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Abstract

We give necessary conditions of a surface-knot to be ribbon concordant to another, by introducing a new
variant of the cocycle invariant of surface-knots in addition to using the invariant already known. We
demonstrate that twist-spins of some torus knots are not ribbon concordant to their orientation reversed
images.
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1. Introduction

Throughout this paper, a surface-knot means a connected, oriented closed surface
smoothly embedded in 4-space R4 up to ambient isotopies. Let Fo and F, be surface-
knots of the same genus. We say that F\ is ribbon concordant to Fo if there is a
concordance C in R4 x [0, 1] between F, c I 4 x {1} and Fo C K4 x {0} such that
the restriction to C of the projection K4 x [0, 1] —> [0, 1] is a Morse function with
critical points of index 0 and 1 only. We write Ft > Fo. Note that if Ft > Fo, then
there is a set of n 1-handles on a split union of Fo and n trivial sphere-knots, for some
n > 0, such that Fi is obtained by surgeries along these handles (Figure 1).

The notion of ribbon concordance was originally introduced by Gordon [8] for
classical knots in R3, and there are several studies found in [7, 13, 12, 17], for
example. Note that F is a ribbon surface-knot if and only if F is a ribbon concordant
to the trivial sphere-knot.

Given surface-knots Fo and Fx, it is natural to ask whether F, is ribbon concordant
to Fo. Cochran [5] gave a necessary condition for a sphere-knot F to be ribbon in
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FIGURE 1.

terms of the knot group it\ (K4 \ F). The aim of this paper is to give new necessary
conditions for a pair of surface-knots to be ribbon concordant by using quandle cocycle
invariants.

A quandle [9, 11] is an algebraic object whose model is a group with conjugation,
and its cohomology theory was developed in [4] as a generalization of the theory
given in [6]. It is known that each quandle 3-cocycle 0 defines an invariant of a
surface-knot F, called the quandle cocycle invariant, 4>e(F). The invariant $>e(F)
is regarded as a multi-set of elements in the coefficient group A of the cohomology
where repetitions of the same element are allowed. For two multi-sets A' and A" of. A,
we use the notation A' c A" if for any a e A' it holds that a e A". In other words,
A' c A" if and only if A' c A" where A' and A" are the subsets of A obtained from
A' and A" by eliminating the multiplicity of elements, respectively. The following is
a necessary condition for ribbon concordance.

THEOREM 1.1. / / F , > Fo, then ^ ( F , ) c <J>9(F0).

By Theorem 1.1, we give many examples of pairs of surface-knots such that one
is not ribbon concordant to another (Corollary 2.1). For example, we can easily see
that the 2-twist-spun trefoil and its mirror image are not ribbon concordant to each
other. However, Theorem 1.1 is not effective in the family of ribbon surface-knots;
in fact, 4>e(F) = 0 for any ribbon surface-knot F. Here, we use the notation 0 to
stand for a multi-set consisting of zero elements of A only. In this paper, we define a
new variation of cocycle invariants of surface-knots by using a quandle 2-cocycle </>
(the definition is given in Section 3). The invariant of a surface-knot F is denoted by
f2^(F) = {A>, | k e Hi(F;T)} which is a family of multi-sets Ak of the coefficient
group A. Note that a 2-cocycle <j> is originally used to define the invariant, O (̂/sT), of
a classical knot K (cf. [4]). The invariant ^0 gives another necessary condition for
ribbon concordance.
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THEOREM 1.2. / / F , > Fo, then for any A' e ^ ( F , ) , there is A" e ^ ( F o ) such

that A' C A".

As an application of our new invariant £2̂ , of a surface-knot, we obtain a result on
the cocycle invariant of a classical knot as follows (refer to [9] for the definition of an
involutory quandle, or see Section 4).

THEOREM 1.3. If <p is a 2-cocycle of an involutory quandle, then <t>4,(K) = Ofor
any 2-bridge knot K.

This paper is organized as follows. In Section 2, we review the definition of
the original cocycle invariant <t>e(F). The proof of Theorem 1.1 and its application
(Corollary 2.1) are also contained in this section. In Section 3, we introduce a new
invariant £2#(F) by using a 2-cocycle <p, and then prove Theorem 1.2. An application
of the theorem is given in Section 4 (Corollary 4.3), where we only sketch the outline
of the proof and its completion is left to Appendix. Boyle [3] studied a surface-knot
obtained from a twist-spun knot by surgery along a 1 -handle. By using his result, we
prove Theorem 1.3 also in Section 4.

