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Abstract In this paper we introduce and study the conjugacy ratio of a finitely generated group, which
is the limit at infinity of the quotient of the conjugacy and standard growth functions. We conjecture that
the conjugacy ratio is 0 for all groups except the virtually abelian ones, and confirm this conjecture for
certain residually finite groups of subexponential growth, hyperbolic groups, right-angled Artin groups
and the lamplighter group.
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1. Introduction

In this paper we introduce and study the conjugacy ratio of a group, which is the limit
of the quotient of two functions naturally associated with any finitely generated group:
conjugacy growth and standard growth. More precisely, if G is generated by the finite set
X, let BG,X(n) denote the ball of radius n with respect to X, and let CG,X(n) denote the
set of conjugacy classes of G which have a representative in BG,X(n). Then the conjugacy
ratio of G with respect to X is:

crX(G) = lim sup
n→∞

|CG,X(n)|
|BG,X(n)| . (1.1)

The motivation of this paper is twofold. On the one hand, the conjugacy ratio of a
finite group H is equal to the degree of commutativity dc(H) of H [10], which measures
the probability that two elements of the group commute and is defined as:

dc(H) =
|{(x, y) ∈ H × H : xy = yx}|

|H|2 . (1.2)
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The degree of commutativity of a group has received a lot of attention recently, as its
definition was extended to finitely generated infinite groups in [2] to be

dcX(G) = lim sup
n→∞

|{(x, y) ∈ BG,X(n)2 : ab = ba}|
|BG,X(n)|2 .

As raised in [7], it is natural to explore whether the degree of commutativity and the
conjugacy ratio are related for infinite groups as well.

Our second motivation comes from the fact that very few quantitative results comparing
standard and conjugacy growth in groups exist in the literature. While in any group
there are fewer conjugacy classes than elements, the gap between these two functions has
not been explored in detail, and it is worth investigating. For example, the standard and
conjugacy growth rates (i.e. taking the limit of the nth root of the function at n) are equal
in some of the most frequently encountered families of infinite groups, including hyperbolic
groups [1], graph products [5] and many wreath products [11]; thus in these examples
the quotient of the two functions, as a function of n, must be at most subexponential,
and if the conjugacy ratio is 0, the convergence to 0 will not be very fast.

Our starting point is the following conjecture, inspired by [2, Conjecture 1.6].

Conjecture 1.1. Let G be a group generated by a finite set X. Then crX(G) > 0 if
and only if G is virtually abelian.

Our results on the conjugacy ratio in several families of groups support Conjecture 1.1.
In § 3 we investigate groups of stable subexponential growth (Definition 3.1). We first
show that any virtually abelian group has crX(G) > 0 for any finite generating set X.
We then show that if N is a normal, finite index subgroup of G, then (for any finite
generating set X of G) crX(G) � dc(G/N). This allows us to apply a technique from
[2] to show that any residually finite group G of stable subexponential growth which is
not virtually abelian has crX(G) = 0 for any finite generating set X. We also show in
Theorem 3.9 that if G is a finitely generated virtually abelian group, with finite generating
sets X and Y , then crX(G) = crY (G).

We say that a group G with generating set X has stable subexponential growth if
limn→∞(|BG,X(n + 1)|)/(|BG,X(n)|) = 1 (Definition 3.1). This includes all finitely gener-
ated virtually nilpotent groups. Since all finitely generated virtually nilpotent groups are
residually finite, the theorem below means that Conjecture 1.1 is true for all groups of
polynomial growth.

Theorem 3.7. The conjugacy ratio for all finitely generated, residually finite groups
of stable subexponential growth that are not virtually abelian is zero, with respect to all
finite generating sets.

The proof of Theorem 3.7 cannot be generalized to groups of exponential growth, but
we provide independent arguments for several important classes of groups of exponential
growth.

Theorem 4.1. Let G be a non-elementary hyperbolic group. Then crX(G) = 0 for
any finite generating set X.
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Theorem 4.3. Let G be the lamplighter group, that is, the wreath product C2 � Z.
Then crX(G) = 0 for the standard generating set X (defined in (4.3)).

Theorem 4.12. Let G = (GV ,XV ) be a right-angled Artin group (RAAG) based on
a graph Γ = (V,E) with generating set XV . Then crXV

(G) = 0 unless G is free abelian,
in which case crXV

(G) = 1.

We may also consider the strict or spherical conjugacy ratio, where the counting is
done in the sphere of radius n rather than the ball of radius n, that is, we may take the
ratio of the strict conjugacy growth function over the spherical growth function. More
precisely, let SG,X(n) be the sphere of radius n in the group G with respect to the finite
generating set X, and let Cs

G,X(n) be the conjugacy classes that intersect SG,X(n) but
not BG,X(n − 1), that is, those conjugacy classes with a minimal length representative in
SG,X(n). The spherical conjugacy ratio is then

crs
X(G) = lim sup

n→∞

|Cs
G,X(n)|

|SG,X(n)| . (1.3)

Remark 1.2. By the Stolz–Cesàro theorem, anytime the spherical conjugacy ratio
turns out to be a limit, the conjugacy ratio will be equal to this limit. In particular, if
the spherical conjugacy ratio is 0, then the conjugacy ratio is 0.

