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Abstract

Banach's contraction principle guarantees the existence of a unique fixed point for any con-
tractive selfmapping of a complete metric space. This paper considers generalizations of the
completeness of the space and of the contractiveness of the mapping and shows that some re-
cent extensions of Banach's theorem carry over to spaces whose topologies are generated by
families of quasi-pseudometrics.
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1. Introduction

The well-known theorem of Banach [1] concerning contractive self mappings
on a complete metric space has been widely used in existence theorems in dif-
ferential and integral equations. In line with recent work on fixed point theo-
rems, this paper considers generalizations of the two hypotheses of complete-
ness of the metric space and the contractive nature of the map in Banach's
theorem. Specifically, our main object is to show that results of Edelstein [4]
and [5], and Reich [8] can be generalized to the non-metric situation afforded
by gauge and quasi-gauge spaces. In this sense, our work is a continuation
and extension of that of Tan [13].

A non-negative real valued function p on X x X with the properties that
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p(x, x) = 0, x e X, and p{x, y) < p{x, z) + p(z, y), x, y, z e X, is
called a quasi-pseudometric on the non-void set X. According to Reilly [9]
a topological space (X, 3") is a quasi-gauge [gauge] space (X, ST, 3°), or
simply (X, 3°), if there exists a family 3s of quasi-pseudometrics [pseudo-
metrics] such that the open balls

B { x , p , e ) = { y < = X \ p { x , y ) < e } , x € X , p £ &

form a subbase for the topology ST. In a quasi-gauge space (X, ET, 3s),
the sequence {xn} is said to be a left [right] Cauchy sequence if for each
p € 3s and each e > 0 there is a point JC € X and an integer n0 such that
p(x ,xn)<e [p(xn , x) < e], n > n0. If every left [right] Cauchy sequence
in the space (X, &~, 3s) converges to a limit in the topology 3~, the space is
said to be left [right] sequentially complete. If p is a quasi-pseudometric on
X so is p defined by p'{x, y) = p(y, x), x, y e X, and p is called the
conjugate of p. And (X, 9~', 3s'), where &' = {p':p e 3s} and F' is the
topology with the balls {B(x, p , e), x e X, e > 0, p € &'} as a subbase,
is a quasi-gauge space and is called the conjugate of (X, !T, 9°). Reilly [10]
used the term completeness for what we call left sequential completeness.
Right sequential completeness is thus completeness of the conjugate space in
the terminology of [10]. It is well to note that left sequential completeness
and right sequential completeness are independent notions.

EXAMPLE 1. The space X — {l/n:n e N} with the quasi-gauge induced
by the quasi-pseudometric p defined as

i \ (x-yifx>y,
P(x,y) = < , . ,

I 1 if x < y
is readily seen to be right sequentially complete. But the left Cauchy sequence
{1/M} is not convergent in X. (Incidentally the operator T defined on X
as T(x) = 1/3 for JC / 1/4 and T(l/4) = 1/5 is a continuous right Banach
operator [12, Definition 4] which is not a left Banach operator implying
thereby that the dual version of [12, Theorem 1] is non-vacuous.)

We extend in the following formal definitions the corresponding concepts
for metric spaces to quasi-gauge spaces.

DEFINITION 1. In the quasi-gauge space (X, 3°), x e X, is said to be
e-chainable to y e X for some e > 0 if for each p e 3°, there exist a
finite number of z; e l , i = 0, 1, . . . , n(p) - 1, n(p) such that z0 = x,
zn(p) = y and p(z., z^,) < e for / = 0, 1, . . . , n(p) - 1. And (X,&>) is
said to be e-chainable if for any x, y e X, either x is e-chainable to y or
y is e-chainable to x .

DEFINITION 2. An operator T on a quasi-gauge space (X,3S) into itself
is said to be an e-local left [right] weak contraction if for each x € X and
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p G & there exist e and k (e > 0, 0 < A < 1) such that for each y in
B(x, p, e) we have

p(T(x), T[y)) < kp(x, y) [p(T(y), T{x)) < Xp{y, x)].

If e and k are independent of x though not of p, T is called an (e - k)
uniformly local left [right] weak contraction.