REMARK. Kawauchi points out that the linking signature of every surface-knot is
invariant under ribbon concordance. This result has not appeared in any paper, but
can be obtained as a corollary of [ 10].

2. Invariants by using 3-cocycles

We first review the definition of the quandle 3-cocycle invariants of surface-knots.
Refer to [4] for more details. A quandle is a set X with a binary operation (a, b) i->- a*b
satisfying the following three axioms:

• a * a = a for any a e X.
• The map *a : X —> X defined by x H> X * a is bijective for any a e X, and
• (a * b) * c = (a * c) * (b * c) for any a,b,c e X.

For an abelian group A, we say that a map 0 : X3 —*• A is a 3-cocycle if it satisfies the
conditions that

• 0(xi, x2, Xs) = 0 if jti = x2 orjc2 = JC3, and
• for any JCI, . . . , x4 e X,

KT,,X4) — 0(Xi,X2,X4) + O(XU X2, Xj)

— 9{x\ * x2, JC3, x4) — 9{x\ * JC3, x2 * JC3, x4)

+ 0(Xi * X4, X2 * JC4, X) * X4)
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We denote by Z3(X; A) the set of such 3-cocycles.
To describe a surface-knot, we use a fixed projection of n : R4 -» R3 as well as a

description of a classical knot into the plane. Every surface-knot F can be perturbed
slightly in K4 so that the projection image n(F) has double point curves, isolated triple
points, and isolated branch points as the closures of the multiple point set. Crossing
information is indicated in n(F) as follows: Along every double point curve, two
sheets intersect locally, one of which is under the other relative to the projection
direction of n. Then the under-sheet is broken by the over-sheet. A diagram of F
is the image n(F) with such crossing information. Hence a diagram is regarded as a
union of disjoint compact, connected surfaces. For a diagram D, we denote by S(D)
the set of such connected surfaces of D. Note that three sheets near a triple point are
labeled top, middle, and bottom according to crossing information, and the middle
and bottom sheets are divided into two and four pieces, respectively.

For a quandle X, a map C : £(D) —> X is called an X-coloring of D if it satisfies
the following condition near every double point d: if a = C(at) and c = C(a2) are the
colors of under-sheets c^ and a2 separated by the over-sheet p colored by b = C(fi),
where the orientation normal of fi points fromat toa2, thena*b = c holds. See the
left of Figure 2. We denote the set of such X-colorings of D by Co\x(D). Also, the
pair (a, b) is called the color of a double point d, and denoted by C(d) e X2.

(a*b)*c
=(a*c)*(b*c) -

FIGURE 2.

Each triple point t of D is assigned the sign e(t) = ±1 induced from the orientation
in such a way that e (r) = +1 if and only if the ordered triple of the orientation normals
of the top, middle, and bottom sheets, respectively, agrees with the orientation of (R3.
Given an X-coloring C € Colx(£>), the colors of the sheets near / are determined by
three colors a = C(a), b = C(/J), and c = C(y), where y is the top sheet, /? is the
middle sheet from which the orientation normal of / points, and a is the bottom sheet
from which the orientation normals of f) and y point both. See the right of Figure 2,
where the sheets a, fi, and y are shaded. The ordered triple (a, b, c) is called the color
of/ and denoted by C(t) e X3.
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Let D be a diagram of F colored by C e Colx(D). Given a 3-cocycle 9 e
Z3(X; A), we define the (Boltzmann) weight of each triple point t by

We(f,C) = e(t) • 9(a, b, c) e A,

where C(f) = (a,b,c). We denote by We(C) e A the sum £ , We(t;C) for all
triple points of D. Then the cocycle invariant of F by using 9 is the multi-set
<t>s(F) = {W9(C) e A | C € Colx(D)}, where repetitions of the same element are
allowed. It is proved in [4] to be an invariant of F which does not depend on the
choice of a diagram D of F.

