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Abstract

Model order reduction (MOR) can provide low-dimensional numerical models for fast simulation. Unlike
intrusive methods, nonintrusive methods are attractive because they can be applied even without access to full
order models (FOMs). Since nonintrusive MOR methods strongly rely on snapshots of the FOMs, constructing
good snapshot sets becomes crucial. In this work, we propose a novel active-learning-based approach for use in
conjunction with nonintrusive MOR methods. It is based on two crucial novelties. First, our approach uses joint
space sampling to prepare a data pool of the training data. The training data are selected from the data pool using a
greedy strategy supported by an error estimator based on Gaussian process regression. Second, we introduce a
case-independent validation strategy based on probably approximately correct learning. While the methods
proposed here can be applied to different MOR methods, we test them here with artificial neural networks and
operator inference.

Impact Statement

Nonintrusive model order reduction methods draw much attention in the industry for their easy implementation.
However, insufficient accuracy and stability hinder broader applications. Large amounts of training data are
needed to ensure their accuracy and stability. In this article, we propose an approach to actively collect the
training data. The reduced order models built in such a way have not only much better performance than those
built in conventional ways but also users can know their expected accuracy and confidence before deploying
them. With little required user interaction, the proposed method offers a huge potential for industrial usage to
create the so-called digital twin.

1. Introduction

Model order reduction (MOR) (Willcox and Peraire, 2002; Antoulas, 2005; Volkwein, 2013), as a key
component of the concept of digital twin (DT) (Hartmann et al., 2018; Rasheed et al., 2019), is
increasingly attracting attention from different research fields. The traditional ways of reduced modeling,
such as the Krylov subspace method (Heres, 2005), reduced basis method (Haasdonk, 2017), proper
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orthogonal decomposition (POD) (Lu et al., 2019), and the discrete empirical interpolation method
(Chaturantabut and Sorensen, 2010) require detailed knowledge of full order models (FOMs) and are
known as intrusive reduction methods. The applicability of intrusive methods is limited in industrial
engineering simulation and commercial finite element method (FEM) software. Recently, the develop-
ment of so-called nonintrusive reduction has attracted much attention.

NonintrusiveMORmethods use data generated by FOMs to build surrogatemodels that can accurately
reproduce the physical behavior encoded in the data. Currently, most data-drivenMORmethods are based
onmachine learning (ML). For example, Feed-forwardNeural Network (Regazzoni et al., 2019), operator
inference (OpInf) (Peherstorfer and Willcox, 2016), Long-short-term-memory (LSTM) neural network
(Mohan and Gaitonde, 2018), recurrent neural network (RNN) (Kani and Elsheikh, 2017; Wang et al.,
2020;Wu and Noels, 2022), deep learning (Fresca andManzoni, 2022), sparse identification of nonlinear
dynamics (SINDy) (Champion et al., 2019), and Runge–Kutta neural network (Zhuang et al., 2021) have
been tested for reduced modeling.

One of the concerning points of data-driven MOR techniques is collecting enough training data, as
computing the FOM to generate the training data is very time-consuming, especially when looking at
large 3D simulation models used productively in the industry. Therefore, collecting the training data
smartly becomes one of the focuses of the data-driven MOR techniques.

We orient our discussion by focusing on two aspects relevant to snapshot collection: data quality and
data quantity. The data quality could describemany aspects, for example, the distribution of the data and
the noise in the data. Unlike other applications, the data in the MOR field has fewer corruptions since it
is usually obtained directly from the FOM solver, and not, for example, from potentially noisy sensors.
Therefore, the main focus will be improving the training data distribution. There are some investiga-
tions (Batista et al., 2004; Gyori et al., 2022) discussing how the distribution of the data could influence
the ML process itself. However, this issue is less prevalent within MOR research. To minimize the
amount of training data, we employ the concept of active learning (AL). The concept of AL is widely
used in the world of intrusive MOR (Bui-Thanh et al., 2008; Haasdonk et al., 2011; Lappano et al.,
2016). However, the data-driven nonintrusive MOR technique faces extra challenges without intru-
siveness. One challenge is finding a good stopping criteria. The stopping criteria are usually needed to
validate the reduced order model (ROM) and compute the accuracy. However, currently, most
validation (Przekop et al., 2012; Perez et al., 2014) is test-case-dependent, which implies that the
general performance of the ROM cannot be evaluated without bias. To address this problem, a load-
independent metric is proposed for a particular mechanical problem in Kuether and Allen (2016). The
second difficulty is the absence of an error estimator, which can decide the data increment strategy. Such
an error estimator is available in an analytical form for the intrusive MOR methods but lacking in the
nonintrusive case.

In this article, we propose an alternative approach to tackle the problems mentioned above. To
improve the snapshot distribution, we propose a newmethod for sampling the training data, and we call
it joint space sampling (JSS).With this method, we collect the training data from a joint space consisting
of an estimated reduced solution space and a parameter space. Besides, we propose to use a validator
based on probably approximately correct (PAC) learning theory (Haussler, 1990) to decide when to stop
the AL iteration. The validated ROMs are useful for deploying in real industrial use cases where
complex time-dependent inputs can be expected. Furthermore, the error estimator to speed up the
convergence is constructed in a data-driven way. Among different existing approaches (Paul-Dubois-
Taine and Amsallem, 2015; Guo and Hesthaven, 2018; Xiao, 2019), we employ the Kriging interpol-
ation (Krige, 1951) introduced in Guo and Hesthaven (2018) as the error estimator to decide the data
increment strategy.

The whole article is structured as follows: in Section 2, MOR based onML is introduced. In Section 3,
the key components and thewholeworkflow of the newAL-basedMOR algorithm are described in detail.
Numerical tests used to validate this approach are presented in Section 4. Finally, the conclusions are
presented in Section 5.
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2. ML-Based MOR

The offline phase of ML-based MOR generally consists of two steps: constructing a low-dimensional
(reduced) space and identifying the ROM in the reduced space by ML-based approach. In the online
phase, the identifiedMLmodel will be used as a surrogate model to predict the evolution of the simulated
dynamic system at a real-time speed.

2.1. Reduced space construction

Without loss of generality, we can assume the FOM is governed by the equation:

_y tð Þ¼ f y ; μð Þ, (1)

where y∈ℝN is the state of the FOM andN is normally very large. f is the right-hand side (RHS) function
configured by the parameter vector μ¼ μ1 μ2 … μNm

� �
∈ℝNm .

The first step of generating a ROM is to construct the reduced space by finding a low-dimensional
space defined by a projection matrix V ∈ℝN�n, such that the reduced state yr ∈ℝn is given by projecting
FOM state y onto the reduced space

yr ¼VTy: (2)

2.1.1. Proper orthogonal decomposition
POD is a widely used method to construct the reduced space. Plenty of introductory literature for
PODmethod is available (e.g., Lu et al., 2019). Here we will just briefly introduce it. The main ingredient
of POD is a series of observations of the FOM states, which are usually called snapshots and take the
form of

Y ¼ y 1ð Þ y 2ð Þ … y Nsð Þ� �
, (3)

where Ns is the number of the available snapshots and y ið Þ is the ith column in the snapshot matrix Y .
Applying singular value decomposition (SVD) to Y yields

Y ¼VΣUT : (4)

The left singular vectorsV ∈ℝN�k can be used as the reduced space basis. This spacewill minimize the
L2 approximation error for the given snapshots. We can truncate V at its Nrth column. By doing this, the
size of the reduced space (Nr) can be chosen freely. A large space can retain more information in the
original full space, but it will make the ROM run slower during the online phase.