However, we employ a more general definition for our purposes.
DEFINITION 3. An operator T on a quasi-gauge space (X, 3s) is called

an e-local left [right] asymptotic weak contraction (for a positive e) if for
each x € X, p e £? and y € B(x, p, e) there is a sequence of real num-
bers kk{y, e) (depending on x ,p ,y) such that Y^k=\ f̂cCv'> e) < + 0 0 a n d
p(Tk(x), Tk(y))<kk(y,e) [p(Tk(y), Tk(x)) < kk(y, e)].

REMARK. A contraction on a metric space is evidently a uniformly local
left and right contraction and a uniformly local left [right] weak contraction
on a quasi-gauge space is a local left [right] asymptotic weak contraction.

2. On the contractiveness of the operator

Edelstein [4, Theorem 5.2] showed in the case of an e-chainable metric
space that any (e - k) uniformly local contraction on the space has a fixed
point. His result generalizes as follows to a quasi-gauge space. We omit the
proof, which is based on the technique in Edelstein's proof.

THEOREM 1. Let T be a continuous operator on a Hausdorff left [right]
sequentially complete quasi-gauge space (X, 3°) into itself such that

(i) T is an e-local left [right] asymptotic weak contraction,
(ii) for some point x in X, x is e-chainable to T(x) [T(x) is e-chainable

to x].
Then T has a fixed point in X.

If (X, ^) is an e-chainable sequentially complete Hausdorff gauge space
then the hypothesis of continuity is redundant, since a local weak contraction
is necessarily continuous. Also in this case the fixed point is unique.

We observe that the Hausdorff requirement in Theorem 1 can be weakened
to the condition that convergent sequences have unique limits, that is, that
the space be a US space in the sense of Wilansky [14].

The following example shows that even for metric spaces the theorem is
stronger than that of Edelstein.

EXAMPLE 2. Let X be a subset of the space of bounded real sequences with
the supremum-norm defined by X — (J^l[ /„ where /, is the set {aex:a e
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[0, 2]} and ln is the set {aen:a e [1 , 2]} for n > 2, en being the sequence
taking 1 at the «th place and elsewhere identically zero for each n . Let T
be the operator on X defined by

ae
n-\' ifx = aen, n>2.

It is clear that X is complete in the induced metric, though not compact.
Besides it is e-chainable for e — 3/2. For any pair of elements x (= aen)
and y (= pej with ||x - y\\ < 3/2 it follows that \\Tk(x) - Tk(y)\\ <
\/2k~s~2 for all k > s, where s = max{/n, n} . So the continuous operator
T is an e-local asymptotic weak contraction for e = 3/2. Hence by Theorem
1, every sequence of iterates converges to a fixed point which is unique. By
considering T on In (for n>2) it follows that T is not an (e — k) uniform
contraction, however small e may be. Thus Edelstein's theorem cannot be
used in this case to establish the fixed point of T.

Next we generalize to quasi-gauge spaces a result of Reich [8, Proposition
1.2]. The hypotheses on the operator were motivated by the extension of the
fixed point theorem of Kannan [6] given in Subrahmanyam [12, Theorem 2].

THEOREM 2. Let T be an operator {not necessarily continuous) of the quasi-
gauge space (X, &) into itself. Suppose that

(i) 3s contains a conjugate pair (p0, p'Q),
(ii) there exist non-negative real numbers a, b, c, d and e such that for

x±y
po(T(x), T(y)) < apo(x, T{x)) + bpo(y, T{y)) + cpo(x, T(y))

+ dpo{y, T(x)) + epo(x, y),

(iii) 1 > b + c and (a + c + e)/(l -b -c) = \,
(iv) X is sequentially compact in the topology induced by 9s .
Then T has a fixed point. Further, if d/{\ - c-e) < 1, the fixed point is

unique.