Let Fo and Fx be surface-knots with F\ > Fo, that is, Fx is ribbon concordant to Fo.
For a diagram Do of Fo, we may take a typical diagram Dx of F] as follows: There is
a set of sufficiently thin n 1-handles, hx,..., hn, for some n > 0, connecting a split
union of Do and n embedded 2-spheres, Sx, . . ., Sn, such that

• each 1-handle hj connects Do and Sj, and intersects Do U (U"=i $ ) w ' t n

disjoint meridian 2-disks of hj, and

• Dx is obtained from Do U (U"=, S,) by surgeries along (J"=i ^ j -

In the following, we use Dx in the above form unless otherwise stated.

PROOF OF THEOREM 1.1. For any element a e <Pe(F^), there is an X-coloring
C, e ColxCDO with a = We(Cx) = £ , We(t;Cx) on D,. Since the intersection
of Do and each 1-handle hs consists of small 2-disks, the X-coloring C\ restricted
to the punctured diagram Do \ (U"=i ni) determines the X-coloring of Do uniquely,
Co € Colx(Do). Since the set of triple points of D\ is coincident with that of Do, and
since We(t;C0) — We(t; Cx) for any triple point /, we have

a = E, We(.t; Co) = We{C0) € <J>e(D0). •

We present specific examples as an application of Theorem 1.1 in the rest of this
section. The set {0, 1 , . . . , p — 1} becomes a quandle under the operation a *b = 2b—a
(mod p), which is called the dihedral quandle of order p, and denoted by Rp. For an
odd prime p, Mochizuki [14] found a 3-cocycle Gp € Z3(RP, Tp) given by

ep(xux2, x3) = (xx - x2)

where coefficients in the numerator are divisible by p. The reader can check that 9P

satisfies the 3-cocycle conditions by hands (cf. [2]).
In 1965 Zeeman [18] introduced an important family of sphere-knots. We take a

tangle (knotted arc) TK in the 3-ball B3, whose closure is a classical knot K. For an
integer r > 0, let {/,},€[o.n be the ambient isotopy of Z?3 which rotates the tangle TK a
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total of r times about an axis while keeping the boundary of TK fixed. Furthermore,
fo(Tfc) = f\(TK). We construct an annulus A properly embedded in 5 3 x S1 from

U f,(tK) x {t} C B3 x [0, 1]
(€[0,1]

by identifying the quotient [0, l]/(0 = 1) with S1. The r-twist-spin of K is a sphere-
knot obtained by embedding (f i 3xS' ,A)inlR4 standardly and capping A with two
2-disks along the boundary of A. We denote the sphere-knot by xrK.

Let 7(2, q) denote the (2, ̂ )-torus knot in K3. For a surface-knot F, let — F denote
the surface-knot F with the reversed orientation. Then we have the following.

COROLLARY 2.1. (i) Ifq and q' are distinct odd primes, then we have

x2T{2, q) £ r2T(2, q') and X2T(2, q') £ x2T(2, q).

(ii) Ifq is an odd prime with q = 3 (mod 4), then we have

x2T(2,q)£-x2T(2,q) and - X2T(2, q) £ x2T(2, q).

PROOF, (i) It is proved in [2] that <!>«,„ (r2r(2, q)) = 0 for p £ q, and

2T(2,q)) =

for p — q, where the number of each term of the form —2k2 (k = 0, 1 , . . . , q — 1)
is q. In particular, since <t>^(r2r(2, q)) ^ 0 and 4>Scj(r

2r(2, q')) = 0, we have
T2T(2, q) £ z2T(2, q') by Theorem 1.1. It is also similarly proved that r2T(2, q') £
T2T(2,q).

(ii) It is known that O<?(—F) = —Q>e(F) for any surface-knot F and 3-cocycle 6
(see, for example, [4]). On the other hand, we obtain the set 5 = [—2k2 | k =
0, 1, . . . , (p— l)/2} from 4>#<|(r

2r(2, q)) by eliminating the multiplicity of elements.
It is not difficult to see that if q = 3 (mod 4), then S ft —S and S ~£> —S, and hence,
we have the conclusion by Theorem 1.1. •

3. Invariants by using 2-cocycIes

-2
-2

- 2 ( 9 -

0, . . . ,
• I 2 , . - . ,
•22, . . . ,

1)V, .'.'.'.