2.1.2. Conventional snapshot sampling
To increase the diversity of the observed FOM states in the snapshots, usually a hypercubic parameter
space is predefined as

M¼ μ1,min ,μ1,max

� �� μ2,min ,μ2,max

� ��…� μNm,min ,μNm,max

� �
, (5)

where μi,min and μi,max is the upper and the lower limit of the ith component of the system parameter vector
μ. The parameter vectors μwill be randomly selected fromM and different initial value problems (IVPs)
can be constructed based on them. In this case, FOM’s states under different input parameters can be
observed.

Next, we introduce two strategies for the sampling parameter values, static parameter sampling (SPS)
and dynamic parameter sampling (DPS), respectively. For SPS, to constructm IVPs,m parameter vectors
will be sampled from M. For the ith IVP, we have

_y tð Þ¼ f y ; μ ið Þ
� �

, (6)

where μ ið Þ is the ith parameter samples.
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With DPS, to construct m IVPs where each IVP has K time steps, mK parameter vectors will be
sampled from M. Here, in this article, we use Hammersley Low Discrepancy Set (Hammersley and
Handscomb, 1964) to take samples. For the ith IVP, we have

_y tð Þ¼ f y; μ ið Þ tð Þ
� �

, (7)

where

μ ið Þ tð Þ¼ Interp t0, μ i0ð Þ
� �

, t1, μ i1ð Þ
� �

,…, tK , μ iKð Þ
� �n o� �

: (8)

In equation (8), Interp �ð Þ represent a linear interpolation of the points tj,μ ijð Þ. Let δt be the time step size,
ti ¼ t0þ iδt. As we can see that DPS is K times more efficient in exploring the parameter space M,
which will make the constructed ROM perform better facing complex input parameters in its online
phase.

2.1.2.1. Example. Here, we use an example to show the sample distributions of the SPS and DPS
methods, respectively. We consider an IVP,

_y¼ k tð Þyþ ea tð Þ, (9)

where t∈ 0,1ð Þ. k tð Þ and a tð Þ are two input parameters of the system, and they are time-dependent. Their
ranges are 0:1,1½ � and 1,2½ �, respectively. We first use Hammersley Low Discrepancy Set to take samples
in the parameter space M. Then, we use the SPS and DPS methods to create the IVPs. By solving the
IVPs, we obtain the solution snapshots. For each IVP, we collect 50 snapshots evenly on the time grid.

In Figures 1 and 2, we show the sample distributions in the parameter space and the solution space for
the SPS and the DPS method, respectively. As observed, we can have a good sample distribution in the
solution space with the SPS method. However, we have much fewer samples in the parameter space. In
contrast, much more samples are taken in the parameter space with the DPS method. Nevertheless, the
diversity of the sample system state is not optimal.

Through this toy example, we can see the advantage and disadvantage of the conventional sampling
approaches for MOR. Later in this contribution, we propose a new sampling approach to ensure good
sample distribution/diversity in both the parameter space and the solution space.

(a) SPS. (b) DPS.

Figure 1. The sample distribution in the parameter space M.
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2.2. ROM identification

As introduced, the second step of ML-based MOR is model identification, which means finding the
governing equation in the reduced space. The reduced governing equations are expected to have the form

_yr tð Þ¼ f r yr; μð Þ, (10)

where f r is the low-dimensional representation of f .
Differentmethods can be used to achieve this. In this article, artificial neural network (ANN) andOpInf

will be briefly introduced.

2.2.1. Artificial neural network
TheROMwe employ in this article is a dynamicmodel evolving on a discrete-time grid from t0 to tend with
time step δt:

yr,iþ1� yr,i
δt

¼ g yr,i,μi
� �

, (11)

where yr,i means yr t¼ tið Þ, and g �ð Þ is the approximation to the unknown reduced RHS f r �ð Þ.
To learn the mapping between states of two consecutive time steps, a multilayer perceptron (MLP) is

used as g �ð Þ in equation (11). In this case, the inputs to the neural network are the current state of the system
yr,i and μi, and the predicted reduced state byr,iþ1 is calculated asbyr,iþ1 ¼ yr,iþδtgee yr,i,μi

� �
: (12)

This is similar to an Explicit Euler integrator, so we denote the MLP’s function as gee yr,i,μi
� �

. We call
such a network explicit Euler neural network (EENN) (Pan and Duraisamy, 2018; Regazzoni et al., 2019;
Zhuang et al., 2021). From equation (12), we know that an EENN is essentially a variant of residual
network (He et al., 2016) which learns the increment between two system states instead of learning tomap
the new state directly from the old state. This leads to a potential advantage of EENNs that we can use the
deeper network for approximating more complex nonlinearity without suffering too much from network
degeneration.

The algorithm for training such an EENN is provided in Algorithm 1. In this contribution, all MLPs
consist of one input layer, two hidden layers, and one output layer. The activation function between each
two consecutive layers is rectified linear unit (ReLU) function (Glorot et al., 2011). We use Pytorch
(Paszke et al., 2017) as the platform to build and train the networks. The learning rate decay and Early
Stopping (Prechelt, 1998) are applied to facilitate the training.

(b) DPS.(a) SPS.

Figure 2. The sample distribution in the solution space.
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Algorithm 1. Training of EENN

Require: yr,i,μi,yr,iþ1
1: while loss> losstol do
2: byr,iþ1 ¼ yr,iþδtgee yr,i,μi

� �
3: loss¼MSE byr,iþ1,yr,iþ1

� �
4: Use backpropagation to update the weights and biases of the network gee
5: end while

2.2.2. Operator inference
Besides the purely data-driven ROM identification method introduced in Section 2.2.1, we briefly
introduce a physics-informed ROM identification method, OpInf (Peherstorfer and Willcox, 2016).

The OpInf method uses a hypothetical form for the ROM’s governing equation:

_yr ¼F1yrþFBμþFC þF2yr ⊗ yrþFNμ⊗ yr, (13)

where F1,F2,FB,FC and FN are operators to be inferred. The operation ⊗ is the Kronecker product:

yr ⊗ yr ¼

y 1ð Þ
r

y 2ð Þ
r

⋮
y Nrð Þ
r

266664
377775⊗

y 1ð Þ
r

y 2ð Þ
r

⋮
y Nrð Þ
r

266664
377775¼

y 1ð Þ
r y 1ð Þ

r

y 1ð Þ
r y 2ð Þ

r

⋮
y 1ð Þ
r y Nrð Þ

r

y 2ð Þ
r y 2ð Þ

r

y 2ð Þ
r y 3ð Þ

r

⋮
y Nrð Þ
r y Nrð Þ

r

2666666666666664

3777777777777775
: (14)

As we see, OpInf assumes a quadratic dependency of RHS on the system state. OpInf can also be
applied to systems that are not quadratic, as long as they can be mapped to a quadratic form through
variable transformations (see Qian et al., 2020).

