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Abstract

We study stochastic properties of the empty space for stationary germ–grain models in
R
d ; in particular, we deal with the inner radius of the empty space with respect to a

general structuring element which is allowed to be lower dimensional. We consider
Poisson cluster and mixed Poisson germ–grain models, and show in several situations
that more variability results in stochastically greater empty space in terms of the empty
space hazard function. Furthermore, we study the asymptotic behaviour of the empty
space hazard functions at 0 and at ∞.
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1. Introduction

The statistical analysis of a spatial pattern Z ⊂ R
d is based on the assumption that Z is

a random set in R
d . Distance methods for point patterns usually begin by estimating non-

parametric summary functions, such as the empty space function, nearest-neighbour distance
distribution, Ripley’s K-function, and derived statistics such as the pair correlation and the
J -function. For a stationary spatial pattern Z ⊂ R

d , which is not necessarily a point process,
such as a germ–grain model, a particularly useful functional for estimating properties of Z is
the spherical contact distribution Hs (of Z) and its hazard rate hs. To define these concepts,
we consider the origin 0 ∈ R

d under the condition that it is not covered by Z and let a ball
centred at 0 grow with unit speed until it hitsZ at some time T > 0. ThenHs is the distribution
of T while rs is its hazard rate. We follow [1] in calling rs the empty space hazard of Z.
Assume, for instance, that Z is a Boolean model based on a stationary Poisson process N of
intensity λ [18], [20]. Then rs is a polynomial of degree d − 1; see also (2.15) below. If Z̃ is a
germ–grain model based on a stationary Poisson cluster process Ñ with intensity λ and with the
same typical grain as Z (see Subsection 2.2 for more detail), then Proposition 3.3 implies that
P(0 ∈ Z) ≥ P(0 ∈ Z̃). Hence, the volume fractions of both models are ordered as expected.
On the other hand, our Proposition 3.2 says in particular that rs is greater than or equal to the
empty space hazard r̃s of Z̃. Hence, an observer, positioned at random in the complement of
Z, sees less space around him than an observer in the complement of Z̃. It might come as a
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944 • SGSA G. LAST AND R. SZEKLI

surprise that this can be quantified in the strong sense of hazard rate ordering. Even if Ñ �= N ,
it is quite possible that Z and Z̃ have the same volume fraction; see Remark 3.3. The above
hazard rate ordering is also interesting in the case where the typical grain degenerates to a single
point x. Then Z = N + x, Z̃ = Ñ + x, and P(0 ∈ Z) = P(0 ∈ Z̃) = 0.

Some early results on stochastic ordering of random closed sets can be found in [21],
and a characterisation of the strong stochastic ordering of random closed sets is given in
Theorem 1.4.42 of [15]. However, apart from Section 3.8 of [7] (dealing with volume fractions)
and [12] (dealing with the spherical contact distribution of a Gauss–Poisson model), we are not
aware of papers comparing functionals of stationary random closed sets. We shall compare here
germ–grain models with the same germ intensity and the same typical grain in terms of empty
space hazards. A common feature of our comparison results is that the models will be ordered
with respect to a real-valued random or deterministic parameter. Increasing this parameter will
not only increase the empty space hazard but also the variability of the underlying germ process.
This means in a sense that a larger variance gives more empty space with more clustering. In
fact, we will consider direction-dependent hazard rates and relative empty space hazards based
on distances other than the Euclidean distance.

The main result on the asymptotic properties of empty space hazard rates is given in
Theorem 3.2, which is based on Theorem 3.1. The main stochastic comparison results for
empty space utilise two new stochastic relations which appear in a natural way in our study
and which are easy to check for known distributions. We say that two random variables η and
η̃ taking values 0, 1, 2, . . . are ordered in the length-biased probability generating functions
ordering, and write η <l−g η̃ if the corresponding length-biased variables ηl and η̃l are ordered
in the probability generating ordering [19, Section 1.8], that is, E[sηl ] ≥ E[sη̃l ], s ∈ [0, 1]. For
two nonnegative random variables � and �̃, we say that they are ordered in the first cumulant
order and write � <cum �̃ if, for the corresponding cumulant generating functions C� and
C�̃ taking the first derivatives, we have C′

�(s) ≥ C′
�̃
(s), s ≤ 0. We show for Neyman–Scott

processes with cluster sizes η and η̃ that η <l−g η̃ implies that the corresponding empty space
distributions are ordered in the hazard rate ordering. For mixed Poisson germ–grain models,
we show that if� <cum �̃ then the corresponding empty space distributions are ordered in the
hazard rate ordering.

The paper is organised as follows. Section 2 contains some preliminary material on empty
space hazard germ–grain models and support measures, and concludes with a general theorem
on the structure of relative empty space hazards. Section 3 contains our results on germ–
grain models based on Poisson cluster processes. After providing some general results on
the structure and the asymptotic behaviour of (relative) empty space hazards, we shall compare
Neyman–Scott and Gauss–Poisson germ–grain models. We also discuss the behaviour of cluster
processes under scaling of the cluster points. Section 4 contains our results on mixed Poisson
germ–grain models. We finish the paper with some concluding remarks.

2. Preliminaries

2.1. Empty space hazard functions

In this paper Z will always denote a stationary random closed set in R
d ; see [15] and [18].

Let ‖x‖ denote the Euclidean norm of a vector x ∈ R
d , and let d(x,A) := inf{‖x−y‖: y ∈ A},

the distance between x ∈ R
d and a set A ⊂ R

d . Then the empty space distribution function F
of Z is given by

F(t) = P(d(0, Z) ≤ t), t ≥ 0,
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where 0 denotes the zero vector. The value F(0) = P(0 ∈ Z) is the volume fraction of Z. We
can also write F in terms of the capacity functional TZ (defined by TZ(K) := P(Z ∩ K �=
∅), K ⊂ R

d compact), namely F(t) = P(Z ∩ B(x, t) �= ∅) = TZ(B(x, t)), t ≥ 0, where
B(x, t) is the closed ball with centre x and radius t . Stationarity ofZ ensures that this definition
does not depend on x. Hence, F(t) is the probability thatZ hits the ballB(t) := B(0, t). There
are many reasons for studying other distances than the Euclidean distance; see, e.g. [8]. For
example, digital image analysers estimate the polygonal distance rather than the spherical
distance. To quantify isotropy of point patterns, we need the elliptical distance. Since the
distribution of Z is not determined by TZ(B(x, t)) for all balls, a larger class of sets provides
better information on Z.

The usual way of introducing distances other than the spherical distance is to fix a structuring
element (gauge body)B ⊂ R

d . This is a compact convex set having 0 ∈ B. Then theB-distance
of a point x ∈ R

d to a set K ⊂ R
d is defined by

dB(x,K) := inf{t ≥ 0 : (x + tB) ∩K �= ∅}.
It is possible that the set on the right-hand side is empty, e.g. if B is lower dimensional. In
such a case we set dB(x,K) := ∞. Note that we have the translation invariance property
dB(z + x, z + K) = dB(x,K) for all z ∈ R

d . Clearly, dB(x,K) ≤ t if and only if x is
contained in the generalised outer parallel set K + tB∗ of K , where B∗ denotes the reflected
set {−x : x ∈ B}. IfB is full dimensional (i.e. has a nonempty interior) and centrally symmetric
(i.e.B∗ = B), then dB(·, ·) is a metric on R

d induced by the norm dB(·, 0), and the pair (Rd , dB)
is called a Minkowski space.