PROOF. Let r be inf{/?0(x, T(x)):x e X} . Then we can find a sequence
of points xn in X such that PQ{xn, T{xn)) converges to r . As I is se-
quentially compact, T(xn) has a subsequence yk - T(xnk) converging to
y •

Since

P0(y, T(y))<pQ(y, T(xnk))+p0(T(xnk),

P0(T(xnk), T(y)) < apo(xnk , T(xnk)) + bpo(y, T(y)) + cpo(xnk, T(y))

+ dpo(y,T(xnk)) + epo(xnk,y),

< P0(xnk , T(xnk)) + P0(T(xnk), y) + po(y, T{y)),
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and
P0(xnk, y) < P0(xnk, T{xnk)) + P0(T(xnk), y)

we have that

. T(y)) < (a + c + e)po(xnk, T(xnk)) + (b + c)po(y, T{y))

+ (1 + d)po(y, T(xnk)) + (c + e)po(T(xnk), y).

Hence

(1 - b - c)po(y, T(y)) <(a + c + e)po(xnk, T{xnk))

+ (l+d)po(y, T(xnk)) + (c + e)p'0(y, T{xnk)).

Proceeding to the limit as k —> oo we have (1 - b - c)po(y, T(y)) <
(a + c + e)r. As (a + c + e)/(l - b - c) = 1 it follows that po{y, T(y)) - r.
If j ; ^ T(y), we obtain from (ii) that

(1 -b-c)po(T(y), T2(y)) < (a + c + e)pQ(y, T(y)).

Hence po(T{y), T2(y)) < po(y, T(y)) = r, which contradicts the definition
of r, so that y = T(y) as desired.

If x and y are both fixed points of T, then

po(x, y) = po(T(x), T(y)) <(c + e)po(x, y) + dpo(y, x)

from (ii). Thus (1 - c - e)po{x,y) < dpo(y, x). Similarly, interchanging
the roles of x and j ; gives (1 - c - e)po(y, x) < dpo(x, y). Hence

(1 - c - e){po{x, y) + pQ(y, x)} < d{po{y, x) +po(x, y)},

so if that d/{\ - c - e) < 1 the fixed point is unique.

REMARKS. Reich's result mentioned above corresponds to the case 3s =
{d} , d a metric and a — b = 1/2, c = d = e = 0.

Condition (iii) in Theorem 2 can be replaced by the alternative
(iii)' 1 > a + d and (b + d + e)/(l -a-d) = \.

3. Convergence of iterates

We begin by stating a result of Bailey [2] supplementing one of Edelstein
[5, Theorem 1]: if (X, d) is a compact metric space and T is a weakly
contractive continuous operator on it (that is, there exists an integer n such
that d{Tn(x), Tn(y)) < d(x, y), x, y e X and n depends on x and y),
then T has a unique fixed point. In passing, we remark that the assumption
of continuity cannot be dispensed with in the above result.
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EXAMPLE 3. Let X = [0, 1] and T be given by T(0) = 1/2 and T(x) =
x/2 on (0, 1]. Then T is not continuous at 0 and has no fixed-point. But
T is weakly contractive over [0, 1] . Indeed if x,y are in (0, 1] then
\ T ( x ) - T ( y ) \ = \ ( x - y ) / 2 \ < \ x - y \ f o r x ? y . I f x = 0 a n d y e ( 0 , 1]
then there exists n > 1 such that |(1 -y)/y\ < 2" . Then \T(x) - T(y))\ =
\(\-y)/2n\<y = \x-y\.

With Bailey's result in the background the following theorem generalizes
Edelstein's assertion that any contractive operator T on a metric space with
a convergent subsequence of T-iterates has a fixed point.

THEOREM 3. Let T bea continuous operator on a quasi-gauge space (X,^P)
into itself such that

(i) there exists a pseudometric pQ in 3° such that

po(T(x), T\x)) < po(x, T{x)) ,xeX,

(ii) for each x ^ T(x), there is a positive integer n such that

po(T
n(x),Tn+l(x))<po(x,T(x)),

(iii) xnk = Tnk(x), k = 0, 1,2, ... , a subsequence of T-iterates at some
point x, converges to u.
Then u is a fixed point of T.