To infer the unknown operators, we first construct the matrices

Y r,in ¼ yr,0 yr,1 … yr,K�1

� �
,

Y r,out ¼ yr,1 yr,2 … yr,K
� �

,

U in ¼ μ1 μ2 … μK½ �,
(15)

where K is the number of time steps. Using the matrices and the assumed RHS, we can construct a least
square problem,

argmin
O

∥DO�R∥2, (16)

where

R¼YT
r,out�Y T

r,in

δt
,

D¼ YT
r,in UT

in I Y r,in ⊗Y r,inð ÞT U in ⊗Y r,inð ÞT
h i

:

(17)

By solving the least square problem (equation (16)), we get the matrixO. We can unpack the matrixO as

O¼ FT
1 FT

B FT
C FT

2 FT
N

� �
: (18)
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In practice, we solve the least square problem with regularization to produce a stable ROM, and for
more details see McQuarrie et al. (2021).

3. AL for ML-Based MOR

As introduced in Section 2.1.2, for the conventional ML-basedMOR approaches, snapshots are collected
up-front. This could cause the problem that not all important information is captured in the prepared
snapshots that are used to construct the ROM. We propose a solution based on the concept of the pool-
based AL (Settles, 2009). The solution mainly contains the following steps: (a) we first use the JSS
method to prepare a large data pool containing diverse joint samples, (b) the current ROM is validated, and
the validation result is used to select the samples that are considered most valuable for the current ROM,
(c) new training data are generated by the FOM and added to the current training data, and (d) the ROM is
updated. The corresponding steps in the whole workflow are sketched in Figure 3.

3.1. Joint space sampling

In this section, we will introduce the new sampling method JSS. The proposed method will be used to
create the data pool and the validation samples, which are necessary preparation for the AL algorithm.

3.1.1. Estimating the reduced solution space
In order to take the joint samples, we need first to estimate a reduced solution space. With the predefined
parameter space M, the boundaries of the reduced solution space will be estimated as follows:

1. Use SPS to create m IVPs for the FOM. In this article, Hammersley Set (Hammersley and
Handscomb, 1964) is used to take samples in the parameter space. Each IVP is integrated from
time t0 to time tend with K time steps.

2. Solving all the FOM problems will produce a snapshot matrix Y estimate ¼ y 1ð Þ y 2ð Þ … y m�Kð Þ� �
containing m�K FOM state vectors.

3. Apply POD on Y estimate to construct the reduced space.

Figure 3. The workflow of the AL-based MOR.
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4. Project Y estimate onto the reduced space to get its low-dimensional representation:

Y r,estimate ¼VTY estimate: (19)

5. Find the minimum and the maximum entries for each POD component in Y estimate and denote
them as:

y 1ð Þ
r,min ,y

1ð Þ
r,max ,y

2ð Þ
r,min ,y

2ð Þ
r,max ,…,y Nrð Þ

r,min ,y
Nrð Þ
r,max

n o
, (20)

where Nr is the size of the ROM.

6. The estimated space Y is:

Y¼ y 1ð Þ
r,min ,y

1ð Þ
r,max

h i
� y 2ð Þ

r,min ,y
2ð Þ
r,max

h i
�…� y Nrð Þ

r,min ,y
Nrð Þ
r,max

h i
: (21)

In the workflow, m can be selected as any positive integer. Since the reduced basis V computed in the
step will be used as the initial reduced basis later, the greater m is, the better the initial reduced basis will
be. As explained in Section 2.1.2, we can have a relatively good observation in the solution space with the
SPS method. Therefore, we use the SPS-sampled state to estimate the reduced solution space. Besides,
one can also use minimal intrusiveness to the full-order problem to improve the estimate. Specifically, the
parameter configurations that most likely drive the system to its extreme status (boundaries of the solution
space) can be included in the samples.

A joint sample J sample taken from the joint space J ¼Y�M has the form of J sample ¼
yr,sample μsample

� �
. We can use J , V and the FOM solver to perform a one-step simulation whose initial

condition is yr,sample and step size is δt. The simulation result will form a one-step trajectory in Y. We can
use such joint samples to prepare the data pool and the validation samples needed for the AL algorithm.

3.1.2. Loosen and trim the estimated solution space
The joint space J as created in Section 3.1 is a hyper-cubic space (see example in Figure 4a). We will
loosen and trim Y to make it closer to the true reduced solution space. The first step is loosening. For this
purpose, we introduce an expansion ratio β:

Δy ið Þ
r ¼ y ið Þ

r,max � y ið Þ
r,min ,

y^ ið Þ
r,min ¼ y ið Þ

r,min �βΔy ið Þ
r ,

y^
ið Þ
r,max ¼ y ið Þ

r,max þβΔy ið Þ
r :

(22)

We use y^
ið Þ
r,min and y^

ið Þ
r,max as the lower and upper limits for the loosened space Y

^

. In our practice,
β∈ 0,1ð Þ can be selected to loosen the initial estimation. To trim the space, we apply two conditions to a
reduced state yr sampled from Y

^

:

MAX Vyrð Þ< ymax,

MIN Vyrð Þ> ymin,
(23)

whereMAX �ð Þ andMIN �ð Þ means the maximum and minimum entry of a vector/matrix. The value ymin

and ymax can be either defined by empirical values of the physics quantity y or by MAX Y estimateð Þ and
MIN Y estimateð Þ. In this article, MAX Y estimateð Þ and MIN Y estimateð Þ is used. We here denote the final
feasible sampling space for reduced states as Y∗, and the final joint space as J ∗ ¼Y∗�M. A graphical
example for joint space J ∗ is given in Figure 4b.

Finally, we summarize how to collect Ns samples with the proposed JSS method in Algorithm 2.
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Algorithm 2. Generation of a set of random joint samples

Require: M,Ns,m, FOM
1: Create a sample set M¼ μ1,μ2,…,μmf g in M
2: Perform SPS with m parameter samples and FOM to get Y estimate

3: Apply POD to Y estimate to get V and X estimate

4: Find the upper and lower limits for each POD component
5: Create hyper-cubic solution space J
6: Loosen the space J to get J

^

7: Determine ymax and ymin

8: i¼ 0,I ¼ ½�
9: while i<Ns do
10: Generate a random sample yr,sample in Y

^

11: if MAX Vyr,sample

� �
< ymax and MIN Vyr,sample

� �
> ymin then

12: Generate a random sample μsample in M

J sample ¼
μsample

yr,sample

" #
I ¼ I [J sample

iþþ
13: end if
14: end while
15: return I

Figure 4. The evolution of the joint space.
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3.2. ROM validation

Finding adequate metrics to validate a ROM is challenging. When the training and test data sets are
collected up front, the ROM could be biased toward the data set and lead to a lack of generalization for the
model. To make our data-driven ROM more reliable, we must design a more generalized validating
procedure.