If the B-distance dB(x,K) of a point x /∈ K is attained in a unique point y in the boundary
∂K ofK (i.e. if (x + dB(x,K)B)∩K = {y}), then we define the relative metric projection of
x on K by pB(K, x) := y, and the contact direction vector uB(K, x) as the element of ∂B∗
given by

uB(K, x) := x − y

dB(x,K)
.

The points x ∈ R
d \ K for which the distance dB(x,K) is attained in more than one point of

K (and for which uB(x,K) is therefore not defined) form the exoskeleton exoB(K) of K (see
[10]).

We define the (directed) B-relative empty space function FB of Z by

FB(t, C) := P(dB(0, Z) ≤ t, uB(Z, 0) ∈ C), t ≥ 0, C ∈ Bd , (2.1)

where Bd is the system of Borel subsets of R
d . Here we use the convention uB(Z, 0) := u0 if

0 ∈ Z or dB(0, Z) = ∞, where u0 ∈ ∂B∗ is fixed. Definition (2.1) is subject to the assumption
that the vector uB(Z, 0) is P-almost surely (P-a.s.) well defined on {0 < d(0, Z) < ∞}. If
B is strictly convex, containing 0 in its interior, then this is indeed the case. This follows
from the fact that exoB(Z) has volume 0 and from the stationarity of Z. (More general cases
require a suitable assumption on the relative positions of Z and B; see Subsection 2.2.) The
function FB determines the joint distribution of the pair (dB(0, Z), uB(Z, 0)), and, hence, that
of the contact vector dB(0, Z)uB(Z, 0). For each fixed t , the function FB(t, ·) is a measure
on R

d concentrated on ∂B∗. The function FB(·) := FB(·,Rd) is called the (B-relative) empty
space function of Z. The value FB(0) is the volume fraction of Z. In the case FB(0) < 1 the
distribution function HB defined by 1 − HB(t) := (1 − FB(0))−1(1 − FB(t)) is the contact
distribution function of Z with respect to the structuring element B; see [14] and [20].
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Using the Minkowski addition of sets C,D ⊂ R
d (C ⊕D := {x + y : x ∈ C, y ∈ D}) and

stationarity, FB can be written as

FB(t) = Vd(A)
−1 E[Vd((Z ⊕ tB∗) ∩ A)], t ≥ 0, (2.2)

for each Borel setA, such that the volumeVd(A) ofA is positive and finite; see, e.g. [8] and [11].
Hansen et al. [8], utilising Federer’s coarea theorem, showed that the empty space function FB
of a random closed set Z is absolutely continuous on (0,∞) with density

fB(t) = Vd(A)
−1 E

[∫
A∩∂(Z⊕tB∗)

‖∇dB(s, Z)‖−1Hd−1(ds)

]
, (2.3)

where H i , i ∈ {0, . . . , d}, denotes the i-dimensional Hausdorff measure on R
d , ∂A denotes

the boundary of A, and ∇dB denotes the gradient of the function dB . In the Euclidean case,
this formula reduces to

fB(1)(t) = Vd(A)
−1 E[Hd−1(∂(Z ⊕ B(t)) ∩ A)].

In this case the empty space hazard rs (discussed in the introduction) equals the ratio of the
expected measure of the boundary ∂(Z⊕B(t)) inside the set A to the volume of the space not
occupied by Z⊕B(t) inside A. The direction-dependent (sub)distribution functions FB(·, C),
as defined in (2.1), are also absolutely continuous on (0,∞) for any C ∈ Bd . Letting fB(·, C)
denote its density, we define

rB(t, C) := fB(t, C)

1 − FB(t)
,

where a/0 := 0 for all a ∈ R. We call the function rB := rB(·, ·) the directed, B-relative
empty space hazard of Z, and note that

FB(t) = 1 − P(0 /∈ Z) exp

[
−

∫ t

0
rB(u,R

d) du

]
. (2.4)

We also note that rB(t, C) = hB(t, C)/(1 − HB(t)), where hB(·, C) is the density of the
directional version of the contact distribution HB .

Formulae (2.2) and (2.3) are the starting points for estimating these functions as well as their
densities and hazard rates; see [1], [2], [4], [8], and [14]. Plots of these functions may serve as
convenient summary statistics of a spatial pattern.

For fixed B, we shall order two random sets Z and Z̃ with respect to their B-relative empty
space hazard functions, and write

Z <h−B Z̃ (2.5)

if and only if, for all t ≥ 0 and C ∈ Bd ,

rB(t, C) ≥ r̃B(t, C). (2.6)

It can be seen from (2.4) that (2.6) (for C = R
d ) implies the usual (strong) stochastic ordering

of contact distributions; see, e.g. [22, Section 1.4] for further details on such orderings.
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2.2. Empty space hazard rates and support measures

By a germ–grain model in R
d we mean a random set of the form

Z =
∞⋃
n=1

(Xn + ξn) =
∞⋃
n=1

{x + ξn : x ∈ Xn},

where the random points ξn, n ∈ N, represent the locations of the germs and the primary
grains Xn, n ∈ N, are assumed to be random nonempty compact subsets of R

d . We assume
that the (simple) point process N := {ξn : n ∈ N} is stationary, that is, the distribution of the
shifted point process N + x := {ξn + x : n ∈ N} does not depend on x ∈ R

d , and that N is
independent of (Xn)n≥1, which is a sequence of independent and identically distributed (i.i.d.)
random sets. The intensity λN := E card{n ∈ N : ξn ∈ [0, 1]d} of N is assumed to be finite.
An important special case is the Boolean model, where the germs are located according to a
homogeneous Poisson process. Stationarity of N entails that Z is also stationary, i.e. that the
distribution of Z + x does not depend on x. It is convenient to denote by X0 a typical grain
having its distribution equal to that of Xn. We assume that E[Vd(X0 + K)] is finite for all
compact K ⊂ R

d . We will later use the fact that the capacity functional of a Boolean model is
given by

P(Z ∩K �= ∅) = 1 − exp[−λN E[Vd(X0 +K∗)]]. (2.7)

In particular, the volume fraction of a Boolean model is given by

P(0 ∈ Z) = 1 − exp[−λN E[Vd(X0)]]. (2.8)

A detailed introduction to germ–grain models can be found in [18] and [20].
Consider a convex, compact, and nonempty set K ⊂ R

d . We assume that K and B∗ are
in general relative position, which means that K and B∗ do not contain parallel segments in
parallel and equally oriented support (hyper)planes. This means thatK andB have independent
support sets; see [18, p. 611] for more details. A sufficient condition is that K or B is strictly
convex. This assumption guarantees that pB(K, x) (and, hence, uB(K, x)) is defined for all
x /∈ K . Then there are finite measures C0(K;B; ·), . . . , Cd−1(K;B; ·) on R

d × R
d which

satisfy the local Steiner formula

Vd({x ∈ R
d : 0 < dB(x,K) ≤ t, (pB(K, x), uB(K, x)) ∈ A× C})

=
d−1∑
i=0

td−ibd−iCi(K;B;A× C) (2.9)

for all A,C ∈ Bd , where bi (i ∈ N) denotes the volume of the unit ball in R
i , and b0 := 1.

