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ABSTRACT

A simple recursion for the n-fold convolution of an arithmetic distribution with
itself is developed and its relation to Panjer's algorithm for compound distribu-
tions is shown.
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1. INTRODUCTION

Let Xu X2, •. •, Xn be n mutually independent random variables with a common
arithmetic distribution. By a proper rescaling we may assume these variables to
be denned on the integers. We denote their common distribution by px(x). First
we will focus on the case in which the X, are defined on the non-negative integers
with px(Q)>0. In chapter 4 the more general case will be discussed. Let

(1) Gx(u)= I px(x)ux

be the probability generating function of X.
The distribution of the sum

(2) S =

is given by the n-fold convolution

0 ) Ps(s)=P*x"(s)

and the generating function is

(4) Gs(u)=[Gx(u)]n.

The usual method to calculate px
n(s) requires n - 1 successive applications of

the formula

y

x=0
(5) px

ik+1\y) = I px(x)Px
k(y-x),

* The author is grateful to the editor and the anonymous referees for their helpful suggestions.
He thanks especially one of them for his detailed comments which led to an improved presentation
and extended results.
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and is thus very time-consuming for large values of n, especially if X takes on
more than a few different values.

In this paper a simple recursion is developed which gives the n-fold convolution
directly in terms of px(x). This permits to reduce the number of required
computations in a substantial way.

2. THE RECURSION

THEOREM 1. Let the Xt be defined on the non-negative integers and px(0)>0.
Then the following recursion holds:

(6a)

(6b) p s ( s )=-^r Z ( — x - l k ( x ) ? s ( S - x ) , 5 = 1,2
/>x(0)x=i\ s I

PROOF. Formula (6a) is trivial and can be obtained by putting u = 0 in (4).
To prove (6b) we can start from

(7) Gx{u)G's{u) = nG'x{u)Gs(u).

According to Leibnitz's formula taking the derivative of order s - 1 of both sides
of (7) gives:

and setting u = 0 leads to formula (6b).
As suggested by one of the referees a very elegant alternative derivation of

(6b) consists in the use of some conditional expectation. This approach was also
used by BUHLMANN and GERBER (1980) in a proof of the algorithm for the
compound Poisson distribution.*

Let Xn+, be an auxiliary random variable with the same distribution as
Xu X2,..., Xn, but independent of these variables. Then we have

(8)

giving

I (- x-l)px(x)ps(s-x) = O

from which (6b) follows immediately.
This proof is more direct but the choice of the appropriate conditional expecta-

tion requires some a priori knowledge of the formula to be obtained.

* In several recent papers the recursion for the compound Poisson distribution is attributed to
ADELSON (1966). However an earlier reference is KATTI and GURLAND (1958) as mentioned by
SHUMWAY and GURLAND (1960).
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We remark that the recursion (6) already exists in the form of an algorithm
for computing a power series raised to a power, see e.g. KNUTH (1969, pp. 444-
446). Knuth refers to HENRICI (1956), who attributes the result to a communica-
tion by J. C. P. Miller.

3. INTERPRETATION AND RELATION TO PANJER'S ALGORITHM

Let K be a random variable defined on the non-negative integers with distribution
Pn(k) and generating function GK(u).

Let Yu Y2,... be a sequence of independent and identically distributed random
variables defined on the positive integers with common distribution pY(y) and
generating function GY(u). Assume that the Y,'s are also independent of K and
consider

(9) R=Y1+Y2+--- + YK

with the convention that R = 0 if K = 0.
The distribution of this random sum is

(10a)

(10b) pR(r)= t

and the generating function is

(11) C

PR(0)=PK(0)

PK(k)p*Y
k(r),

iR(u) = GK[GY(

The next theorem shows that for appropriate choices of the distribution of K
and Y the sum S can be replaced by the random sum R.

THEOREM 2. Let

(12) PK(y)

and

(13) M ' ) = I ^ T y = l ' 2 > -
then the distributions of S and R are identical.

PROOF. From GK(u)=[px(0) + (l-px(0))uY and

GAu)= I-PAO)

it follows immediately that GR(u) = Gs(u).
The idea behind this theorem is that the n variables in the sum S, of which

many may take on the value zero, is replaced by a sum of random number of
strictly positive variables. The number of positive terms is binomially distributed
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with parameters n and l—px(O) and the distribution of 5 can be seen as a
compound binomial distribution

(14a)

(14b) Ps(s)=li(^j[l-px(O)f[px(O)T~kP*Yk(s), 5 = 1,2, . . . .

From this result—which can be verified without calculations—it follows that the
recursion (6) can be derived as a special case of the algorithm of PANJER (1981)
for the compound binomial distribution. We remark that this fact can also
implicitely be found in JEWELL and SUNDT (1981, p. 227) where they state that
when the portfolio is homogeneous, the binomial approximation is exact.
However, they do not mention that in this case the aggregate claims distribution
is just the n-fold convolution of the common claims distribution of the single
policies, and that thus the algorithm can be used for the evaluation of the n-fold
convolution of these distributions.

4. GENERALIZATION

So far we considered only the case in which the X, are defined on the non-negative
integers and where px(0)>0. The adaptation of the recursion (6) to the general
case is given in the following theorem.

THEOREM 3. Let the X, be defined on the integers and let m = min {x: px(x) > 0},
with m> —oo. Then the following recursion holds:

(15a) ps(mn) =[px(m)Y

(15b)
Px\m)

s = mn +1, mn + 2 , . . . .

PROOF. Let

(16) Z = Xt-m

(17) T= I Zi = S-mn

then

(18) Pz(z)=Px(z + m)

(19) pT(t)=ps(t+mn).

J s-mn / fj+ 1 \
=—r~T I x-l)px(x + m)ps(s-x),

px(m) x=i \s-mn /
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Since Pr (Z, &0) = 1 and pz(0) = px(m)>0 Theorem 1 can be applied in terms
of the variables Z, and T, so that

t=l-2>

After insertion of (18) and (19) and introduction of 5 = t + mn the result (15) is
obtained. It is clear that for m = 0 we get Theorem 1 as a special case.
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