- 2
- 2

- 2 ( 9 -

0,
• I 2 ,
•22,

. • 1 } 2

Let AT be a quandle and A an abelian group. We say that a map </> : X2 —*• A is a
2-cocycle if it satisfies
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• <j>{x\, x2) — 0 if xt = x2, and

• 0 ( x , , x 3 ) -4>(xi, x2) =<j>(xt *x2,Xi) -<p(Xi *X},x2 * x3) for any x, e X.

We denote by Z2(X; A) the set of such 2-cocycles.
We define a cocycle invariant of a surface-knot by using a 2-cocycle <f> e Z2(X; A).

Let D be a diagram of a surface-knot F, and C e Colx(D) an X-coloring of D.
Consider an oriented immersed circle L on D intersecting the double point curves
transversely, and missing triple points and branch points. Let du ..., dm denote the
points on the under-sheet at which L intersects the double point curves. We give the
sign e(dk) = ±1 to dk such that e(dk) = +1 if and only if the orientation of L at dk

agrees with the orientation normal of the over-sheet. We define the Boltzman weight
at dk by W,),(dk; C) = e(dk) • <p(a, b) e A, where C(dk) = (a, b). Moreover, we put
V^(L; C) = Y2=\ W4d^ C). See Figure 3. We extend these notations for a union of
immersed circles L on D naturally.

(d k;C)=+ * (a,b)

FIGURE 3.

LEMMA 3.1. IfL and L' are homologous on D, then W^L; C) = W^L'; C).

PROOF. It is sufficient to prove that W^(L;C) does not change under the moves
(0)-(3) (and the ones with orientation reversed, or with opposite crossing information)
as shown in Figure 4. First, it is clear for the move (0) by the definition of W^(L; C).
Since 0 satisfies <f){a,a) = 0 for any a e X, the move (1) also does not change
W0(L;C). In the move (2), the terms <j>{a, b) and -cp(a, b) cancels in W^(L';C).
Finally, it follows from the 2-cocycle condition of <j> that W^(L;C) = W^,(L';C)
under the move (3). D

For each homology class X e H{(F;Z) and its representative curve L C D, the
element W^(L; C) G A is independent of the choice of L by Lemma 3.1, and hence,
we denote it by W^k; C). Then we assign each class k e H{(F\ 1) a multi-set Q^(k)
of A such that fi^A.) = {W^k; C) | C e Colx(£>)}. Moreover, we define a family of
multi-sets of A by Q,p(F) = {Q^(k) \ k e / / , (F ;Z)} .
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(0)

+*(a,a)

(2) <=> V ' t. -

FIGURE 4.

PROPOSITION 3.2. The family fi^(F) does not depend on the choice of a diagram
DofF.

PROOF. It is known that any other diagram D' of F is obtained from D by a finite
sequence of Roseman moves [15] up to ambient isotopies of R3. Assume that D' is
obtained from D by a single Roseman move in a sufficiently small 3-ball B3. For any
class X € Ht(F;T), we may take its representative curve L on D with L D B3 = 0
so that we regard L as a curve on D' also. Moreover, each ^-coloring C € Colx(£>)
induces a coloring C" € Colx(£>') uniquely. Hence, any W0(L; C) on D is coincident
withW,»(L;C")onD'. •

The following proof is similar to that of Theorem 1.1 in Section 2.
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PROOF OF THEOREM 1.2. Let £>, be diagrams of F: (i = 0, 1) as in the beginning

of Section 3. For any A' e £20(F|), there is a curve L on D{ with A' = ^(L). Since
we can deform L such that L n (U"=i hj) = 0, ^ is regarded as a curve on Do.

Put A" = £2^(Z.) € f^CFo). Then A' c A" can be proved in a similar way to
Theorem 1.1. •

4. Torus-knots with 1-handles

A surface-knot is called a torus-knot if it is an embedded torus in K4. We distinguish
it from a classical 'torus knot' in K3 by inserting the hyphen -. In this section, we use
a typical family of torus-knots studied by Boyle [3]. Let AT be a classical knot in a
3-ball fi3, and let D3 c intB3 be a 3-ball such that D3 n K = TK is the knotting arc for
K. For an integer r > 0, let {g,},e[o,i] be the ambient isotopy of B3 which rotates TK r
times keeping the trivial arc K \TK fixed. We denote by a'K the torus-knot obtained
from (J, g,(K) x {t} C B3 x S1 by embedding it in K4 standardly. Note that arK is
also obtained from the r-twist-spin of K by surgery along a certain 1-handle h.