These relative support measures ofK are uniquely determined by (2.9). They are concentrated
on ∂K × ∂B∗ and in fact on the relative normal bundle

NB(K) := {(pB(K, x), uB(K, x)) : x /∈ K}
ofK . IfB = B(1) then the measuresCi(K; ·) := Ci(K;B(1); ·) are the generalised curvature
measures of K . The total mass Vi(K) := Ci(K; R

d × R
d) is the ith intrinsic volume of K . In

particular, Vd(K) is the volume of K , Vd−1(K) equals one half of the surface area, Vd−2(K)
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is proportional to the integral mean curvature, V1(K) is proportional to the mean width of K ,
and V0(K) = 1. Equation (2.9) implies the classical Steiner formula

Vd(K ⊕ B(t)) =
d∑
i=0

bd−i td−iVi(K). (2.10)

In the general case, the total mass Ci(K;B; R
d × R

d) is a special mixed volume, namely,

Ci(K;B; R
d × R

d) = b−1
d−i

(
d

i

)
V (K[i], B∗[d − i]), i = 0, . . . , d − 1.

For i = 0, we have

C0(K;B; R
d × R

d) = b−1
d Vd(B);

see [18] for the notation used here and for further details on support and curvature measures.
Consider now a germ–grain model Z with convex, compact grains. In this paper it is always

assumed that the reduced second moment measure of N on R
d (see [5] and [20]), defined by

E

[ ∑
x,y∈N
x �=y

1{x ∈ [0, 1]d , x − y ∈ ·}
]
, (2.11)

is absolutely continuous and that the typical grainX0 andB∗ are a.s. in general relative position.
It follows that uB(Z, 0) is a.s. well defined on {0 < dB(0, Z) < ∞}. This can be proved
similarly to Proposition 4.9 of [9].

By the Steiner formula (2.10), our general integrability assumption on X0 is equivalent to
the finiteness of the mean intrinsic volumes EVi(X0), i ∈ {0, . . . , d}, of the typical grain. The
Steiner formula (2.10) together with the local Steiner formula (2.9) imply that

V̄i,B := ECi(X0;B; R
d × R

d), i = 0, . . . , d − 1,

are finite as well. Therefore, the mean relative support measures of the typical grain, defined
by

C̄i,B(·) := ECi(X0;B; ·), i = 0, . . . , d − 1,

are finite measures on R
d × R

d .
We further use the Palm probability P0

N of P with respect to N [5], [20]. We can interpret
P0
N(A) as the conditional probability of the event A ∈ F given that 0 is a ‘randomly chosen

point’ of N . Let us define X(x) := Xn if x = ξn for some n, and X(x) := ∅ otherwise. Then,
under P0

N , {(x,X(x)) : x ∈ N} is an independently marked point process, i.e. conditionally
on N , the grains {X(x) : x ∈ N} are independent and have the same distribution as X0. For
V̄i,B > 0, t ≥ 0, and C ∈ Bd , let

Gi,B(t, C) := V̄ −1
i,B

∫
1{u ∈ C} P0

N(dB(y + tu, Z!) ≤ t)C̄i,B(d(y, u)), (2.12)

where

Z! :=
⋃

x∈N\{0}
(X(x)+ x) (2.13)
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is the union of all grains except for the grain located at the origin. We setGi,B ≡ 0 for V̄i,B = 0.
The function Gi,B(·,Rd) can be interpreted as the distribution function of a random variable
ξ , say, which can be constructed as follows. First select a point Y of N at random. Then
sample a random element (X,W) according to the distribution V̄ −1

i,B C̄i,B . If Y is not covered
by

⋃
x∈N\{Y }(X(x)+ x) then ξ is the B-distance from Y + X to the exoskeleton exoB(Z) in

the direction W . Otherwise, ξ = 0. We shall utilise the functions

Ji,B(t, C) := Gi,B(∞, C)−Gi,B(t, C)

1 − FB(t)
, i = 0, . . . , d − 1,

where i ∈ {0, . . . , d − 1}, t ≥ 0, C ⊂ R
d × R

d is a Borel set, and

Gi,B(∞, C) := lim
t→∞Gi,B(t, C) = V̄ −1

i,B C̄i,B(R
d × C).

Special cases of these functions were introduced in [12, Section 5] after the point process case
had been treated in [23]. The functions Ji,B(t, C) can be used as nonparametric measures for
expressing differences between a general germ–grain model and Boolean model with the same
values of λNV̄i,B . Intuitively speaking, such measures detect interactions and clustering effects.
In the Euclidean case (and for C = R

d ) the following theorem was proved in [12] and [13].
The present relative version is implicit in [9], at least in the case of a strictly convex B. The
general result can be derived from Theorem 5.1 of [10].

Theorem 2.1. Consider a stationary germ–grain model satisfying the assumptions formulated
above. Then the B-relative empty space hazard is given by

rB(t, C) =
d−1∑
i=0

(d − i)td−i−1bd−iλN V̄i,BJi,B(t, C). (2.14)

If N is a Poisson process (i.e. Z is a Boolean model with convex grains) then Slivnyak’s
theorem (see, e.g. [18, Theorem 3.5.9] and [20, p. 121]) implies that

P0
N(dB(y + tu, Z!) > t) = 1 − FB(t).

Hence, (2.14) simplifies to

rB(t, C) =
d−1∑
i=0

(d − i)bd−i td−i−1λN S̄i,B(C), (2.15)

where S̄i,B(C) := C̄i,B(R
d × C). In the case of a strictly convex gauge body B this result can

be found in [9]. Note that in the Boolean model rB(·,Rd) is determined by the intensity λN
and the mean mixed volumes V̄1,B, . . . , V̄d−1,B of X0. For d = 2 and B = B(1), for instance,
the only parameter of X0 influencing the empty space hazard is its mean boundary length V̄1.

