(%!)'^'l<*«)(%)' -"*•

Moreover, it follows from (3.1)' that

To simplify the right-hand side of (3.13), we recall a result about the Green's function
from [3, Theorem 4.3].

LEMMA 3.6 Let G(x, y) be the Green's function. Then for every y e B,

J (x-y,n)( — (x,y)) dx =-(N-2)g{y,y),

(dG. ,\2
[—(x,y)) n=-Vg(y,y),

where n = n{x) denotes the outward normal to dB at x and g is the regular part of the
Green function.

Thus, setting <7o = <?(•, 0), we can write (3.13) as

(3.15) £2<2-"' JdB (x, n) ( | | ) 2 -> -J2(N - 2)90(0) = £ ,

where we have used the explicit expression for Go-

We now equate the estimates for respectively the left-hand and the right-hand side
of the Pohozaev Identity (3.1), and we have that

f F(V(y))dy = ?Lzl f V(y)f(V(y))dy.
JRN £ JR."

Moreover, it follows from (3.14), Lemma 3.6 that V<70(0) = 0. This implies that 0 is a

critical point of g(x,x). This completes the proof of Theorem 3.1.

REMARKS 1. The conclusion of Theorem 3.1 is also true for the problem

(3.16) -e2Au = up -Cuq in B , u = 0 o n dB

where C > 0, N(N-2)~1 < p < q < (N + 2)(N - 2)"1. In fact, it is known from
[4] that there exists a small solution u^ such that under the transformations: y = e~1r
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and ve(y) = ^ ( r ) , ve(y) —> V in C/oc(0,oo) as e -t 0 (we can choose a subsequence if

necessary) and V is the unique positive (radial) solution of the problem

-AV = V- CV in R", V(\x\) -> 0 as \x\-> oo.

The conclusion of Theorem 3.1 can be obtained by similar arguments to those in the
proofs of Theorems 2.1 and 3.1.

2. We conjecture that the conclusion of Theorem 3.1 is still true for any p > 1 in
(/2). To prove this, we need to find a better estimate on y^ as in Theorem 2.1. The
behaviour of f(s) near s = 0 is useful for such an estimate.

3. If we consider (1.1) with / satisfying (/i)-(/s) and p > 1 in (/2) on more general
domains fl, we can find a small solution of (1.1) as a Mountain Pass Solution u^. We
conjecture that when Q is star-shaped, y^ develops to a spike-layer solution at XQ € fi as
e -> 0, where xQ is a critical point of the function <f>(y) = g(y, y).
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