3.2.1. Accuracy
Here, we define the relative error of the ROM in a one-step prediction as e:

e¼ y�byk k
yk k : (24)

We furthermore define ROM error as e. However, the ROM is very likely to be used for a long-term
prediction and such a one-step accuracy still cannot reflect the performance of the ROM. Therefore, we
will introduce the confidence of the ROM.

3.2.2. Confidence
If the ROM error is τ at confidence level η, we can construct such an inequality:

Pr e≤ τð Þ> η, (25)

that is, the probability that the error e smaller than τ is greater than η, where η and τ is a pair of confidence
and accuracy indicator that we are seeking.

Weassumewe have s independent tests in the validator. Thenwe can calculate the observed confidence
p τ∗ð Þ of a given ROM error τ∗ using:

p τ∗ð Þ¼ 1
s

Xs

i¼1

L ei ≤ τ∗ð Þ,

L ei ≤ τ∗ð Þ¼
1 ei ≤ τ∗

0 ei > τ∗

(
:

(26)

However, we can only include a limited number of independent tests into the validator. Thismeans, with a
given τ∗, the p τ∗ð Þ computed from the validator should also have deviation ϵ and its corresponding
confidence 1�σ from the true confidence bp τ∗ð Þ. Thus, we obtain another inequality:

Pr jp τ∗ð Þ�bp τ∗ð Þj< ϵð Þ> 1�σ, (27)

where bp τ∗ð Þ is the true confidence. If we predefine the deviation ϵ and the confidence 1�σ of the
validator, the smallest number of the independent tests needed by the validator can be computed using
Chernoff’s inequality (Alippi, 2016):

s≥ sPAC ¼ 1
2ϵ2

ln
2
σ

� 	
: (28)

Let τ∗ be the smallest τ∗ satisfying:

p τ∗ð Þ¼ 1: (29)

Since Inequality 27 holds for all τ∗, it also holds for τ∗:

Pr j1�bp τ∗ð Þj< ϵð Þ> 1�σ: (30)

That is the inequality:

∣1�bp τ∗ð Þ∣< ϵ (31)

holds with the probability 1�σ. We further get:
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1� ϵ<bp τ∗ð Þ< 1 (32)

holds with probability 1�σ.
Finally, the ROM error τ and its corresponding confidence η are therefore τ∗ and 1� ϵ, respectively.

Since Inequality 32 holds with probability 1�σ and SPAC is negatively correlative to σ, we know that the
more test samples we have, the more reliable the computed true confidence will be.

We denote such a validator as:

p τ∗ð Þ¼ PAC τ∗;ROMð Þ: (33)

We can predefine a variable τ∗design and compute p τ∗design

� �
in iterations for convergence check.

3.3. Error estimator

The ROMwill go through all tests in the validator constructed as described in Section 3.2. We denote the
ROM error snapshots as:

e¼ e 1ð Þ e 2ð Þ … e sð Þ� �
, (34)

where e ið Þ is e computed in the ith test. We assume there is a function:

e ið Þ ¼E J ið Þ
� �

: (35)

Such a function can be used as the error estimator to estimate the ROMerror with a new input J∗ which
is excluded from the test inputs I ¼ J 1ð Þ,J 2ð Þ, ::,J sð Þ
 �

. Here, we use GPR (Williams and Rasmussen,
1996) for interpolation, and the input of the interpolator is the joint input J of the ROM and the output is
the estimated error. In our problem, our training dataset is the test data in the PAC validator:

D¼ I ,eð Þ¼ J ið Þ,e ið Þ
� �

ji¼ 1,2,…,s
n o

: (36)

According to the theory of GPR, the predicted ROM error be∗ for the new joint input J∗ is:

be∗ ¼K J∗,Ið ÞK I ,Ið Þ�1e, (37)

where K is a covariance matrix whose entries can be computed by a preselected covariance function
κ J∗,J ið Þ. Here we use radial-basis function (RBF), which is also called squared-exponential function or
Gaussian kernel and is one of the most popular choices for the covariance function:

κ J∗,J ið Þ
� �

¼ σ2 exp � 1

2l2
J∗�J ið Þ�� ��2� 	

, (38)

where the amplitude σ and the lengthscale l are the hyperparameters which can be tuned. RBF is
appropriate when the simulated function is expected to be smooth.

Besides GPR, other interpolators or approximators, such as Spline Interpolation (Habermann and
Kindermann, 2007), Radial-basis-function Interpolation (Broomhead and Lowe, 1988), and ANN can be
used to construct the estimator.

3.4. AL algorithm

Until now, the necessary theory and components of the AL algorithm have been fully introduced. In this
section, we summarize the workflow algorithmically.

First, we need to prepare the initial data pool Iall, the PAC validator containing IPAC and OPAC using
Algorithm 2 and the FOM. With the data pool and the PAC validator on hands, the AL algorithm can be
designed as Algorithm 3. Besides the algorithm, the flow chart of the proposed workflow is given in
Figure 5.
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Algorithm 3. AL for the ROM

Require: Y estimate, V , τ∗design, Δτ
∗
tol, Iall, PAC τ∗,ROMð Þ, IPAC, OPAC

1: Define the snapshot increment Δs
2: Randomly select Δs samples from Iall as the initial training input samples I train and generate the

training output samples Otrain using the FOM solver
3: Train the ROM using I train, Otrain and V

4: p τ∗design

� �
¼ PAC τ∗design;ROM

� �
and τ∗old ¼ τ∗

5: Compute the error snapshots e using OPAC

6: while p τ∗design

� �
< 1 do

7: Fit the GPR estimator E using e and IPAC
8: Evaluate E on Iall∖I train, denote the estimation as epool
9: Find Δs largest ei and their corresponding input samples ΔI ¼ J 1ð Þ

max,J
2ð Þ
max,…,J Δsð Þ

max


 �
10: I train ¼ I train[ΔI
11: Update Otrain using the enriched I train and the FOM
12: Update V using Y estimate[Otrain

13: Train the ROM using I train, Otrain and V

14: p τ∗design

� �
¼PAC τ∗design;ROM

� �
and compute τ∗

15: Update the error snapshots e
16: τ∗old ¼ τ∗

17: if ∣τ∗� τ∗old∣<Δτ∗tol then
18: Break
19: end if
20: end while

(a) Preparation. (b) Iteration.

Figure 5. The flow charts of the preparation and iteration phase of the AL-based MOR. The line numbers
in (b) match those in Algorithm 3.
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Regarding Algorithm 3, we would like to clarify that the snapshots in Y estimate are not used for the
model identification step, only for the construction of the initial projection matrix V . The neural network
is therefore trained exclusively with one-step trajectories. We notice that the inclusion of Y estimate does not
improve the ROM’s quality but considerably increases the training time for the neural network.