2. Preliminaries

Recall that for a finitely generated group G with generating set X, the exponential growth
rate of G with respect to X is:

expX(G) = lim
n→∞

n

√
|BG,X(n)|. (2.1)

Definition 2.1. A group G with finite generating set X is said to have exponential
growth if expX(G) > 1 and subexponential growth if expX(G) = 1. This does not depend
on the generating set X.

Additionally, for any ε > 0, if λ = expX(G), then for sufficiently large n,

λn ≤ |BG,X(n)| ≤ (λ + ε)n.

Moreover, if we replace balls with spheres, we get the same limit and inequality.
We collect below a few results on convergence of series that will be relevant later.

Theorem 2.2 (Stolz–Cesàro). Let an and bn, n ≥ 1, be two sequences, with bn

strictly increasing and divergent. If the left-hand-side limit exists,

lim
n→∞

an+1 − an

bn+1 − bn
= l =⇒ lim

n→∞
an

bn
= l.

Proposition 2.3 is a partial converse to the Stolz–Cesàro theorem. It implies that for
groups of exponential growth, if the conjugacy ratio is a limit and the ratio of sizes of

https://doi.org/10.1017/S0013091518000573 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091518000573


898 L. Ciobanu, C. G. Cox and A. Martino

consecutive balls has a limit, then the spherical conjugacy ratio is equal to the conjugacy
ratio.

Proposition 2.3. Let an and bn, n ≥ 1, be two sequences, with bn strictly increasing
and divergent, such that the left-hand-side limit exists and limn→∞(bn+1)/(bn) �= 1. Then

lim
n→∞

an

bn
= l =⇒ lim

n→∞
an+1 − an

bn+1 − bn
= l.

Proposition 2.4. Let an, bn, cn and dn, n ≥ 0, be monotonically increasing sequences
of positive integers. Define the sequences ĉn and d̂n as ĉ0 := c0, d̂0 := d0, ĉn := cn − cn−1

and d̂n := dn − dn−1, for n ≥ 1.
Suppose that

(i) an ≤ bn and ĉn ≤ d̂n for all n,

(ii) an/bn → 0 and cn/dn → 0 as n → ∞.

Then

lim
n→∞

∑n
i=0 aiĉn−i∑n
i=0 bid̂n−i

= 0.

Proof. Given ε > 0, fix an N such that an/bn < ε for all n ≥ N . Next choose an
M ≥ N such that cn/dn < ε/aN for all n ≥ M .

Then, for n ≥ M ≥ N ,

n∑
i=N+1

aiĉn−i < ε

n∑
i=N+1

biĉn−i ≤ ε

n∑
i=0

bid̂n−i.

Thus, for n ≥ M ,∑n
i=0 aiĉn−i∑n
i=0 bid̂n−i

=
∑N

i=0 aiĉn−i∑n
i=0 bid̂n−i

+
∑n

i=N+1 aiĉn−i∑n
i=0 bid̂n−i

<

∑N
i=0 aiĉn−i∑n
i=0 bid̂n−i

+ ε.

Now we obtain the result by using the fact that for n ≥ M∑N
i=0 aiĉn−i∑n
i=0 bid̂n−i

≤ aN

∑N
i=0 ĉn−i∑n
i=0 d̂n−i

≤ aN
cn

dn
< ε. �

Proposition 2.5. Let an, bn, cn and dn, n ≥ 0, be sequences of positive integers
satisfying the following properties:

(i) an, bn are monotone sequences;

(ii) an ≤ bn and cn ≤ dn for all n;

(iii) an/bn → 0 as n → ∞;

(iv) dn/bn ≤ δn for all sufficiently large n, and for some 0 < δ < 1.
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Then,

lim
n→∞

∑n
i=0 aicn−i∑n
i=0 bidn−i

= 0.

Proof. Given ε > 0, fix an N such that an/bn < ε′ < ε for all n ≥ N . Then, for n ≥ N ,

n∑
i=N+1

aicn−i < ε′
n∑

i=N+1

bicn−i ≤ ε′
n∑

i=0

bidn−i.

Thus, for n ≥ N ,

∑n
i=0 aicn−i∑n
i=0 bidn−i

=
∑N

i=0 aicn−i∑n
i=0 bidn−i

+
∑n

i=N+1 aicn−i∑n
i=0 bidn−i

<

∑N
i=0 aicn−i∑n
i=0 bidn−i

+ ε′

and so it suffices to show that

lim
n→∞

∑N
i=0 aicn−i∑n
i=0 bidn−i

≤ lim
n→∞

∑N
i=0 aicn−i

bnd0
= 0.

Now ∑N
i=0 aicn−i

bnd0
�

∑N
i=0 aicn−i

bn
≤ aN

N∑
i=0

cn−i

bn−i
≤ aN

N∑
i=0

dn−i

bn−i
.