Although the functions Ji,B occurring in (2.14) cannot be explicitly calculated in more gen-
eral cases, the formula provides deeper insight into the structure of relative empty space hazards.
Moreover, Theorem 2.1 and its consequences for more specific models (see Theorem 3.1 and
Proposition 4.1) is our main tool for proving the asymptotic and comparison results in the next
sections.
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3. Poisson cluster models

In this section we shall consider germ–grain models with the Poisson cluster point process
as a germ process. Recall from [5, Chapter 6.3] that a (stationary) Poisson cluster point process
N can be written as

N =
⋃
x∈�

(Lx + x),

where� is a Poisson process with positive and finite intensity λ�, and the family {Lx : x ∈ �}
consists of finite random point processes on R

d . Given�, the family {Lx : x ∈ �} is i.i.d. with
the same distribution as a typical cluster L0. We assume that

γ := E cardL0

is finite and positive; hence, λN = λ�γ . By stationarity we have E[N(B)] = λNVd(B) for all
B ∈ Bd . It is a well-known fact (see [5, Equation (6.3.11)]) that

E[N(B)2] = (E[N(B)])2 + λ� E

[∫
L0(B − x)2 dx

]
, B ∈ Bd . (3.1)

Example 3.1. Assume that

L0 =
{

∅ if η = 0,

{Yi : i = 1, . . . , n} if η = n ≥ 1,

where the random cluster size η ≥ 0, and the random vectors Yi, i = 1, 2, . . . , are independent.
Assume also that the Yi have the same (cluster point) distribution V , say. Then N is called the
Neyman–Scott process. We always assume that γ = E[η] is positive and finite.

Example 3.2. Let η be a {1, 2}-valued random variable, and assume that

L0 =
{

{0} if η = 1,

{0, Y } if η = 2,

where Y is a random vector independent of η. ThenN is called the Gauss–Poisson process. In
this case a cluster L0 + x associated with a parent point x say, contains x and, with probability
p := P(η = 2), also a secondary point Y + x. Note that the mean cluster size is given by
γ = 1 + p.

We assume that the reduced second moment measure

E

[ ∑
x,y∈L0
x �=y

1{x − y ∈ ·}
]

(3.2)

of L0 is absolutely continuous on R
d . The well-known second-order properties of Poisson

cluster point processes (see, e.g. [5]) easily imply that the measure defined at (2.11) is absolutely
continuous as well. For the Neyman–Scott process of Example 3.1, our assumption on L0 is
implied by the absolute continuity of the cluster point distribution V . For a Gauss–Poisson
process, it is sufficient to assume that the (secondary) point Y has an absolutely continuous
distribution.

https://doi.org/10.1239/aap/1324045693 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1324045693


Empty space for germ–grain models SGSA • 951

We consider the germ–grain model Z based on the Poisson cluster process N and typical
grain X0. We fix a gauge body B and recall our general assumptions made after (2.11).
Alternatively, we shall treat Z as a Boolean model with nonconvex grains which are⋃

y∈Lx
(X(y)+ y), x ∈ �.

In the degenerate case X0 = {0} the random closed set Z coincides with N . In this case it is
no loss to assume that B has a nonempty interior, because otherwise FB(t) = rB(t) = 0 for all
t ≥ 0.

For a given finite point pattern ψ = {xn : n = 1, . . . , m}, denote by 	(ψ, ·) the distribution
of the random closed set

⋃m
n=1(Xn + xn), whereX1, . . . , Xm are independent with distribution

equal to that ofX0. We also set 	(∅, ·) := δ∅. Let Y0 be a random closed set with distribution

µ(·) := 1

γ
E

[ ∑
y∈L0

∫
1{A ∈ ·}	((L0 − y) \ {0}, dA)

]
. (3.3)

This probability measure describes the distribution of the finite germ–grain model associated
with a typical cluster as seen from a randomly chosen cluster point, after removing the grain
around the chosen point. We assume that Y0 and the typical grain X0 are independent, and
define, for i ∈ {0, . . . , d − 1}, t ≥ 0, and a Borel set C ⊂ R

d ,

Ki,B(t, C) := 1

V̄i,B
E

[∫
1{dB(x + tu, Y0) > t, u ∈ C}Ci(X0;B; d(x, u))

]
, (3.4)

provided that V̄i,B > 0. Otherwise, we set Ki,B ≡ 0. The following proposition yields an
explicit formula for the B-relative empty space hazard of a Poisson cluster germ–grain model,
this time in terms of X0 and Y0 locally describing a cluster.

Theorem 3.1. The B-relative empty space hazard of a Poisson cluster germ–grain model with
compact, convex grains is given by

rB(t, C) =
d−1∑
i=0

(d − i)td−i−1bd−iλN V̄i,BKi,B(t, C). (3.5)

Proof. Our aim is to use (2.14). To do so, we recall that the Palm probability measure P0
N

of a Poisson cluster process N satisfies

P0
N(N ∈ ·) = E

[∫
1{N ∪ ψ ∈ ·}Q0

L0
(dψ)

]
,

where

Q0
L0
(·) := γ−1 E

[ ∑
y∈L0

1{L0 − y ∈ ·}
]

is the Palm distribution of the typical cluster L0; see, e.g. [20]. As in Last and Holtmann [12],
this implies that

P0
N(dB(x + tu, Z!) > t) = (1 − FB(t))

∫∫
1{dB(x + tu, A) > t}	(ψ \ {0}, dA)Q0

L0
(dψ).
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By definition (2.12) and the definition of Y0, this means that

Gi,B(∞, C)−Gi,B(t, C)

1 − FB(t)
= 1

V̄i,B
E

[∫
1{dB(x + tu, Y0) > t}1{u ∈ C}C̄i,B(d(x, u))

]
.

By definition (3.4), the above right-hand side equalsKi,B(t, C). Inserting this into (2.14) gives
the asserted equation (3.5).

Let νB be the measure on R
d given by

νB(·) := d

∫
B∗

1
{

x

dB(0, x)
∈ ·

}
dx,

where dB(0, x) := dB(0, {x}). This is the null measure if and only if B has an empty interior.

Corollary 3.1. The B-relative empty space hazard of the Poisson cluster point process N is
given by

rB(t, C) = λ�t
d−1

∫
C

E

[∫
Rd

1{((L0 − x) \ {0}) ∩ (tu+ tB) = ∅}L0(dx)

]
νB(du). (3.6)

In particular,

rB(1)(t, C) = λ�t
d−1

∫
C

E

[∫
Rd

1{((L0 − x) \ {0}) ∩ B(tu, t) = ∅}L0(dx)

]
Hd−1(du).

(3.7)

Proof. Computing the left-hand side of (2.9) for K = {0} and A = {0} × C easily shows
that

dbdC0({0};B; {0} × ·) = νB(·)
and that Ci({0};B; ·) = 0 for i ≥ 1. Result (3.6) is then a consequence of Theorem 3.1. If
B = B(1) then νB is the (d − 1)-dimensional Hausdorff measure on the unit sphere Sd−1 :=
∂B(1). Therefore, (3.6) implies (3.7).

If L0 = {0}, we have N = � and (3.6) simplifies to

rB(t, C) = λN t
d−1νB(C), (3.8)

in accordance with (2.15).

Example 3.3. Assume that N = Z is a Neyman–Scott process as defined in Example 3.1.
From (3.6) and a straightforward calculation,

rB(t, C) = λ�t
d−1

∫
Rd

∫
Rd

g′(P(Y1 − x /∈ tu+ tB))V (dx)νB(du),

where g′ is the derivative of the probability generating function g of η. This result generalises
Equation (30) of [11].