PROOF. Since T is continuous and p0 is symmetric the map 4>T(x) =
po(x, T(x)) is a real valued continuous function on X. From (i) it is clear
that {(/)T(Tn(x))} is a monotonic decreasing sequence of non-negative real
numbers. Hence this sequence converges to a real number r. As xnk con-
verges to u and <j>T is a continuous function, {<t>T{xnk)} converges to 4>T{u)
and so (j)T{u) — r. If u ^ T(u) then by (ii) there is a positive integer m
such that <j>T(Tm(u)) < 4>T{u). But as {xnk} converges to u, {Tm{xnk)}
converges to Tm(u) due to the continuity of T. Hence {(j>T(Tm{xnk))} con-
verges to <t>T{Tm{u)). Noting that the latter is a subsequence of { ^ ^ ( ^ ( J C ) ) }

we have r = <j>T{u) = <t>T{Tm{u)), a contradiction of the choice of m . Hence
M is a fixed point of T.

COROLLARY. Let T be a continuous operator on a sequentially compact
quasi-gauge space (X, 3°) into itself such that there exists a fixed pseudo-
metric p0 in 3° with po(T(x), T2(x)) < po(x, T(x)) whenever x ^ T(x).
Then T has a fixed point.

We observe that the use of the function <f>T as a measure of the expansive
nature of T was suggested by Dieudonne [3, p. 262, Problem 1].
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In Theorem 3, the fixed point u need not be unique. For example let

X = {(x,y):(x,y)<ER2, x2+y2<l, x > 0 , x 2 + x < l } .

Then the map (x, y) —> (x2, y) satisfies the conditions of Theorem 3 for
the euclidean metric on R2 and has more than one fixed point.

EXAMPLE 4. Let X be [0, 1] and p be the pseudo-metric on X defined
by

0 tfx,y$S,
1/2* i fx = 1/2* andy <£ S,

l /2m if x<? Sandy = 1/2W,

\x-y\ if x,yeS,

where S — {1 /2 : k € N} . The topology induced by p has as a base all sets
of the form {1/2*} and (X-S)U{l/2k:k > kQ}. Clearly X is sequentially
compact. The operator T on X defined by

x , if x £ S,
T{X) ' x / 2 , i f x e S

is continuous and p{T{x), T2{x)) < p(x, T{x)) for x ^ T(x). Hence by
the corollary to Theorem 3, T has a fixed point, which however is not unique.
It may be noted that though T is a Banach operator of type 1 / 2 , Theorem
1 of [12] cannot be used here as X is not Hausdorff.

The next result gives sufficient conditions under which the sequence of
iterates of T at a point converges. It is a generalization to gauge spaces of a
result of Ortega and Rheinboldt [7, Section 12.3.5] for euclidean spaces and
subsumes Sehgal's extension [11, Theorem 5] of Edelstein's earlier result [5,
Theorem 1].

THEOREM 4. Let T be a continuous operator on the gauge space {X, 3s)
into itself. Suppose that

(i) p(T(x), T2(x))<p(x, T(x)) for each peP;
(ii) if x ^ T{x), then for each p there exists an integer n {which may

depend on x and p),such that p{Tn{x), Tn+\x)) <p{x, T{x));
(iii) the closure, S, of {T"{xQ): n = 1, 2, . . .} is sequentially compact, for

some point x0 e X;
(iv) T has at the most one fixed point.

Then {Tn{x0)} converges to the unique fixed point of T.

PROOF. That any limit point of {r"(x0)} is a fixed point of T is a con-
sequence of Theorem 3 above. Since T has at most one fixed point and S
is sequentially compact, T has a unique fixed point u. For each p € £P ,
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p(u, Tn(xQ)) converges to zero. Otherwise we can find a subsequence yk of
{Tn(x0)} converging (in view of the sequential compactness of S) to some
element v and with the property that for some p € 3s, p(u, yk) > e > 0
for a fixed real number e. Proceeding to the limit we have that p(u, v) > e .
Thus (v ^ M) would be a fixed point of T, contradicting that u is the only
fixed point.

COROLLARY (Sehgal [11]). If (X, d) is a metric space and T is a continu-
ous operator on X such that for x / y, d{T{x), T(y)) < max{d(x, T(x)),
d(y, T{y)), d(x, y)} then T has a fixed point provided the sequence of T-
iterates at x0 has a convergent subsequence.

The deduction of the corollary rests on observing from the proof in [11]
that {Tn(x0)} itself is convergent and so the closure S of {Tn(x0)} is se-
quentially compact.
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