Using hypothesis (iv), for sufficiently large n,

aN

N∑
i=0

dn−i

bn−i
≤ aN

N∑
i=0

δn−i = aN
δn

δN

(
1 − δN+1

1 − δ

)
≤ δn

(
aN

δN

1
(1 − δ)

)
< ε − ε′. �

3. Results for groups of stable subexponential growth

Definition 3.1. A group G, with finite generating set X, is said to be of stable
subexponential growth if limn→∞(|BG,X(n + 1)|)/(|BG,X(n)|) = 1.

Note that being of stable subexponential growth implies that expX(G) = 1, and hence
that the group has subexponential growth.

By the celebrated result of Gromov, every finitely generated group of polynomial
growth—where BG,X(n) is bounded above by a polynomial function—is virtually nilpo-
tent. All these groups are of stable subexponential growth since, by a result of Bass [3],
if G is a finitely generated, virtually nilpotent group and X is any finite generating set,
then, for some exponent d and constants A,B,

And ≤ |BG,X(n)| ≤ Bnd. (3.1)

The exponent d is calculated explicitly in [3]; for a virtually abelian group it is equal to
the rank of a finite index free abelian subgroup.
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From (3.1) we get that for any positive integer k,

lim
n→∞

|BG,X(n + k)|
|BG,X(n)| = 1. (3.2)

The main result that we require for groups of stable subexponential growth is the
following.

Proposition 3.2 (Burillo and Ventura [4]). Let G be a finitely generated group
with stable subexponential growth and finite generating set X. For every finite index
subgroup H � G and every g ∈ G, we have

lim
n→∞

|gH ∩ BG,X(n)|
|BG,X(n)| = lim

n→∞
|Hg ∩ BG,X(n)|

|BG,X(n)| =
1

[G : H]
.

Furthermore, if H is an infinite index subgroup of G then

lim
n→∞

|gH ∩ BG,X(n)|
|BG,X(n)| = lim

n→∞
|Hg ∩ BG,X(n)|

|BG,X(n)| = 0.

Remark 3.3. The last statement does not appear explicitly in [4] but follows easily
from their arguments. Alternatively, one could prove this via the construction of an
invariant mean, which requires the choice of an ultrafilter. The stable subexponential
condition ensures that any ultrafilter will do, and hence that all limit points of the
sequences above are equal.

From now on, whenever there is no ambiguity concerning the group and its generating
set, we will write C(n) instead of CG,X(n) and B(n) instead of BG,X(n).

Proposition 3.4. Suppose that G is a finitely generated, virtually abelian group.
Then, for any finite generating set X of G, we have that crX(G) > 0.

More precisely, if [G : A] = m where A is abelian, then crX(G) ≥ 1/m2.

Proof. Let [G : A] = m, where A is abelian. We note that G acts by multiplication
on the right cosets of A. If g and h lie in the same right coset, then h = αg for some
α ∈ A, so for any a ∈ A, h−1ah = (αg)−1a(αg) = g−1ag since A is abelian. Thus there
are at most m conjugates of each element a ∈ A and so, for all n ∈ N, we have that
|C(n) ∩ A| � |B(n) ∩ A| · 1/m. Now

|C(n)|
|B(n)| � |C(n) ∩ A|

|B(n)| =
|B(n) ∩ A|
|B(n)| · |C(n) ∩ A|

|B(n) ∩ A| � |B(n) ∩ A|
|B(n)| · 1

m

which tends to 1/m2 by Proposition 3.2. �

Lemma 3.5. Let G be a group of stable subexponential growth with finite generating
set X, let g ∈ G and let H be a finite index subgroup of G. For d ∈ N we have

lim
n→∞

|gH ∩ BG,X(n + d)|
|BG,X(n)| =

1
[G : H]

.
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Proof. This follows from writing

lim
n→∞

|gH ∩ B(n + d)|
|B(n)| = lim

n→∞
|B(n + d)|
|B(n)|

|gH ∩ B(n + d)|
|B(n + d)|

together with Proposition 3.2 and (3.2). �

Proposition 3.6. Let G be a finitely generated group of stable subexponential growth
and N a normal subgroup of finite index in G. Then crX(G) ≤ dc(G/N) for any finite
generating set X of G.

Proof. Let [G : N ] = m, and write G = g1N � g2N � . . . � gmN , where g1, . . . , gm ∈
G. Let d := max{|gi|X : i = 1, . . . ,m}, where |.|X is the word length with respect to X;
that is, for g ∈ G, |g|X is the smallest length of any word over X that represents g. After
re-ordering, if necessary, we may assume that the distinct conjugacy classes of G/N are
represented by g1, . . . , gk, for some 1 ≤ k ≤ m.

Now consider some y ∈ G, such that |y|X ≤ n. By looking at the image of y in G/N
we may find 1 ≤ i ≤ m, 1 ≤ j ≤ k such that

gj
−1yNgj = giN.

Hence there exists an h ∈ N such that gj
−1ygj = gih. In particular, as |y|X ≤ n, we

get that |gih| ≤ n + 2d. Thus, every element of B(n) is conjugate to some element of
�k

i=1(giN ∩ B(n + 2d)).
Hence

|C(n)|
|B(n)| �

∑k
i=1 |giN ∩ B(n + 2d)|

|B(n)|
which tends to k/m by Lemma 3.5. On the other hand, k/m is the conjugacy ratio for
the finite group G/N , which is equal to the degree of commutativity of G/N , as these
two quantities are always equal for finite groups. �

Theorem 3.7. Conjecture 1.1 is true for all finitely generated, residually finite groups
of stable subexponential growth.