Example 3.4. Assume that N = Z is a Gauss–Poisson process as defined in Example 3.2.
Then

(λ�)
−1t1−drB(t, C) = (1 − p)νB(C)+ p

∫
C

P(Y /∈ tu+ tB)νB(du)

+ p

∫
C

P(−Y /∈ tu+ tB)νB(du).
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Our next proposition deals with the asymptotic behaviour of rB(t, C) as t → 0 or t → ∞,
respectively. The tangential cone (or support cone) T (B, u) of B at u ∈ B is the closure of
T ′(B, u) := {t (x − u) : t > 0, x ∈ B}; see [17].

Theorem 3.2. Assume that there is some j ∈ {0, . . . , d − 1} such that V̄i = 0 for i > j . Let
C ∈ Bd . Then tj+1−drB(t, C) is monotone increasing in t . Moreover,

lim
t→0

tj+1−drB(t, C) = (d − j)bd−j λN E

[∫
Rd×C

1{x /∈ Y0}Cd−j (X0;B; d(x, u))

]
, (3.9)

lim
t→∞ t

1−drB(t, C) = dbdλN E

[∫
Rd×C

1{(x + T (B,−u)) ∩ Y0 = ∅}

× C0(X0;B; d(x, u))

]
. (3.10)

Proof. The first assertion follows from (3.5) upon observing that dB(x + tu, Y0) > t is
equivalent to (x + tu + tB) ∩ Y0 = ∅. Relation (3.9) follows from monotone convergence.
Monotone convergence also shows that

lim
t→∞ t

1−drB(t, C) = dbdλN E

[∫
Rd×C

1{(x + T ′(B,−u)) ∩ Y0 = ∅}C0(X0;B; d(x, u))

]
.

Since measure (3.2) is absolutely continuous, it follows that

P(x + T ′(B,−u) ∩ Y0 = ∅, x + T (B,−u) ∩ Y0 �= ∅) = 0.

This implies (3.10).

Remark 3.1. One might wonder whether the right-hand side of (3.10) is positive for C = R
d .

A simple sufficient condition is that P(cardL0 = 1) > 0, because in this case Y0 is, with
positive probability, empty. Another sufficient condition is to assume that B is smooth (any
boundary point has a unique supporting hyperplane) and that the diameter of the typical grain
can take arbitrarily small positive values with positive probability. These assumptions would
allow us to apply the method of [11, Section 6.5] on a set of positive probability. We do not go
into further details.

Remark 3.2. The second assertion of Theorem 3.2 shows in particular that FB is light tailed,
i.e. has a finite exponential moment.

Next we deal with the special case Z = N . For small values of t , the empty space hazard of
a Poisson cluster point process behaves approximately like the empty space hazard of a Poisson
process with the same intensity; cf. (3.8). For large values of t , the asymptotic behaviour is
the same as that of the Poisson process � thinned at points x where Lx is empty, for which
the intensity equals P(L0 �= ∅)λ�. This means in a sense that points in clusters cannot be
distinguished from a very far distance, irrespective of any specific assumptions on the typical
cluster L0. This generalises Equation (22) of [11]. A weaker version of this latter result has
been rediscovered by Bordenave and Torrisi [3].

Corollary 3.2. The B-relative empty space hazard of a Poisson cluster point process satisfies

lim
t→0

t1−drB(t, C) = λNdνB(C),

lim
t→∞ t

1−drB(t, C) = P(L0 �= ∅)λ�νB(C). (3.11)
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Proof. By Theorem 3.2, it remains to prove (3.11). Convergence (3.10) and definition (3.3)
of the distribution of Y0 imply that

lim
t→∞ t

1−drB(t, C) = λ�

∫
C

E

[∫
1{((L0 − x) \ {0}) ∩ T (B,−u) = ∅}L0(dx)

]
νB(du).

Let us fix for a moment a regular boundary point u of B∗. This means that B has a unique
supporting hyperplane at −u; see [17]. Then T (B,−u) is the supporting half-space of B at
−u; see Section 2.2 of [17]. It now follows as in [11, Section 6.5] that

E

[∫
1{((L0 − x) \ {0}) ∩ T (B,−u) = ∅}L0(dx)

]
= P(L0 �= ∅).

It remains to note that νB -almost all u ∈ R
d are regular boundary points of B∗. This follows

from the fact that νB is absolutely continuous with respect to a (d − 1)-dimensional Hausdorff
measure on ∂B∗ and Theorem 2.2.4 of [17].

Now we shall compare the B-relative empty space hazard rB of Z with that of another
Poisson cluster germ–grain model Z̃ with the same intensity λ of germs and the same typical
grain X0. Both underlying germ processes are assumed to satisfy the technical assumption
formulated at (3.2). We denote the characteristics of Z̃ by �̃, L̃0, K̃i,B , r̃B , etc. We begin with
a direct consequence of Proposition 3.1.

Proposition 3.1. Let C ∈ Bd and t ≥ 0 be such that

Ki,B(t, C) ≥ K̃i,B(t, C), i = 0, . . . , d − 1.

Then (2.6) holds.

Proposition 3.1 implies that the relative empty space hazard of a Boolean model is always
greater than that of a Poisson cluster germ–grain model having the same germ intensity and the
same typical grain.

Proposition 3.2. Assume that Z is a Boolean model with typical convex, compact grains
distributed as X0, and that Z̃ is a Poisson cluster germ–grain model with equal intensity,
and also with typical grains distributed as X0. Then Z <h−B Z̃.

Proof. Since Z is a Boolean model, we have L0 = {0} and γ = 1. Hence, if V̄i,B > 0,

Ki,B(t, C) = V̄ −1
i,B C̄i,B(R

d × C) ≥ K̃i,B(t, C).

While a Boolean model has stochastically smaller empty space than a related Poisson cluster
germ–grain model, it has a greater volume fraction. Under a different set of assumptions (more
specific Poisson cluster processes and deterministic but possibly nonconvex grains), the result
was proved in Section 3.8 of [7].

Proposition 3.3. Under the assumptions of Corollary 3.2,

P(0 ∈ Z) ≥ P(0 ∈ Z̃). (3.12)

Proof. The volume fraction of Z is given by (2.8). On the other hand, Z̃ is also a Boolean
model, but based on the Poisson process �̃ and with a typical (possibly nonconvex) grain

X̃0 :=
⋃
x∈L̃0

X(x)+ x,
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where L̃0 is the typical cluster associated with Z̃ and, given L̃0, the family {X(x) : x ∈ L̃0}
consists of independent random closed sets with the same distribution as X0. Therefore, we
obtain, from (2.8),

P(0 ∈ Z̃) = 1 − exp[−λ�̃ EVd(X̃0)]. (3.13)

We have

EVd(X̃0) ≤ E
∑
x∈L̃0

Vd(X(x)) = E
∑
x∈L̃0

E[Vd(X(x)) | L̃0] = γ V̄d .

Inserting this into (3.13) and comparing with (2.8) yields the assertion.