As seen in the algorithm, the reduced basis V is recomputed during the iterations. In principle, this
should influence the estimate of the reduced solution space and require rebuilding the PACvalidator using
the FOM solver. However, in practice, the initial basis V produced by Y estimate should already have a
relatively low projection error. The refined reduced basis only slightly changes the boundary of the
reduced solution space. We can still use Y as the space for sampling the reduced state.

In Algorithm 3, we see another convergence check ∣τ∗� τ∗old∣<Δτ∗tol besides p τ∗design

� �
. Additionally,

we check the improvement for the best ROM accuracy between two iterations. If the difference between
them is already smaller than the predefined value, the algorithm will be considered to be in a low-
efficiency status and should be stopped. Since there aremany factors influencing the ROMaccuracy other
than the amount of training data, for example, ROM structure, ROMdimension, and the way of collecting
training data, other possible modification should be considered and adopted to improve the ROM
accuracy.

4. Numerical Examples

In this section, three numerical models will be used to evaluate the performance of the proposed algorithm
against the conventional ML-based MOR. We integrate ANN-MOR and OpInf-MOR into the proposed
method. The gained improvement is shown respectively. In the rest of the article, we use the following
notation:

• ML-ROM: the ROM is constructed in the conventional workflow of ML-based MOR. The training
data are collected by the DPS method, and the ROM is constructed by either POD þ ANN or
POD þ OpInf.

• AL-ROM: the ROM is constructed by the proposed AL algorithm inAlgorithm 3, where a large data
pool is firstly prepared by the JSSmethod, then the algorithm selectively generates the training data.
The ROM is constructed by either POD þ ANN or POD þ OpInf.

4.1. 2-D linear thermal block

The governing equation of the test system is:

∂T x,y, tð Þ
∂t

¼ kx
∂
2T x,y, tð Þ
∂x2

þ ky
∂
2T x,y, tð Þ
∂y2

,

T 0,y, tð Þ¼T left, T 10,y, tð Þ¼ T right,

T x,�10, tð Þ¼ Tdown, T x,10, tð Þ¼Tup,

T x,y,0ð Þ¼ 20,

(39)

where x∈ 0,10ð Þ,y∈ �10,0ð Þ, t∈ 0,2ð � and the static parameters are given by kx ¼ ky ¼ 1. The control-
lable parameters T left,T right,Tdown and Tup (oC) have all the same feasible range 20,1,000½ �. Thus, for this
problemM¼ 20,1,000½ �� 20,1,000½ �� 20,1,000½ �� 20,1,000½ �. The full-order model is discretized by
the finite difference method. The square region is divided into 50�50¼ 2,500 cells. We consider
100-time steps uniformly distributed.

For the AL algorithm, we first need to estimate the reduced solution space. Thus, m¼ 20 samples are
taken from M. The 20 constant-input IVPs are constructed with the sampled parameters. Y estimate has
totally 2,020 state vectors. The initial reduced space is constructed by 20 POD basis using Y estimate. The
low-dimensional projection of those state vectors is then used to perform the space estimate. After
estimating, loosening with β¼ 10% and trimming, we create the joint space J ∗ ¼Y∗�M and use
random sampling to get 40,000 joint samples for Iall.
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We define ε¼ 3% and σ¼ 1% for the validation step. Based on equation (28), we know 2,944 samples
are needed by the PAC validator. The confidence level that will be investigated is ηdesign ¼ 97%. We pick
τ∗design ¼ 1% and Δτ∗tol ¼ 0:01%. In conclusion, we are looking for a ROM whose 97%-confident ROM
error is 1%.

4.1.1. AL for ANN-ROM
In this section, we present the investigation for enhancing the ANN-MOR with our methods. The ROM
has an architecture of EENN, whose MLP has [24, 80, 80, 20] neurons.

As seen in Table 1, the AL algorithm does not converge to the prescribed accuracy after 10 iterations.
However, it meets the other stopping criteria Δτ∗tol ≤ 0:01%. As we described before, when Δτ∗tol ≤ 0:01%,
we consider that continuing the iteration will not refine the ROM efficiently.

For the conventional workflow, we use DPS to create 50 IVPs, and they produce 50 solution
trajectories. A total of 101 outputs from each IVP can build 100 input–output samples, therefore, we
totally have 5,000 training samples. To construct the POD space, besides the sampled 5,000 snapshots, we
also include Y estimate.

Once the ROMs are built, we use another PAC validator to compute the 97%-confident ROM error of
the AL-ROM and ML-ROM. The results are given in Table 2.

It is observed that with the same amount of training samples, the two performance indicators τ∗ and

p τ∗design

� �
of the conventional MLROM are both much worse than the ROM trained in the AL algorithm.

Based on the PAC theory, the ROM constructed with the conventional approach is not expected to have a
better performance than the AL-ROM.

To further validate the ROMs, we designed two additional test cases. In Test 1, four boundary
temperatures are described by four different time-dependent functions, respectively. The function curves
are given in Figure 6. We pick four different elements as the observation positions. In Figure 7a,b, we
present the predicted trajectories by the compared ROMs. In the trajectory figures, it is observed that both
ROMs’ predictions are very close to the reference. In Figure 8, we show the error fields at the final time

Table 1. PAC scores in the AL algorithm.

Iteration Number of samples τ∗ (%) p τ∗design

� �
(%)

1 500 5.30 6.05
2 1,000 4.40 42.63
3 1,500 3.00 88.04
4 2,000 2.50 95.35
5 2,500 2.40 95.79
6 3,000 2.53 96.06
7 3,500 2.20 96.50
8 4,000 1.87 96.67
9 4,500 1.83 96.77
10 5,000 1.83 96.64

Note. The ROM is constructed with POD þ ANN.

Table 2. 97%-confident ROM error (τ∗) by another PAC validator.

Number of samples AL-ROM ML-ROM

5,000 1.83% 8.97%

Note. The ROMs are constructed with POD þ ANN.
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step. To compute the error field, we first lift the reduced solution to the full space usingV and calculate the
absolute error between the lifted solution and the FOM solution. We can see that the AL-ROM’s error is
lower overall than ML-ROM’s.

In Test 2, the four boundary temperatures are assigned with the same constant value
T left ¼ T right ¼Tdown ¼ Tup ¼ 1,000oC. The trajectories are presented in Figure 9a,b. The error fields
are shown in Figure 10. In Test 2, it is observed that the trajectories predicted by the conventional ML
ROM have a large difference from the reference, while the AL-ROM’s prediction still matches the
reference. If we check the error fields at the last time step, the AL-ROM’s advantage is even more
remarkable. Here a possible reason can be explained in Figure 11.

In Figure 11, we present the time evolution of the first POD coefficient of yr. We create an IVPwith the
maximum inputs T left ¼T right ¼ Tdown ¼ Tup ¼ 1,000. Similarly, another trajectory is produced with
minimal input parameters T left ¼T right ¼Tdown ¼ Tup ¼ 20. These trajectories are marked with green
solid lines in Figure 11. These two trajectories are called “extreme trajectories.” Since our full-order

Figure 6. Time-dependent inputs to the 2-D thermal problem for Test 1.