By definition, ar K has a diagram £>r in the form A x 51, where A is a knot
diagram of K, except the twisting part of TK. See Figure 5, where we ignore crossing
information along double point curves and omit the twisting part. Refer to [2, 16] for
the complete figure of the diagram. We take meridional and longitudinal curves at and
/} on Dr, respectively, such that a can be identified with A, and /3 has no intersection
with double point curves.

FIGURE 5.

Tocalculate the invariant £20 of ar K, we recall the definition of the cocycle invariant
4>4,(K) of a classical knot K by using a 2-cocycle (p. Let A C K2 be a diagram of an
oriented classical knot K, and E(A) the set of arcs separated by over-arcs at crossings.
For a quandle X, a map C : E(A) —• X is called an X-coloring of A if it satisfies the
following condition near every crossing x: if a = C(ai) and c = C(a2) are the colors
of under-arcs at and a2 separated by the over-arc /3 colored by b = C(^), where ai
is on the right side of fi, then a*b = c holds. We denote the set of such X-colorings
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of A by Col* (A). Also, the pair (a, b) is called the color of the crossing x, and
denoted by C(x) e X2. Given a 2-cocycle cf> e Z2(X; A), we define the Boltzmann
weight at x by W^ix; C) = e(x) • <p(a, b) e A, where C(x) = (a, b). We denote by
WjiC) € A the sum ^ W^(x\ C) for all crossings of A. Then the cocycle invariant
of K by using ,*< is the multi-set ^^{K) = {W^(C) | C € Col*(A)} where repetitions
of the same element are allowed. It is proved in [4] to be an invariant of K which does
not depend on the choice of a diagram A of AT.

Any X-coloring of Dr determines that of A by restricting it to the meridional
curve or. Conversely, not any X-coloring of A extend to Dr totally; an X-coloring
of A extends to Dr if and only if x(*y)r = x for any x, y e X appeared in A; this
condition corresponds to the r-twisting of TK. Refer to [2, 16] for more details. A
quandle X is called of type s (s > 0) if it satisfies that x(*y)s = x for any x,y € X,
and in particular, X is an involutory quandle if it is of type 2. The dihedral quandle Rp

is an example of involutory quandles; (x*y)*y s (2_y — x)*y = 1y — (2y — x) s x
(mod p). Then we have the following immediately.

LEMMA 4.1 (cf. [2, 16]). IfX is a quandle of type s, then for anyr=0, s, 2s, 3s
there is a natural one-to-one correspondence between Colx(Dr) andCo\x(&)-

PROPOSITION 4.2. Assume that X is a quandle of type s, and let </> e Z2(X; A) a
2-cocycle of X. For any r — 0, s, 2s, 3s,..., the cocycle invariant £2^(crr K) is given
by

0, 0, ...

where the number of each multi-set k<P,j,(K) is infinite (k 6 2). In particular, we have

PROOF. Recall that (a, /3) represents a basis of H\(orK;l) = 1®1. For any class
X = k[a] + l[p] (k, I € T), we have

by definition. Hence it follows from Lemma 4.1 that = k<t>4,(K). D

For integers m and n, let S(m, n) be the classical knot represented by the diagram
as shown in Figure 6. Note that 5(3, 3) is coincident with 85 in the knot table. Then
we have the following as a corollary of Theorem 1.2. We sketch the outline of the
proof here, and a complete proof is given in Appendix.
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m.

141

FIGURE 6.

COROLLARY 4.3. We have orT{2,1) ~£_ crsS(m, n) for any r,s = 0 (mod 4) and

l,m,n = 3 (mod 6).