Remark 3.3. Consider the hypothesis of Proposition 3.3. The proof of this proposition shows
that inequality (3.12) becomes an equality if and only if

Vd(X(x) ∩X(y)) = 0, x, y ∈ L̃0, x �= y, P -a.s.

This is, for instance, the case if the cluster points have minimal distance 2t0 from each other
for some t0 > 0, and X0 is a.s. contained in the ball B(t0).

We continue with ordering results for Neyman–Scott processes. Let η and η̃ be two counting
variables (i.e. taking values in {0, 1, 2, . . . }), and let ηl be the (shifted) length-biased version
of η. This means that ηl has distribution E[η]−1 E[η1{η − 1 ∈ ·}]. Denoting by η̃l the length-
biased version of η̃, we define the length-biased probability generating functions ordering

η <l−g η̃ (3.14)

by

E[sηl ] ≥ E[sη̃l ], s ∈ [0, 1].
This means that ηl is smaller than η̃l in the generating function order (see [19, Section 1.8]).
Note that η <l−g η̃ is equivalent to

E[η]−1 E[1{η ≥ 1}ηaη−1] ≥ E[η̃]−1 E[1{η̃ ≥ 1}η̃aη̃−1], a ∈ [0, 1].
Another way of expressing this relation is by the generating functions of η and η̃. Denote by

gη(s) := E[sη], s ∈ [0, 1],
the probability generating function of η. Then (3.14) means that

E[η]−1g′
η(s) ≥ E[η̃]−1g′

η̃(s), s ∈ [0, 1]. (3.15)

Relation (3.14) does not imply that the corresponding means E[η] and E[η̃] are ordered. For
example, if η ≡ 1, η1 ≡ 2, and η2 equals 0 with probability 1

2 and 1 with probability 1
2 , then

η <l−g η1 and η <l−g η2, but E[η] = 1 < E[η1] = 2 and E[η] = 1 > E[η2] = 1
2 . If η and η̃

have a finite second moment, then (3.15) implies that

E[η]−1 E[η2] ≤ E[η̃]−1 E[η̃2]. (3.16)

If, moreover, E[η] = E[η̃] then this implies that var[η] ≤ var[η̃]. Therefore, (3.14) is a
variability ordering.
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Theorem 3.3. Consider two germ–grain models with the same typical grains X0 such that N
and Ñ are Neyman–Scott processes with cluster sizes η and η̃, respectively, and the same cluster
point distribution V . If N and Ñ have the same intensity and η <l−g η̃, then Z <h−B Z̃.

Proof. By Proposition 3.1, it suffices to show that

P(dB(x + tu, Y0) > t) ≥ P(dB(x + tu, Ỹ0) > t) (3.17)

for all x, u ∈ R
d and all t ≥ 0. Letting B ′ := tB + x + tu and using definition (3.3) of the

distribution of Y0, we obtain

E[η] P(Y0 ∩ B ′ = ∅) = E

[ ∑
y∈L0

1{A ∩ B ′ = ∅}	((L0 − y) \ {0}, dA)
]

= P(η = 1)+
∞∑
n=2

P(η = n)n

∫
f (y)n−1V (dy),

where f (y) := ∫
P((X0 + z− y) ∩ B ′ = ∅)V (dz) and where the second identity comes from

a straightforward calculation using the definition of the typical cluster L0 of a Neyman–Scott
process. By Fubini’s theorem, this means that

P(Y0 ∩ B ′ = ∅) = E[η]−1
∫

E[ηf (y)η−1]V (dy).
We can now use our assumption (3.14) to derive

P(Y0 ∩ B ′ = ∅) ≥ E[η̃]−1
∫

E[η̃f (y)η̃−1]V (dy).
Reversing the above steps, we get (3.17) and, hence, the asserted result.

Our next result shows that the assumptions of Theorem 3.3 do not only entail the empty
space hazard ordering but also a larger variability of Ñ .

Proposition 3.4. Consider Neyman–Scott processes N and Ñ as in Theorem 3.3, and assume
in addition that η and η̃ are square integrable. Then

var[N(B)] ≤ var[Ñ(B)], B ∈ Bd bounded. (3.18)

Proof. Let B ∈ Bd be bounded. By (3.1),

var[N(B)] = λ�

∫
E

[ η∑
i=1

1{Yi + x ∈ B}
]2

dx

= λ� E[η]
∫

var[1{Y1 + x ∈ B}] dx + λ� E[η2]
∫
(E[1{Y1 + x ∈ B}])2 dx,

where we can use the second Wald identity (or a direct calculation) to get the second equality.
Since λ�E[η] = λ̃�̃ E[η̃] = λ, inequality (3.18) boils down to (3.16).

Example 3.5. Let N and Ñ be as in Theorem 3.3, and assume that η ≡ 1. Then N is again
a Poisson process with intensity 1 since the points of the original Poisson process � are
independently shifted. Let a ∈ [0, 1]. Since ηl ≡ 0 and E[sηl ] ≡ 1, we have, for each η̃,
1 ≡ η <l−g η̃ and Z <h−B Z̃. This example shows that within the class of Neyman–Scott
germ–grain processes with fixed intensity and typical grain the stochastically smallest empty
space appears for the Boolean model.
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Example 3.6. Let N and Ñ be as in Theorem 3.3, and assume that η and η̃ are Poisson dis-
tributed with parameters c and c̃, respectively. (Then the clusters are finite Poisson processes.)
We have, for any a ∈ [0, 1],

E[η]−1 E[1{η ≥ 1}ηaη−1] = e−c(1−a).

Therefore, (3.14) (and, hence, Z <h−B Z̃) holds if and only if c ≤ c̃. Note that, for Poisson
distributed η, the length biased ηl has the same (Poisson) distribution. Increasing the mean
number of Poisson cluster points in a Neyman–Scott germ–grain model while keeping the
overall intensity constant does indeed lead to more clustering and stochastically larger empty
space.

Example 3.7. Assume thatη and η̃ are binomially distributed with parameters (n, p) and (ñ, p̃),
respectively. Since gη(s) = ((1 − p)+ ps)n, it follows that (3.14) is equivalent to

((1 − p)+ ps)n−1 ≥ ((1 − p̃)+ p̃s)ñ−1, s ∈ [0, 1].
If, for instance, n = ñ then this inequality is implied by p ≤ p̃.

Example 3.8. Assume that η and η̃ are negative binomially distributed with parameters (p, r)
and (p̃, r̃), respectively. The corresponding length-biased variables ηl and η̃l are again negative
binomially distributed with parameters (p, r + 1) and (p̃, r̃ + 1), respectively. For p = p̃, if
r ≤ r̃ then η <l−g η̃, and, for r = r̃ , if p ≥ p̃ then η <l−g η̃. This is a special case of a more
general setting. If η = ∑κ

i=1 ϑi and η̃ = ∑κ̃
i=1 ϑ̃i for i.i.d. variables {ϑi}i≥1, independent of κ

(all variables taking on natural values), then ϑi <l−g ϑ̃i , and κ <l−g κ̃ implies that η <l−g η̃.