(a) AL-ROM. (b) ML-ROM.

Figure 7. Linear thermal block: the FOM and ROM solution in Test 1. The ROM is constructed with
POD þ ANN.
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problem is continuous, it is reasonable to assume that any trajectory produced by any parameter
combination inM should be between these two green boundaries. Thenwe pick a parameter combination
510,510,510,510½ �, which can be considered as the barycenter of M, and the corresponding red-dashed
trajectory is called “barycentric trajectory.” Additionally, we plot the trajectories of the DPS-samples in
light blue color. It is observed that these trajectories form a thin band whose center is approximately the
barycentric trajectory. This means that assigning randomized parameter combinations to the IVP does not
produce a wide distribution of the solution trajectory. A result of this narrow distribution is that the ROM
will perform badly beyond the barycentric trajectory. This is reflected in Test 2. In the AL workflow,
different yr are randomly sampled in the estimated space Y∗ and used as the initial states for the one-step
snapshots. This distributes the training samples in a wider region in the reduced solution space, and the
ROM trained by such a dataset should also be more reliable.

4.1.2. AL for OpInf
In this section, we perform the same tests as in Section 4.1.1, except that we use OpInf instead of ANN.
The convergence of the AL algorithm is shown in Table 3. The algorithm uses 150 training samples for

Figure 8. Comparison between two ROMs’ error (absolute) fields at t¼ 2s in Test 1. Left: AL. Right:
ML. The ROMs are constructed with POD þ ANN.

(a) AL-ROM. (b) ML-ROM.

Figure 9. Linear thermal block: the FOM and ROM solution in Test 2. The ROMs are constructed with
POD þ ANN.
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convergence, which is remarkably fewer than those needed for constructing the ANN-ROM. Besides,
according to Table 4, the OpInf-ROM constructed using DPS-sampled data also has a confident ROM
error that is very close to the OpInf-ROM built by the AL algorithm.

We show the same trajectory comparison for the OpInf-ROM. In Figures 12a,b and 14a,b, we can see
that both ROMs have similar performance, even for Test 2where themaximal input parameters are used in

Figure 10. Comparison between two ROMs’ error (absolute) fields at t¼ 2s in Test 2. Left: AL. Right:
ML. The ROMs are constructed with POD þ ANN.

Figure 11. The trajectories of the first POD coefficient formed by: random-input samples (blue), extreme-
input samples (green), and mean-input samples (dashed red). Here the extreme inputs are

1,000,1,000,1,000,1,000½ � for the upper green curve and 20,20,20,20½ � for the lower green curve. The
mean input is 510,510,510,510½ �.

Table 3. PAC scores in the AL algorithm.

Iteration Number of samples τ∗ (%) p τ∗design

� �
(%)

1 25 24.41 0.03
2 50 17.87 0.10
3 75 9.54 4.14
4 100 5.04 37.26
5 125 1.83 94.26
6 150 1.83 96.20

Note. The ROM is constructed with POD þ OpInf.
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the online prediction. In the error fields presented in Figures 13 and 15, it is observed that the overall
accuracy of the OpInf-ROM constructed by the AL algorithm is still better. But the performance of the
OpInf-ROM constructed by the conventional approach is remarkably improved compared to the ANN-
ROM, especially while predicting with the maximal parameters.

Through this experiment, we draw two conclusions. The first conclusion is that no matter with what
kind of training data, building an OpInf-ROM with the same confident ROM error requires less training
data compared to building an ANN-ROM. The second conclusion is that the OpInf-ROMs constructed in
both ways (the proposed AL algorithm and the conventional approach) have similar qualities. This can be
confirmed by both case-independent and case-dependent validation.

These conclusions match OpInf’s feature of being physics-informed. While designing the archi-
tecture of the OpInf model, we have a hypothetical form for the governing differential equation of the
FOM. By employing the hypothetical form, we reduce the flexibility of the ROM, which enables us to
use fewer data to fit the ROM. Besides, the physics information restricts the extrapolated prediction,
which is why even using the DPS-sampled data, the OpInf-ROM can still have good accuracy in
Test 2.

4.2. Nonlinear RC ladder

The second test model is a nonlinear RC circuit model. This benchmark model is provided by The
MORwiki Community (2018). It’s different variants are widely used to test MOR methods, such as in
Chen (1999), Rewienski (2003), Gu (2011), and Kawano and Scherpen (2019). To obtain the MATLAB
code, readers should refer to Model 1 in The MORwiki Community (2018).

Table 4. 97%-confident ROM error (τ∗) by another PAC validator.

Number of samples AL-ROM ML-ROM

150 1.83% 2.37%

Note. The ROMs are constructed with POD þ OpInf.

(a) AL-ROM. (b) ML-ROM.

Figure 12. Linear thermal block: the FOM and ROM solution in Test 1. The ROMs are constructed with
POD þ OpInf.
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Figure 13. Comparison between two ROMs’ error (absolute) fields at t¼ 2s in Test 1. Left: AL. Right:
ML. The ROMs are constructed with POD þ OpInf.

(a) AL-ROM (b) ML-ROM

Figure 14. The FOM and ROM solution in Test 2. The ROMs are constructed with POD þ OpInf.

Figure 15. Comparison between two ROMs’ error (absolute) fields at t¼ 2s in Test 2. Left: AL. Right:
ML. The ROMs are constructed with POD þ OpInf.
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The governing equation is the same as equation (32) in Regazzoni et al. (2019):

_v1 tð Þ¼�2v1 tð Þþ v2 tð Þþ2� e40v1 tð Þ � e40 v1 tð Þ�v2 tð Þð Þ þu tð Þ
_vi tð Þ¼�2vi tð Þþ vi�1 tð Þþ viþ1 tð Þþ2þ e40 vi�1 tð Þ�vi tð Þð Þ � e40 vi tð Þ�viþ1 tð Þð Þ, for i¼ 2,3,…,N�1

_vN tð Þ¼�vN tð ÞþvN�1 tð Þ�1þ e40 vN�1 tð Þ�vN tð Þð Þ:

0B@ (40)

We assume there are N¼ 128 resistors in the circuit. Therefore, the size of the FOM is 128. The range
of the input signal u tð Þ isM¼ 0,1½ �. To prepare the training data, the system is integrate in the time span
t∈ 0,1ð � with forward Euler method, where the time step δt¼ 2E�3.

We create 5 IVPs with the SPS method to generate Y estimate and use Y estimate to create the initial POD
space with Nr ¼ 15. While using the JSS method to prepare the data pool Iall, we use β¼ 0%. There are
20,000 joint samples in Iall.

We define ϵ¼ 3% and σ¼ 1% and 2,944 additional samples are collected for the PAC validator. The
investigated confidence level is ηdesign ¼ 97%.

4.2.1. AL for ANN
For both ANN-based ROMs, we use anMLPwith [16, 64, 64, 15] neurons. The AL-ROM’s convergence
is presented in Table 5. The AL algorithm converges while 700 training samples are used. According to
the PAC scores in Table 6, the 97%-confident ROM error of the AL-ROM is 1:00%. The 97%-confident
ROM error of the ML-ROM is 3:07%, which is lower than the AL-ROM. This result tells us that the
AL-ROM is assessed to be generally more accurate.