Proof. Proposition 3.4 states that if a finitely generated group G is virtually abelian,
then, for any finite generating set X, crX(G) > 0. For the other direction we apply the
method of [2, Proof of Theorem 1.3] by using Proposition 3.6. For completeness we will
describe their argument. It requires the following result from [9]: if F is a finite group
and N � F , then

dc(F ) � dc(F/N) · dc(N). (3.3)

Our hypotheses are that G is: finitely generated, residually finite, of stable subexponen-
tial growth and not virtually abelian. We wish to show that crX(G) = 0 for any finite
generating set X. We will work with finite quotients and build a chain of finite index
normal subgroups. Since G is finitely generated, we may choose these subgroups to be
characteristic, and we will do this because being characteristic is transitive.

Since G is not virtually abelian, choose g1, g2 ∈ G that do not commute and, using
the residually finite assumption, let [g1, g2] �∈ K1 where K1 is a characteristic and finite
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index subgroup of G. Hence G/K1 is non-abelian, and by Gustafson’s result we have that
dc(G/K1) � 5/8. Now, since the properties of G which we have used also apply to finite
index subgroups, this argument also applies to K1. Hence we may construct a descending
chain of characteristic finite index subgroups

. . . � Ki � Ki−1 � · · · � K2 � K1 � K0 = G

where, for every i ∈ N, dc(Ki−1/Ki) � 5/8. Moreover (G/Ki)/(Ki−1/Ki) = G/Ki−1 and
so, from (3.3),

dc(G/Ki) � dc(G/Ki−1) · dc(Ki−1/Ki) � 5/8 · dc(G/Ki−1).

By induction, dc(G/Ki) � (5/8)i and so, by Proposition 3.6, for any finite generating set
X of G, we have that crX(G) � dc(G/Ki) � (5/8)i. Since this holds for every i ∈ N, we
obtain that crX(G) = 0. �

Corollary 3.8. Conjecture 1.1 is true for all finitely generated, virtually nilpotent
groups or, equivalently, all groups of polynomial growth.

3.1. Virtually abelian groups

The goal of this section is to prove the following.

Theorem 3.9. Let G be a finitely generated, virtually abelian group, and let X, Y
be finite generating sets for G. Then crX(G) = crY (G).

It will be useful to have the following shorthand.

Definition 3.10. Let G be generated by the finite set X. A subset S of G is generic
if lim supn→∞(|S ∩ BG,X(n)|)/(|BG,X(n)|) = 1, and negligible if the limit is 0.

Given a group G with finite generating set X, a finitely generated subgroup H of G
is said to be undistorted if any word metric on H is bi-Lipschitz equivalent to any word
metric on G, when restricted to H. This makes sense since any two finite generating sets
on a group induce bi-Lipschitz equivalent word metrics.

It is easy to see that a finite index subgroup is always undistorted, and that a subgroup
H is undistorted if and only if it has an undistorted subgroup of finite index. Retracts are
also undistorted (recall that a retract of G is the image of an endomorphism ρ : G → G
such that ρ2 = ρ).

We now collect the following facts.

Proposition 3.11. Suppose that G is a finitely generated virtually abelian group,
with finite generating set X, having a subgroup of finite index isomorphic to Zd.

(i) Every subgroup of G is both finitely generated and undistorted.

(ii) Let H be an infinite subgroup of G. Let T (n) = TH,X(n) (for transversal) be the
number of cosets of H that have a representative in BG,X(n). Then,

lim
n→∞

T (n)
|BG,X(n)| = 0.
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Proof. (i) Let H ≤ G. It is well known that H is finitely generated, as this fact is true
in the case where G is virtually polycyclic, which includes the finitely generated virtually
nilpotent (and abelian) case.

However, the fact that H is undistorted is not true more generally, and follows from
the fact that every subgroup of a finitely generated free abelian group has finite index
in a direct summand. In our case, H has a finite index subgroup, which is a retract of a
finite index subgroup of G and is therefore undistorted in G.

(ii) From the above, H is finitely generated and undistorted. Since H is infinite, it must
contain an element of infinite order, so there exists an ε > 0 such that

|H ∩ BG,X(n)| ≥ εn.

More precisely, |H ∩ BG,X(n)| will have polynomial bounds of degree e, d ≥ e ≥ 1.
Let A,B, d be the constants in (3.1). Then

B2dnd ≥ |BG,X(2n)| ≥ T (n)|H ∩ BG,X(n)| ≥ T (n)εn.

Hence,

0 ≤ lim
n→∞

T (n)
|BG,X(n)| ≤ lim

n→∞
B2dnd−1

εAnd
= 0. �

From now on, we let G be an infinite, finitely generated, virtually abelian group. Let
A be a normal, finite index, free abelian subgroup, and let B be the centralizer of A in
G. Note that A is a subgroup of B, which therefore has finite index.