PROOF. Let Q 6 be the subset of the permutation group of four letters, consisting of
six cyclic elements of length four. Then Q6 has a quandle structure under conjugation.
Note that Q6 is a quandle of type 4. There exists a 2-cocycle <j> € Z2(Q6; Z4) with the
coefficient group 14 such that the associated invariant of the (2, fc)-torus knot satisfies

* * ( r ( 2 , / ) ) = {0, 0 , . . . , 0 ,1 + 2,1 + 2 ...,1+2}
6 24

for any 1 = 3 (mod 6), where the values in the invariant are taken in Z4. On the other
hand, the invariant of S(m, n) associated with the same 2-cocycle (p satisfies

d\»(S(m, n)) = {0, 0 , . . . , 0, 2, 2, . . . , 2}

30 24

foranym.n == 3 (mod 6). By Proposition 4.2, we have 0^,(7(2,/)) e Q<t>(arT(2,l))
for r = 0 (mod 4). Since

, /)) € k<t>t(S(m, n)) = {0, 0 , . . . , 2k, 2k, ...} € , n))

for any s = 0 (mod 4) and k e Z, it follows from Theorem 1.2 that orT{2,1) is not
ribbon concordant to a' 5 (m, n). •

To prove Theorem 1.3, we prepare the following lemma. We say that a torus-knot
is reducible if it is obtained from a sphere-knot by surgery along a trivial 1-handle.

LEMMA 4.4. If a torus-knot F is reducible, then Q,p(F) = (0, 0, . . . , 0, . . . } for
any 2-cocycle <f>.

PROOF. For any class X e HX(F; 7L), we can choose a representative curve L of X
along the trivial 1 -handle which does not meet any double point curves. Hence, we
have Wt(k; C) = 0 by definition. •
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PROOF OF THEOREM 1.3. Consider the invariant ^ (CT 2 AT) of the torus-knot a 2 K.
Since X is an involutory quandle, that is, of type 2, we have <J> (̂Jf) e ^l^{a2K) by
Proposition 4.2. On the other hand, Boyle [3] proved that if AT is a 2-bridge knot, then
a2K is a reducible torus-knot. Hence, we have Q><t,(K) = 0 by Lemma 4.4. •
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Appendix

Let Q6 be the subset of the permutation group of four letters 1,2,3,4 consisting of
cyclic elements of length four, where the subscript 6 stands for the number of elements
belonging to Q6. Then Q6 becomes a quandle under conjugation g * h = h~xgh\ in
general, any conjugacy class of a group becomes a quandle under the conjugation.
For example, if g = (1342) and h = (1234), then

g*h = (1342) * (1234) = (1234)~1(1342)(1234) = (1324).

In other words, g * h is obtained from g by replacing the letters in g according to the
permutation of h. Note that since

Q6 is a quandle of type 4.
The quandle Qb can be visualized by using the equilateral octahedron H (Figure 7).

First, we number the faces of H by 1, . . . , 4 in such a way that each pair of parallel
faces admit the same number. At each vertex, we put the element of Qb by reading the
numbers on faces concentrated at the vertex counterclockwise. Under the identification
of Q(, and the set of vertices of H, the vertex g * h is obtained from g by rotating H
quarterly around the diagonal axis through h in the counterclockwise direction; in fact,
the permutation of the numbers on faces caused by the rotation is coincident with h as
an element of Qb. Note that for each vertex g e Qe, the inverse g"1 is located on the
diagonal vertex. Quandles consisting of rotations of an equilateral polyhedron can be
found in [1].
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(1342)

FIGURE 7.

(1324)

Recall that the 2-cocycle conditions are

(1) <p(a, a) = 0 for any a e Q6, and

(2) <p(a, c) — 4>(a, b) — <j>(a * b , c) + <t>(a * c , b * c ) = 0 for a n y a , b , c e Qb.

By using the model of the octahedron H, we will give a way to check whether a
given map <p '• Q(> x Qt -*• A satisfies condition (2). For this purpose, we interpret
condition (2) visually.

Case 1. Assume that the set {a, b, c) contains the same element.

1-i. If a = b or b — c, then condition (2) always holds under (1).
1-ii. Assume that a = c ^ b. If b — a~\ then (2) always holds similarly. If

b ^ a~l, then (2) is equivalent to

(3) 4>(a, b) + <f>(a *b,a) — <j>(a, b * a) = 0,

for any pair (a, b) which spans an edge of the octahedron H. We illustrate this
condition (3) as in Figure 8, where the black/white arrow Jy corresponds to the value
0(JC, y) or —<f>(x, y), respectively.

Case 2. Assume that (a, b, c] contains no pair of the same element but a pair of
inverse elements.

2-i. If b = a~\ then we have </>(«, a"1) = <p(a * c, a"1 * c). By changing a
and c variously, (2) implies that <p(a, a~l) is constant regardless of a € Qe, which we
denote by 8 e A.