Then we test the ROMs with a specific test case. In the first test case, the input signal of the system is
μ tð Þ¼ 0:5 cos 2πtð Þþ1ð Þ, which is the same as the test input used in Regazzoni et al. (2019). We monitor
the variable v0 tð Þ of the system and present the comparison between the FOM and ROM solution in
Figure 16.

4.2.2. AL for OpInf
The AL-ROM’s convergence is presented in Table 7. The AL algorithm converges while 50 training
samples are used, which is much fewer than required by the ROM constructed with POD þ ANN. In
Table 8, the 97%-confident ROM error of the AL-ROM and ML-ROM is 0:50 and 2:07%, respectively.
Based on the results, we expect the AL-ROM to perform generally better than the ML-ROM.

Table 5. PAC scores in the AL algorithm.

Iteration Number of samples τ∗ (%) p τ∗design

� �
(%)

1 100 6.07 93.48
2 200 2.83 97.93
3 300 2.80 98.37
4 400 1.43 99.93
5 500 1.13 99.97
6 600 1.10 99.97
7 700 1.00 100.00

Note. The ROM is constructed with POD þ ANN. τ∗design ¼ 1%:

Table 6. 97%-confident ROM error (τ∗) by another PAC validator.

Number of samples AL-ROM ML-ROM

700 1.00% 3.07%

Note. The ROMs are constructed with POD þ ANN.
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The same test case is used to further validate the ROMs. The corresponding results are presented in
Figure 17. A similar comparison between the AL-ROM and ML-ROM is observed. In the test case, the
OpInf-ROM constructed by the AL algorithm has almost the same transient response as the FOM.

Through this numerical model, we see similar results to the linear model. To be specific, both types of
the ROMs are benefited from the AL algorithm. Between them, the ANN-MOR method obtains more
significant improvement as a purely data-driven method. The performance of the OpInf-ROM is also
improved, but the difference is not as remarkable as the ANN-ROM.

4.3. 3-D vacuum furnace model

In Figure 18a, we present the 3-D simulation model of a vacuum radiation furnace (Hao et al., 2008). The
model was created and simulated using NX Simcenter 3D. The original FEMmodel has 20,209 elements.
The dark gray part represents the outer case of the furnace. The red parts are heaters, for which there are six
in total. The blue component between the heaters and the case is the protecting shell. The cubic area at the
center is the workzone where material can be placed. Since the internal space of the furnace is a vacuum,

(a) AL-ROM. (b) ML-ROM.

Figure 16. Nonlinear RC ladder: the FOM and ROM solution in the test case, where
μ tð Þ¼ 0:5 cos 2πtð Þþ1ð Þ. The ROMs are constructed with POD þ ANN.

Table 7. PAC scores in the AL algorithm.

Iteration Number of samples τ∗ (%) p τ∗design

� �
(%)

1 10 5.40 48.17
2 20 3.33 73.61
3 30 0.87 99.46
4 40 0.60 99.97
5 50 0.50 100.00

Note. The ROM is constructed with POD þ OpInf. τ∗design ¼ 0:5%.

Table 8. 97%-confident ROM error (τ∗) by another PAC validator.

Number of samples AL-ROM ML-ROM

50 0.50% 2.07%

Note. The ROMs are constructed with POD þ OpInf.
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during the industrial process, the material placed in the furnace will only be heated up by the thermal
radiation from the heaters. The discrete governing equation of the system can be written as:

E
∂T
∂t

¼KTþAcv αð ÞTþRT4þBu, (41)

whereE is the thermal capacity matrix,K is the thermal conductivity matrix,Acv αð Þ is the heat convection
matrix and α is the convection coefficient, R is the radiation matrix, and B is the parameter-distribution
matrix. The state (temperature) vector of this system is T ∈ℝN where N ¼ 20,209. We consider there are
seven controllable parameters in the system: six heating power of the heaters (kW=m3) and the convection
coefficient (Wm�2K�1) of the outer surface of the case, which are stored in the parameter vector u.
Therefore, we have the vector u∈ℝNu with Nu ¼ 7. The parameter space is predefined to be:

M¼ 0,104
� �� 0,104

� �� 0,104
� �� 0,104

� �
� 0,104
� �� 0,104

� �� 5,100½ �: (42)

(a) AL-ROM. (b) ML-ROM.

Figure 17. Nonlinear RC ladder: the FOM and ROM solution in test case. The ROMs are constructed
with POD þ OpInf.

(a) The cross-section of the 3-D simulation

model of the vacuum radiation furnace.

(b) The failure case of the vacuum furnace model.

Figure 18. The vacuum furnace model.
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Based on physical consideration, the time grid is from 0 to 45,000 s with 450 time steps.
For the AL algorithm, m¼ 20 samples are taken from M to estimate the boundaries of Y. We also

include two special parameter configurations:

μTmin
¼ 0,0,0,0,0,0,100½ �,

μTmin
¼ 104,104,104,104,104,104,5
� �

:
(43)

The initial reduced space is constructed by Nr ¼ 22 POD basis. Then we create the joint space
J ∗ ¼Y∗�M, where β¼ 10% is used for loosening. We use random sampling to get 40,000 joint
samples for Iall. We define ϵ¼ 3% and σ¼ 1% and 2,944 additional samples are collected for the PAC
validator. The investigated confidence level is ηdesign ¼ 97%. We pick τ∗design ¼ 1% and Δτ∗tol ¼ 0:01%. In
conclusion, we are looking for a ROM whose 97%-confident ROM error is 1%.

4.3.1. AL for ANN
The AL-ROM’s convergence is presented in Table 9. We construct ROMs with our method (AL) and the
conventional method (ML) with the same number of training samples (20,000). The ROM errors are
1:00% (AL) and 13:07% (ML) at the investigated confidence level (97%). Both ROMs have anMLPwith
[29, 80, 80, 22] neurons (Table 10).

Two test scenarios are employed to show the ROMs’ performance in relatively realistic conditions. In
the first test, all heaters are working with a 3-stage heating profile (Figure 19) and the convection
coefficient is set to be 50Wm�2K�1Þ.

In this test case, we monitor the temperature trajectories on a heater and in the workzone.
To show the error for the whole temperature field, we compute the absolute errors for all 20,209

elemental temperature individually. Four statistical measures of the absolute errors, that is, mean, standard
deviation (std.), minimum and maximum, are used to reflect the error distribution at the final time point.
The results are shown in Table 11.

In another test case, we use the same heating profile for four heaters and turn off two heaters
(Figure 18b). This simulates a scenario where two heaters have failed during the industrial process.
The existence of failed heaters will cause a nonuniform temperature field in the workzone. We call them
cold side and hot side, respectively. In this test, wemonitor the temperature trajectories of the cold side and
the hot side using the ROMs. The corresponding comparison between ROM-predicted trajectories and
FOM-predicted trajectories in two test cases is given in Figure 21 and Table 12.