Proposition 3.12. Let G be a finitely generated, virtually abelian group and X any
finite generating set for G. Let A be a normal, finite index, free abelian subgroup, and B
be the centralizer of A in G. Then the set of minimal length G-conjugacy representatives
in G\B is negligible.

Proof. Let y �∈ B be an element of G and denote by CyA(n) the number of conjugacy
classes which have a representative in BG,X(n) ∩ yA. Then we claim that

lim
n→∞

CyA(n)
|BG,X(n)| = 0.

For each conjugacy class with a representative in BG,X(n) ∩ yA, choose a shortest such
representative, and denote this set of representatives Z = {yai : ai ∈ A}. From these,
extract the set U = {ai}, rewriting the ai as geodesics if required. Note that for some
fixed k (the length of y), we have

CyA(n) = |Z ∩ BG,X(n)| ≤ |U ∩ BG,X(n + k)|.
Now let My denote the automorphism of A induced by conjugation with y, which we

think of as a matrix. For any a1, a2 ∈ A we have that

a−1
2 (ya1)a2 = y(a1 + (I − My)a2),

if we switch to an additive notation in A. Let H be the image of (I − My) in A, that is,
H = 〈[a, y] : a ∈ A〉. Since y �∈ B, we can conclude that H is a non-trivial subgroup of
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A and is therefore infinite. Moreover, the elements of U are all in distinct cosets of H.
Hence, by Proposition 3.11, part (ii), we may conclude that:

|Z ∩ BG,X(n)|
|BG,X(n)| ≤ |U ∩ BG,X(n + k)|

|BG,X(n)|

=
TH,X(n + k)
|BG,X(n + k)|

|BG,X(n + k)|
|BG,X(n)| → 0. �

Proposition 3.12 shows that the only elements of G that contribute to the conjugacy
ratio are the elements of B. (The representative of a conjugacy class might not have a
shortest representative in our particular coset yA, but varying y we see that we have an
overcount of the number of conjugacy classes in the complement of B, which nonetheless
gives 0.)

Thus the strategy for proving Theorem 3.9 is the following. First note that each ele-
ment of B has finite conjugacy class in G. We split the elements in B into those which
centralize elements from outside of B and those whose centralizer is completely in B.
Proposition 3.14 shows that the former ones form a negligible set and the latter ones a
generic set of B (Corollary 3.15); moreover, for the latter ones the size of the G-conjugacy
class is the index of the B-centralizer, which is constant for elements in the same A-coset.
Therefore, each coset (or, rather, conjugacy class of cosets) of A contributes a fixed
amount to the conjugacy ratio, which is algebraically determined.

We use the notation ZK(g) for the K-centralizer of g ∈ G, that is, ZK(g) = {k ∈ K :
k−1gk = g}.

Lemma 3.13. Let x ∈ G. Then ZB(x) = ZB(xa) for any a ∈ A. Moreover,
[G : ZB(x)] < ∞ if x ∈ B.

Proposition 3.14. The set
⋃

y �∈B ZB(y) is a finite union of infinite index subgroups
of G. Hence this set is negligible with respect to any finite generating set.

Proof. Since ZB(y) = ZB(ya) for any a ∈ A, this is a finite union. So it is enough to
show that each ZB(y) has infinite index.

In fact, it is sufficient to show that ZA(y) = ZB(y) ∩ A is an infinite index subgroup
of A. However, ZA(y), is a pure subgroup of A; that is, if am ∈ ZA(y) and m �= 0 then
a ∈ ZA(y). This implies that ZA(y) is a direct summand of A. But since y �∈ B, this direct
summand cannot be the whole of A and is therefore an infinite index subgroup of A as
required. �

Corollary 3.15. There is a generic set of elements of B (with respect to any generating
set) whose centralizer lies entirely in B.

Proof. If for some b ∈ B there exists t /∈ B such that [t, b] = 1, then b ∈ ZB(t) ⊂⋃
y �∈B ZB(y), which is negligible by Proposition 3.14. �

Proof of Theorem 3.9. For each r, let Ar be the elements b ∈ B for which
ZB(b) has index r in G (and therefore conjugacy class size r in G), and let
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N = {b ∈ B : ZB(b) �⊂ B}, that is, N is the set of elements of B whose centralizer does
not fully lie in B. Then N =

⋃
y �∈B ZB(y) and so by Corollary 3.15 it is a negligible set.

Since A ≤ ZB(b) ≤ G for any b ∈ B and A has finite index in G, there are only finitely
many values for the index of ZB(b) in G, and thus finitely many r for which Ar is non-
empty. Moreover, since ZB(y) = ZB(ya) for any y ∈ B\A and a ∈ A, if y ∈ Ar, then
ya ∈ Ar, so each non-empty Ar is a union of A-cosets and thus

lim
n→∞

|Ar ∩ BG,X(n)|
|BG,X(n)| = δ, (3.4)

where δ is 1/[G : A] times the number of A-cosets in Ar, so is independent of X.
It is easy to see that there is an integer k such that if two elements of B are conjugate

in G, then they are conjugate by an element of length at most k; the same holds for Ar

as Ar ⊂ B. Moreover, since B is normal in G, it is easy to see that G acts on Ar by
conjugation; G acts by conjugation on N , and hence on Ar\N as well.