Our next result generalises Theorem 5.4 of [12].

Theorem 3.4. Consider two germ–grain models with the same typical grains X0 based on
Gauss–Poisson processes N and Ñ . Assume that N and Ñ have the same intensity and that
the probabilities p and p̃ for having secondary points, respectively, satisfy p ≤ p̃. Then
Z <h−B Z̃.

Proof. Fix t ≥ 0 and C ∈ Bd . From the defining properties of a Gauss–Poisson process
(see Example 3.2) we have

V̄i,BKi,B(t, C) = 1 − p

1 + p
C̄i,B(R

d × C)+ p

1 + p

∫
Rd×C

a(x, u)C̄i,B(d(x, u))

+ p

1 + p

∫
Rd×C

b(x, u)C̄i,B(d(x, u)),

where

a(x, u) := P(dB(x + tu, Y +X0) > t), b(x, u) := P(dB(x + tu,−Y +X0) > t),

and Y and X0 are independent. Therefore, by Proposition 3.1, it suffices to show that

1 − p

1 + p
+ pa

1 + p
+ pb

1 + p
≥ 1 − p̃

1 + p̃
+ p̃a

1 + p̃
+ p̃b

1 + p̃

for all a, b ∈ [0, 1]. Simple algebra shows that this inequality is equivalent to

2p̃ − ap̃ − bp̃ ≥ 2p − ap − bp.

The latter is implied by our assumption p ≤ p̃.
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Proposition 3.5. Consider Gauss–Poisson processesN and Ñ as in Theorem 3.4. Then (3.18)
holds.

Proof. By (3.1), we obtain, for bounded B ∈ Bd ,

var[N(B)] = λ�(1 − p)

∫
1{x ∈ B} dx + λ�p

∫
E[(1{x ∈ B} + 1{Y + x ∈ B})2] dx

= λ�(1 + p)Vd(B)+ λ�p

∫
B

P(Y + x ∈ B) dx.

As λ�(1 + p) = λ�̃(1 + p̃) = λ, the result follows from the monotonicity of p/(1 + p).

In our next result we will multiply each point of the typical cluster L0 of N with a random
variable W ∈ (0, 1], i.e. we assume that the typical cluster L̃0 of Ñ has the distribution of
WL0 = {Wx : x ∈ L0}. Compared with L̃0, the points of L0 are more spread out. Note that
we allow any sort of dependence between L0 and W .

Proposition 3.6. Consider two Poisson cluster processesN and Ñ based on the same Poisson
process � and typical clusters L0 and L̃0, respectively. Assume that L̃0 is distributed as WL0
for some random variable W ∈ (0, 1]. Then Z <h−B Z̃.

Proof. Take x1, . . . , xn ∈ R
d , and set ψ := {xj : j = 1, . . . , n}. Let w ≤ 1, and define

ψ̃ := {wxj : j = 1, . . . , n}. Let u ∈ ∂B∗ and t ≥ 0. In view of (3.6) it is sufficient to show
that

1{((ψ̃ − wxi) \ {0}) ∩ (tu+ tB) = ∅} ≤ 1{((ψ − xi) \ {0}) ∩ (tu+ tB) = ∅} (3.19)

holds for any i ∈ {1, . . . , n}. Assume that the left-hand side of (3.19) equals 1. This is
equivalent to w(xj − xi) /∈ tu + tB for all j �= i. Since u ∈ ∂B∗, we have 0 ∈ ∂(tu + tB).
Therefore, the convexity of tu+ tB and w ≤ 1 imply that also xj − xi /∈ tu+ tB for all j �= i.
This shows (3.19) and, hence, the proposition.

Remark 3.4. The assumptions of Proposition 3.6 do not imply the variance ordering (3.18).
However, we may consider the variance of the random variable

∫
f dN , where f (x) :=

1{‖x‖ ≤ r}‖x‖−α, r > 0 and 1 ≤ 2α < d . By the functional version of (3.1),

var

[∫
f dÑ

]
= λ� E

[∫ (∫
f (x +Wy)L0(dy)

)2

dx

]

= λ� E

[
W

∫ (∫
f (Wz+Wy)L0(dy)

)2

dz

]

= λ� E

[
W 1−2α

∫ (∫
1{W‖z+ y‖ ≤ r}‖z+ y‖−αL0(dy)

)2

dz

]

≥ λ� E

[∫ (∫
1{‖z+ y‖ ≤ r}‖z+ y‖−αL0(dy)

)2

dz

]
,

where we have used the facts that W ≤ 1 and W 1−2α ≥ 1. Therefore,
∫
f dÑ has a greater

variance than
∫
f dN . The assumption 2α < d and a suitable moment condition on L0(R

d)

guarantee the finiteness of the above integrals. This can be checked with Jensen’s inequality
and polar coordinates. Also, norms other than the Euclidean norm can be used.

https://doi.org/10.1239/aap/1324045693 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1324045693


Empty space for germ–grain models SGSA • 959

Recall that a random variable W̃ is stochastically smaller than another random variable W
if P(W̃ > t) ≤ P(W > t) for all t ≥ 0.

Proposition 3.7. Let N and Ñ be as in Proposition 3.6. Let L be a point process, and assume
that L0 is distributed as WL for a random variable W > 0 independent of L. Assume that L̃0
is distributed as W̃L for a random variable W̃ > 0 independent of L. If W̃ is stochastically
smaller than W then Z <h−B Z̃.

Proof. By inverse coupling based on a uniformly distributed random variable that is inde-
pendent of L we can assume that (W, W̃ ) is independent of L and that W̃ ≤ W everywhere on
the underlying probability space. Since L̃0 = W̃/WL0, we can apply Proposition 3.6 with W
replaced by W̃/W ≤ 1.

4. Mixed Poisson germ–grain models

In this section we consider a germ–grain modelZ based on a mixed Poisson processN . This
means that there is a random variable � ≥ 0 such that the conditional distribution of N given
� is that of a stationary Poisson process with intensity �. We assume that E[�] (the intensity
of N ) is positive and finite.

It is convenient to use the notation

RB(t) = E[Vd(X0 + tB∗)], t ≥ 0.

Theorem 4.1. The B-relative empty space hazard of a mixed Poisson germ–grain model with
compact, convex grains is given by

rB(t, C) =
d−1∑
i=0

(d − i)td−i−1bd−i E[exp[−�RB(t)]]−1 E[� exp[−�RB(t)]]S̄i,B(t, C).
(4.1)

Proof. Again, we will use (2.14). To do so, we note that the Palm probability measure P0
N

of a mixed Poisson process N satisfies

P0
N((�,N) ∈ ·) = E[�]−1 E[�1{(�,N ∪ {0}) ∈ ·}].