Table 9. PAC scores in the AL algorithm.

Iteration Number of samples τ∗ (%) p τ∗design

� �
(%)

1 4,000 2.90 78.91
2 8,000 1.60 99.52
3 12,000 1.30 99.97
4 16,000 1.10 99.97
5 20,000 1.00 100.00

Note. The ROM is constructed with POD þ ANN.τ∗design ¼ 1%:

Table 10. 97%-confident ROM error (τ∗) by another PAC validator.

Number of samples AL-ROM ML-ROM

20,000 1.00% 13.07%

Note. The ROMs are constructed with POD þ ANN.
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As observed in both trajectory comparison in Figures 20 and 21, the ROM constructed by the AL
algorithm has a better agreement with the reference result. Moreover, in Tables 11 and 12, all statistical
measurement of the AL-ROM’s error fields are better than the ML-ROM’s. These facts tell us the
proposed method significantly improves the performance of the ANN-ROM in this nonlinear thermal
system.

Figure 19. The heat generation for the first test case. The strategy is applied to all six heaters.

Table 11. Statistical analysis for the error field (ΔT tð Þ, t∈ 0,45,000ð �) for the 3-stage heating profile.

AL-ROM ML-ROM

Mean (oC) 2.29 5.72
Std. ( oCð Þ2) 4.30 9.29
Min. (oC) 2.14E-8 1.69E-6
Max. (oC) 96.65 104.01

Note. The ROMs are constructed with POD þ ANN.

(a) AL-ROM. (b) ML-ROM.

Figure 20. Comparison between the NX solution and the ROMs’ prediction for the 3-stage heating
profile. The ROMs are constructed with POD þ ANN.

e2-24 Qinyu Zhuang et al.

https://doi.org/10.1017/dce.2022.39 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2022.39


4.3.2. AL for OpInf
In this section, the results of constructing the OpInf-ROM with the AL algorithm and the conventional
approach are given. The confident ROM error of the OpInf-ROM successfully converges to 1:00% after
five iterations. The OpInf-ROM produced by the conventional approach has a confident ROM error of
7:54% using the same amount of training data. This confident ROM error is lower than the confident
ROM error of the ANN-ROM produced in the conventional way (Figures 22 and 23 and Tables 13–16).

Similar to the results in Section 4.1.2, in the case-dependent validation, we can only see limited
improvement by employing the AL algorithm for the OpInf method. Besides the reasons mentioned in
Section 4.1.2, we also do not expect to have an extremely high temperature in the use cases of the case-
dependent validation for the vacuum furnacemodel. This means that the temperatures of the system under
the validation inputs are still considered to be located in the sampled region of the DPS method. In this
case, a ROM trained with the DPS-sampled data can still predict with high accuracy.

5. Summary and Conclusions

In this work, we propose an Active-Learning-based approach to support machine-learning-based
(ML-based) MOR methods. It can be applied to the reduction of any problem of the form,

_y tð Þ¼ f y; μð Þ, (44)

where y∈ℝN is the state vector and the parameter vector μ∈ℝNm is time-dependent. It can also be applied
to a wide variety of ML-based MORmethods including purely data-driven methods such as Deep Neural
Network in Fresca and Manzoni (2022), Gaussian process regression in Guo and Hesthaven (2018)),
Dynamic Mode Decomposition (Erichson et al., 2019), Residual Network in San et al. (2019), as well as

(a) AL-ROM. (b) ML-ROM.

Figure 21. Comparison between NX solution and ROMs’ prediction for the heating profile with failure.
The ROMs are constructed with POD þ ANN.

Table 12. Statistical analysis for the error field (ΔT tð Þ, t∈ 0,45,000ð �) for the heating profile with
failure.

AL-ROM ML-ROM

Mean (oC) 8.66 31.76
Std. ( oCð Þ2) 16.40 63.99
Min. (oC) 1.31E-6 8.84E-7
Max. (oC) 348.93 680.32

Note. The ROMs are constructed with POD þ ANN.
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physics-informed methods such as OpInf (Peherstorfer and Willcox, 2016), physics-informed neural
networks (PINNs) (Kim et al., 2022) or SINDy (Champion et al., 2019). The approach cannot however be
used with recurrent ML models such as those in Kani and Elsheikh (2017), Mohan and Gaitonde (2018),
Maulik et al. (2020), Wang et al. (2020), and Wu and Noels (2022).

(a) AL-ROM. (b) ML-ROM.

Figure 22. Comparison between NX solution and ROMs’ prediction for the 3-stage heating profile. The
ROMs are constructed with POD þ OpInf.

(a) AL-ROM. (b) ML-ROM.

Figure 23. Comparison between NX solution and ROMs’ prediction for the heating profile with failure.
The ROMs are constructed with POD þ OpInf.

Table 13. PAC scores in the AL algorithm.

Iteration Number of samples 1� τ∗ (%) p τ∗design

� �
(%)

1 1,000 2.30 76.49
2 2,000 1.40 98.68
3 3,000 1.20 99.83
4 4,000 1.10 99.93
5 5,000 1.00 100.00

Note. The ROM is constructed with POD þ OpInf. τ∗design ¼ 1%.
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One key ingredient is the generation of solution snapshots through the (active) sampling of a joint
space consisting of a predefined parameter space and an estimated reduced solution space. This leads to a
better coverage of these two spaces, which is otherwise difficult to achieve with simpler strategies. In
addition, we present a case-independent validator constructed based on the PAC learning theory. Through
numerical experiments, we find that our approach significantly improves the performance of purely data-
drivenMORmethods and that the PAC validator presents a good indicator of the ROM quality. However,
the benefits of using these strategies are less clear when applied to the physics-informed method OpInf.
We expect this to be also the case for other methods in this category, such as PINNs (Kim et al., 2022) or
SINDy (Champion et al., 2019). By exploiting knowledge of the physical system, suchmethods are better
at constructing ROMs that can generalize beyond the training data. Therefore the benefit of our improved
sampling strategy is less marked.
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Table 14. 97%-confident ROM error (τ∗) by another PAC validator.

Number of samples AL-ROM ML-ROM

5,000 1.00% 7.54%

Note. The ROMs are constructed with POD þ OpInf.

Table 15. Statistical analysis for the error field (ΔT tð Þ, t∈ 0,45,000ð �) for the 3-stage heating profile.

AL-ROM ML-ROM

Mean (oC) 3.69 3.79
Std. ( oCð Þ2) 8.74 13.39
Min. (oC) 1.21E-6 5.15E-8
Max. (oC) 166.32 334.06

Note. The ROMs are constructed with POD þ OpInf.

Table 16. Statistical analysis for the error field (ΔT tð Þ, t∈ 0,45,000ð �) for the heating profile with
failure.

AL-ROM ML-ROM

Mean (oC) 5.22 5.93
Std. ( oCð Þ2) 12.43 21.89
Min. (oC) 1.17E-6 7.32E-7
Max. (oC) 208.38 346.93

Note. The ROMs are constructed with POD þ OpInf.
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