Let Cn be the number of conjugacy classes of G which meet BG,X(n) and are contained
in Ar\N . Then,

|(Ar\N ) ∩ BG,X(n)| ≤ rCn ≤ |(Ar\N ) ∩ BG,X(n + 2k)|. (3.5)

The first inequality comes from the fact that each element of Ar\N has r conjugates
in G, and the second from the fact that each of the conjugates can be obtained from a
conjugator of length at most k.

Now
Cn

|BG,X(n)| ≤
|CG,X(n) ∩ Ar|

|BG,X(n)| ≤ Cn

|BG,X(n)| +
|N ∩ BG,X(n)|

|BG,X(n)| ,

and by (3.4), (3.5) and Corollary 3.15

lim
n→∞

Cn

|BG,X(n)| = lim
n→∞

(
Cn

|BG,X(n)| +
|N ∩ BG,X(n)|

|BG,X(n)|
)

=
δ

r
,

so we get

lim
n→∞

|CG,X(n) ∩ Ar|
|BG,X(n)| =

δ

r
.

Hence the number of conjugacy classes of G that meet Ar is independent of the
generating set. Summing over the finitely many r gives the result. �

Remark 3.16. The same ideas as those just presented can be used to show that if
G is a finitely generated, virtually abelian group, and X is any finite generating set,
then crX(G) = infN�f G cr(G/N). That is, the conjugacy ratio is equal to the infimum
of conjugacy ratios of the finite quotients. Hence, if one were to measure the conjugacy
ratio using invariant means, one would get the same numerical value. Unpublished results
indicate that this is the same as the degree of commutativity.

For similar reasons, the same is true whenever G is a finitely generated virtually
nilpotent group, the virtually abelian case being the key one.
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4. Results for other families of groups

4.1. Hyperbolic groups

In this section we prove Conjecture 1.1 for non-elementary hyperbolic groups.
We will write f(n) ∼ g(n) to mean f(n)/g(n) → 1 as n → ∞.

Theorem 4.1. Let G be a non-elementary hyperbolic group. Then crX(G) = 0 for
any finite generating set X.

Proof. Let G be a non-elementary hyperbolic group with finite generating set X. Then
by a result of Coornaert (see [6]) there are positive constants A0 and B0 such that for all
n ≥ 1

A0e
nh ≤ |BG,X(n)| ≤ B0e

nh, (4.1)

where h = log(expX(G)).
By [1, Theorem 1.2] there are positive constants A1, B1 such that

A1
enh

n
≤ |CG,X(n)| ≤ B1

enh

n
(4.2)

for all n ≥ 1. Thus from (4.1) and (4.2) we get

|CG,X(n)|
|BG,X(n)| � B1

A0n

for all n ≥ 1, and by taking the limit we obtain that crX(G) = 0. �

4.2. The lamplighter group

We follow the notation in [11]. Let I be a non-empty set. For η ∈ ⊕
i∈I G we write η(i)

for the ith component of η and if moreover I is a group and x ∈ I, we define ηx ∈ ⊕
i∈I G

by ηx(i) = η(x−1i) and say that ηx is the left translate of η by x.

Definition 4.2. Consider groups H and L with symmetric generating sets A and B,
and neutral elements e and e′, respectively. The wreath product of G by L, written G � L,
is defined as

H � L :=
⊕
i∈L

H � L,

where for (η,m), (θ, n) ∈ H � L, (η,m)(θ, n) = (ηθm,mn).

For h ∈ H, let 	h ∈ ⊕
i∈L H be such that 	h(e′) = h and 	h(i) = e for i �= e′. Then

X := {(	e, a) : a ∈ A} ∪ {(	b, e′) : b ∈ B}, (4.3)

generates H � L.
For the lamplighter group G = C2 � Z we let A := {a}, where a is the non-trivial element

of C2, and let B be the standard generating set of Z.
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Theorem 4.3. Let G be the lamplighter group, that is, the wreath product C2 � Z.
Then crX(G) = 0 for the standard generating set X.

Proof. The statement follows immediately from [11, Example 5.0.3], where it is
shown that |Cs

G,X(n)| ∼ (2/n)((1 +
√

5)/2)
n
, and the fact that |SG,X(n)| ∼ ((1 +

√
5)/2)

n

by [12]. �

4.3. Right-angled Artin groups

Let Γ = (V,E) be a simple graph (i.e. a non-oriented graph without loops or multiple
edges) with vertex set V and edge set E. For each vertex v of Γ, let Gv be a group. The
graph product of the groups Gv with respect to Γ is defined to be the quotient of their
free product by the normal closure of the relators [gv, gw] for all gv ∈ Gv, gw ∈ Gw for
which {v, w} is an edge of Γ. Here we consider RAAGs, which are graph products with
all Gv = Z, and denote by (GV ,XV ) the RAAG based on the graph Γ with generating
set XV (in bijection to V ).

Conjugacy representatives in a RAAG come, to a large extent, from taking one word
out of each cyclic permutation class, so we first establish the asymptotics of the language
of cyclic representatives in a rather general setting.