This formula can be derived by conditioning and using the properties of a Poisson process.
Since, moreover, the conditional distribution P0

N(Z
! ∈ · | �) (cf. (2.13) for the definition

of the random set Z!) is that of a Boolean model with germ intensity �, we obtain, for all
(x, u) ∈ R

d × R
d ,

P0
N(dB(x + tu, Z!) > t) = E[�]−1 E[�P(dB(x + tu, Z) > t | �)]

= E[�]−1 E[�P(dB(0, Z) > t | �)]
= E[�]−1 E[� exp[−�RB(t)]],

where we have used (2.7) to obtain the last identity. Again, by conditioning and (2.7), we have
1 − FB(t) = E[exp[−�RB(t)]]. Inserting our findings into the general formula (2.14) yields
assertion (4.1).

In order to state some stochastic ordering consequences of Theorem 4.1, we introduce a
stochastic order using cumulants. We say that two nonnegative random variables � and �̃
are ordered in the first cumulant order and write� <cum �̃ if, for the corresponding cumulant
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generating functions C� and C�̃ taking the first derivatives, we have C′
�(s) ≥ C′

�̃
(s), s ≤ 0.

Note that � <cum �̃ is equivalent to

E[exp[−�s]]−1 E[� exp[−�s]] ≥ E[exp[−�̃s]]−1 E[�̃ exp[−�̃s]], s ≥ 0. (4.2)

The left-hand side of (4.2) is the negative logarithmic derivative of the Laplace transform
s �→ E[exp[−�s]]. It is also the hazard rate of the distribution function G�, defined by

G�(s) := 1 − E[exp[−�s]], s ≥ 0.

This is a mixture of exponential distributions. Equation (4.2) then means that the corresponding
variables are ordered in the hazard rate order, i.e.G� <h G�̃.Note that, for� and �̃with equal
expected values, � <cum �̃ implies that var[�] ≤ var[�̃]; therefore, similarly to the relation
‘<l−g’, the relation ‘<cum’ is a variability ordering in the case of a fixed mean.

An immediate consequence of Theorem 4.1 is the following counterpart of Theorems 3.3 and
3.4. We use similar notation. Again, intuitively speaking, more variability in the mixed Poisson
model results in a stochastically greater empty space (a stochastically larger clustering).

Theorem 4.2. Consider two germ–grain models with the same typical grains X0 based on
mixed Poisson processesN and Ñ with random intensities� and �̃, respectively. Assume that
� <cum �̃. Then Z <h−B Z̃.

Remark 4.1. If � <cum �̃ and E[�] = E[�̃], then (3.18) holds. This is in pleasing accor-
dance with Propositions 3.5 and 3.4 and with Remark 3.4. Inequality (3.18) is a well-known
consequence of var[�] ≤ var[�̃] and the identity

var[N(B)] = var[E[N(B) | �]] + E[var[N(B) | �]] = var[�(B)] + E[�(B)].
Example 4.1. Let N and Ñ be as in Theorem 4.1, and assume that � is gamma distributed
with shape and scale parameters α > 0 and β > 0, respectively. This means that� has density
βα	(α)−1xα−1 exp[−βx]. The Laplace transform of � can be computed as

E[exp[−s�]] = βα

(β + s)α
,

while an equally easy calculation gives

E[� exp[−s�]] = α

β + s

βα

(β + s)α
.

Assume now that �̃ is gamma distributed with parameters α̃ and β̃, respectively. Then
assumption (4.2) means that α/(β + s) ≥ α̃/(β̃ + s) holds for all s ≥ 0. This is equivalent to

α ≥ α̃,
α

β
≥ α̃

β̃
. (4.3)

Depending on whether or not β ≥ β̃, only one of these equations is relevant. By Theorem 4.2,
(4.3) implies the empty space hazard ordering (2.5). Assume, for instance, that �̃ is expo-
nentially distributed with mean 1, i.e. α̃ = β̃ = 1, and assume furthermore that � has also
mean 1, that is, α = β. Then (4.3) is equivalent to α ≥ α̃. Note that the variance of� satisfies
var[�] = α/β2 = 1/β ≤ var[�̃] = 1 if α ≥ 1.

As in the Poisson cluster case, it follows that the relative empty space hazard of a Boolean
model is greater than that of a mixed Poisson germ–grain model with the same germ intensity.
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Corollary 4.1. Assume that Z is a Boolean model with typical convex, compact grains dis-
tributed as X0, and that Z̃ is a mixed Poisson germ–grain model with equal intensity, and also
with typical grains distributed as X0. Then Z <h−B Z̃.

Proof. Let λ denote the germ intensity of the Boolean model Z, and let �̃ be the random
intensity of the mixed Poisson process underlying Z̃. It is assumed that E[�̃] = λ. We check
that condition (4.2) holds with � ≡ λ. This condition means that

λE[exp[−�̃s]] ≥ E[�̃ exp[−�̃s]], s ≥ 0.

In other words, the covariance between �̃ and − exp[−�̃s] has to be nonnegative. This fact
follows from the well-known fact that a single random variable is associated; see [6].

For completeness, we provide the mixed Poisson analogue of Corollary 3.3. The result can
be found in Section 3.8 of [7] for the more general case of stationary Cox processes with an
absolutely continuous intensity measure. Our proof can be extended to arbitrary stationary Cox
processes.

Proposition 4.1. Under the assumptions of Corollary 4.1,

P(0 ∈ Z) ≥ P(0 ∈ Z̃).
Proof. Conditioning and (2.8) yield

1 − P(0 ∈ Z̃) = E[exp[−�E[Vd(X0)]]].
By Jensen’s inequality, this is bounded from below by exp[−λE[Vd(X0)]]. This lower bound
is just 1 − P(0 ∈ Z).

5. Concluding remarks

We have derived empty space orderings of Poisson cluster and mixed Poisson germ–grain
models. It would be worthwhile to also study other classes of germ processes. Moreover,
inequality (3.18) suggests that there might be a more general variability ordering for germ
processes, implying the ordering of all relative empty space hazards. A related task is to find
a good notion of spread out for a finite point process (with respect to the origin). The point
process versions of Proposition 3.4 and Proposition 3.6 should be both special cases of the same
principle. Moreover, we believe that Proposition 3.6 has a germ–grain counterpart.

In this paper we have always fixed the distribution of the typical grain. However, it would
be quite interesting to study the variability of empty space in germ–grain models for a fixed
germ process but variable grain distribution. For instance, one might compare models with
equal expected volumes of the typical grains. To illustrate this task, we give one example that
is closely related to some of the results in [21].

Example 5.1. Let X0 be a random convex body such that E[Vd(X0 + K)] is finite for all
compact K ⊂ R

d . Let R and R̃ be positive random variables with a finite dth moment, and
assume thatX0 and R (respectivelyX0 and R̃) are independent. Consider two Boolean models
Z and Z̃ based on the same Poisson process N and typical grains RX0 and R̃X0, respectively.
If

E[Ri] ≥ E[R̃i], i = 1, . . . , d − 1,

then (2.5) holds for all structuring elements B such that X0 and B∗ are a.s. in general relative
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position, and all Borel sets C ⊂ R
d . This follows from (2.15) and the scaling property

Ci(aX0;B; R
d × C) = aiCi(X0;B; R

d × C), a > 0;
see, e.g. [17] for the Euclidean case B = B(1).
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