2-ii. If c = b~\ then condition (2) is equivalent to

(4) 4>(a, b~l) +4>{a * b~\ b) - <j>{a, b) - 4>{a * b, b~l) = 0,

for any pair (a, b) which spans an edge of H. We also illustrate condition (4) in
Figure 8.
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2-iii. If c = a~l, then (2) is equivalent to

(5) 0 (a , b) + <f>(a * b, a'1) - <f>(a, b * a'1) = S,

for any pair (a, b) which spans an edge of H. See Figure 8 again, where a*b — b*a~l

holds.

Case 3. Assume that [a, b, c) spans a face of the octahedron H.

3-i. If c = b * a, then condition (2) is equivalent to (5).
3-ii. If c = a * b, then condition (2) is equivalent to (3).

a*b

a*b

FIGURE 8.

+ *(a,b)

+ *(b,c) =

a b

FIGURE 9.
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We rewrite the elements of Q6 by

1 «* (1234), 2 <-»• (1423), 3 -H- (1342),

4 •» (1423), 5 <->• (1324), 6 <* (1243).

Note that I"1 = 4, 2"1 = 5, and 3~' = 6 . We consider the map

</>: 26 x Q6-+ Z4 = {0,1,2,3}

such that <f>(a, a) = 0 and 0(a, a"1) = 1 for any a G Q6, and

• 0(1, 3) = 0(2, 1) = 0(2, 3) = 0(3, 1) = 0(3, 5) = 0(5, 1) = 0(5, 6) =
0(6, 1) = 0(6, 2) = 0(6,5) = 1,

• 0(1, 5) = 0(5, 3) = 2,
• 0(1, 6) = 0(3, 2) = 3, and
• 0(a, b) = 0 for other cases.

The value 0(a, b) for b ^ a,a~[ is also indicated in the lower right of Figure 8 by
the number of arrows on the edge ab. Then the reader can check that 0 satisfies the
conditions (3)-(5), and hence, 0 is a 2-cocycle in Z2(Q6; 14).

For this 2-cocycle 0, we calculate the invariant of T(2,l) for / = 3 (mod 6).
Consider the diagram of T(2,1) as a closure of the 2-string braid with / half twists.
Since each Q6-coloring of the diagram is determined by the pair of colors {a, b) on
the top arcs of the braid, we denote the coloring by C(a,b). There are 6 trivial
Q6-colorings C(a, a) for which we have W (̂C(<2, a)) = 0 by definition. If b — a~\
then the bottom arcs of the braid admits the pair of colors (a~l, a); for/ is odd. Hence,
such a Q6-coloring does not exist. If b ^ a,a~l, that is, [a, b) is the boundary of an
edge of the octahedron H, then the same pair of colors appears by three half twists.
See Figure 9. The number of such (26-colorings are 6 x (6 — 2) = 24. For each
Q6-coloring C(a,b) with b ^ a, a"1, we have

MV(C(a, b)) = l-(<f>(a, b) + 4>(b, c) + 0(c, a)),

where c = a * b. On the other hand, we see that 0(a, b) + <p(b, c) + 0(c, a) = 1 by
the definition of 0. Hence, we have W^da, b)) = 1/3 = 1 + 2 (mod 4), and

ia, b)) | a = b or b ^ a,

{0, 0 , . . . , 0 , / + 2 , / + 2 , . . . , / +

24

The calculation of 4>0(5(w, n)) for w, n = 3 (mod 6) can be similarly checked,
and the details are left to the reader. The classical knot S(m, n) has a diagram as a
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closure of the 3-string braid afo^a'a^ for the standard generators O\ and a2 of the
braid group. Let C(a, b, c) be the (?6-coloring of the diagram such that the colors of
the top first, second, and third arcs are a,b,c e Q6, respectively. Then we have the
following three cases:

a , a ) ) = 0 for any a e Q6;
ia, b,b)) = m + n + 2 for any a, be Q6 with b ^ a, a"1; and

• W,j,(C(a,b, b~[)) = m + n for any a, b e Q6 with b ^a,a~l.

Since the numbers of 26-colorings in these cases are 6, 24, and 24, respectively, and
since m + n is even, we have

*,(S(»i, n)) = {0,0, . . . ,0 , 2,2, . . . ,2 j .
6+24=30 24
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