Example 4.4. In a free group on the free generating basis, counting the conjugacy
classes with a minimal representative of length n is equivalent to counting the number of
cyclically reduced words of length n, up to cyclic permutation.

4.3.1. Cyclic representatives of languages

We follow the notation in [5, § 2.3]. Let L be a language over a finite alphabet X, that
is, L ⊆ X∗, and let L(n) denote the set of words of length ≤ n in L. For n ≥ 1, n ∈ N,
let Ln := {wn | w ∈ L} and n

√
L = {v | vn ∈ L}. Define Prim(L) := {w ∈ L | �k > 1, v ∈

L such that vk = w} to be the language of primitive words in L.
Suppose L is closed under cyclic permutations; then we construct a language CycRep(L)

of cyclic representatives of L out of the words wc, where wc is the word that is least
lexicographically among all cyclic permutations of w, for w ∈ L:

CycRep(L) := {wc | w ∈ L}.
Proposition 4.5 (see also [5, Lemma 2.10 (4)]). Let L be an exponential growth

language closed under cyclic permutations. Furthermore, assume that Lk ⊆ L and k
√

L ⊆
L for all k ≥ 1. Then

lim
n→∞

|CycRep(L)(n)|
|L(n)| = 0.

Proof. For simplicity of notation let a(n) := |Ls(n)|, p(n) := |Prim(L)s(n)| and
c(n) := |CycRep(L)s(n)|, that is, we consider the numbers of words of length exactly
n in each language.

Write L as L =
⋃

k≥1 Primk(L), and notice that the number of cyclic representatives of
length n in Prim(L) is p(n)/n, and the number of cyclic representatives of length nk in
Primk(L) is also p(n)/n. Thus a(n) =

∑
d/n p(d) and c(n) =

∑
d/n p(d)/d. Let μ(n) and
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φ(n) be the standard number theoretic Möbius and Euler functions. Then, by Möbius
inversion, p(n) =

∑
d/n μ(n/d)a(n) and so

c(n) =
∑
d/n

∑
l/(n/d)((μ(l))/l)a(d)

d
=

∑
d/n

a(d)
φ(n/d)

n
,

which follows from
∑

d/n φ(d) = n and
∑

d/n μ(d)/d = φ(n)/n.
Since a(n) is exponential, only the last term in the sum above is of the same magnitude

as a(n), so

c(n) ∼ a(n)
n

=⇒ lim
n→∞

|CycRep(L)s(n)|
|Ls(n)| = 0. (4.4)

By Stolz–Cesàro we obtain the result. �

4.3.2. Conjugacy representatives in RAAGs

We first establish a result about the conjugacy ratio of direct products.

Lemma 4.6. Let H and K be two groups with finite generating sets X and Y , respec-
tively. If either (i) crX(H) = crY (K) = 0, or (ii) crX(H) = 0 and expX(H) > expY (K),
then crX∪Y (H × K) = 0.

Proof. We calculate the conjugacy ratio with respect to balls in H × K. To do this we
use balls in H and spheres in K. Let an := |CH,X(n)|, bn := |BH,X(n)|, tn := |Cs

K,Y (n)|
and sn := |SK,Y (n)|. Then

crX∪Y (H × K) = lim sup
n→∞

∑n
i=0 aitn−i∑n
i=0 bisn−i

.

If crX(H) = crY (K) = 0, then by Proposition 2.4 (putting tn = ĉn, sn = d̂n) we
get that crX∪Y (H × K) = 0. Similarly, if crX(H) = 0 and expX(H) > expY (K)
then Proposition 2.5 (putting cn = tn, dn = sn) states that this limit is zero, so
crX∪Y (H × K) = 0. �

Since RAAGs interpolate between free and free abelian groups, the presence of commu-
tativity does not allow us to simply consider cyclically reduced words up to permutation,
as in free groups. We need to single out the words for which taking cyclic representatives
produces conjugacy representatives, and use Crisp, Godelle and Wiest’s approach from
[8], which was further developed in [5].

Definition 4.7 (see [8, Definition 2.19]). Let V = {a1, . . . , aN} and set the total
order a1 < a−1

1 < a2 < a−1
2 < . . .. A cyclically reduced word w is in cyclic normal form

if it is in the shortlex language SL(GV ,XV ) of GV with respect to XV and all its cyclic
conjugates are in SL(GV ,XV ) as well.

Not all elements possess a cyclic normal form. For example, if [a1, a2] = 1, the word
a1a2 is in SL(GV ,XV ), but its cyclic permutation a2a1 is not. To deal with this situation,
[8] divides the words over XV into split and non-split.
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Definition 4.8 (see [8, Definition 2.13]). Let w be a cyclically reduced word over
XV and denote by Δ(w) the full subgraph spanned by Supp(w). Let Δ(w) be the graph
complement of Δ(w).

(i) The word w is split if Δ(w) is disconnected, which amounts to being able to write
w as a product of commuting subwords (or blocks).

(ii) The word w is non-split if Δ(w) is connected.

(iii) Let CycSL(GV ,XV ) denote the set of all non-trivial cyclic normal forms correspond-
ing to non-split words in GV .

We say that a group element is non-split (split) if it can be represented by a cyclically
reduced word which is non-split (split).

Proposition 4.9 (see [8, Proposition 2.21]). Two cyclic normal forms represent
conjugate elements if and only if they are equal up to a cyclic permutation.

Proposition 4.10 (see [8, Remark 2.14]). Let w and v be two cyclically reduced
split words. Then they are conjugate if and only if Δ(w) = Δ(v) and the words
corresponding to the commuting blocks are conjugate, respectively.

Lemma 4.11 (see [5]). Let CycSL(GV ,XV ) be the set of cyclic normal forms in GV .
The following hold:

(1) CycSLk(GV ,XV ) ⊆ CycSL(GV ,XV ) for all k ≥ 1; and

(2) CycSL(GV ,XV ) is closed under cyclic permutations.

Theorem 4.12. Let G = (GV ,XV ) be a RAAG based on a graph Γ = (V,E)
with generating set XV . Then crXV

(G) = 0, unless G is free abelian, in which case
crXV

(G) = 1.

Proof. We use induction on the number of vertices. Let n := |V |. The result is trivial
for n = 1. If G is a direct product, then we get cr(G) = 0 if at least one of the factors has
cr = 0; this follows from Lemma 4.6(i) if both factors have cr = 0 and from Lemma 4.6(ii)
if, say, the first factor has cr = 0, as the second is by induction free abelian and of strictly
smaller growth rate than the first. We get cr(G) = 1 when each factor is free abelian.

So suppose G is not a direct product. We split the conjugacy classes CGV,XV
of G into

two types: those which have a shortest length representative with support XU , where U �
V , and denote these by CGV ,≤XV

; and those which have a shortest length representative
with support exactly XV , and denote these by CGV ,=XV

. By Propositions 4.9 and 4.10,
this is well defined. Moreover, by Propositions 4.9 and 4.10, two cyclically reduced words
w1, w2 with support XU are conjugate in GV if and only if they are conjugate in GU (note
that if a word w ∈ CycSL(GV ,XV ) ∩ X∗

U , where U � V , then w ∈ CycSL(GU ,XU )).
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Thus we can write CGV,≤XV
⊆ ⋃

U�V CGU ,XU
and express the above as:

CGV,XV
⊆

⋃
U�V

CGU ,XU

⋃
CGV,=XV

. (4.5)

Then (4.5) implies that

|CGV,XV
(n)|

|BGV,XV
(n)| ≤

(
∑

XU,U�V |CGU,XU
(n)|) + |CGV,=XV

(n)|
|BGV,XV

(n)| . (4.6)

Now for U � V

|CGU,XU
(n)|

|BGV,XV
(n)| =

|CGU,XU
(n)|

|BGU,XU
(n)|

|BGU,XU
(n)|

|BGV,XV
(n)| ,

so

lim sup
n→∞

|CGU,XU
(n)|

|BGV,XV
(n)| ≤ crXU

(GU ) lim sup
n→∞

|BGU,XU
(n)|

|BGV,XV
(n)| .

The right-hand side is equal to 0 since either (i) crXU
(GU ) = 0 by induction or (ii) GU

is free abelian (so of polynomial growth); if (ii), since G itself if not a direct product by
assumption, it is of exponential growth, and the last fraction is 0.

It remains to find lim supn→∞(|CGV ,=XV
(n)|)/(|BGV ,XV

(n)|), the second part of the
right-hand side of (4.6). Since G is not a direct product, all conjugacy representatives
with support exactly XV are non-split, so it suffices to consider cyclic normal forms up
to cyclic permutations, that is

|CGV,=XV
(n)|

|BGV,XV
(n)| ≤ |CycRep(CycSL(GV,XV ))(n)|

|SL(G,XV )(n)|

=
|CycRep(CycSL(GV,XV ))(n)|

|CycSL(G,XV )(n)|
|CycSL(GV,XV )(n)|

|SL(G,XV )(n)| ,

and by Proposition 4.5 applied to the language CycSL(GV,XV ) (which satisfies the
hypothesis of Proposition 4.5 by Lemma 4.11)

lim
n→∞

|CycRep(CycSL(GV,XV ))(n)|
|CycSL(G,XV )(n)| = 0.

This proves the result. �

5. Reflections and open questions

Our results on the conjugacy ratio values are essentially identical to those on the degree
of commutativity in [2,7,13]. That is, the two quantities are equal for all the classes of
groups we studied. However, we could not establish a direct general link between them.

Question 1. Is the limsup in the definition of the conjugacy ratio a limit?

Question 2. What are the groups for which dcX(G) ≤ crX(G) (or vice versa)? They
are equal in the virtually nilpotent case, in the hyperbolic group case and many more.
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As is the case for the degree of commutativity, we do not know whether the conjugacy
ratio might be influenced by a change of generators.

Question 3. Does there exist a group G with finite generating sets X and Y such
that crX(G) �= crY (G)?

Finally, it would be interesting to unify the proofs confirming our conjecture for larger
classes of groups, such as all groups of exponential growth.
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